差动保护
- 格式:doc
- 大小:53.50 KB
- 文档页数:3
差动保护的基本原理差动保护是电力系统中常用的一种保护方式,用于检测电气设备发生故障时的电流差异,从而及时采取动作措施,防止故障扩大并保护设备安全运行。
本文将从差动保护的基本原理、差动保护的主要应用领域以及差动保护的发展趋势等方面进行详细介绍。
差动保护的基本原理差动保护是基于电流差动原理而建立的。
其基本原理是通过比较电流的进出差异来检测设备是否发生故障。
在理想情况下,正常工作时电流的进出应该是相等的,即电流之差为零。
如果设备发生故障,则电流发生偏差,进出电流之差将不为零,这时差动保护系统将发出动作信号,切断故障部分的电源,保护系统的正常运行。
差动保护系统主要由主保护和备用保护两部分组成。
主保护负责实现差动保护的主要功能,备用保护则在主保护系统发生故障时起到备份作用。
主保护系统通常由差动电流继电器、比较器以及动作执行器等组成。
差动电流继电器负责将进出电流进行比较,发现差异时输出信号给比较器,比较器再将信号转化为动作信号给动作执行器。
差动保护的主要应用领域差动保护广泛应用于电力系统的各个环节,包括发电厂、变电站以及配电网等。
在发电厂中,差动保护用于发电机组、变压器等设备的保护。
在变电站中,差动保护则用于变压器、电缆线路等高压设备的保护。
而在配电网中,差动保护主要应用于低压设备,如配电变压器、电缆线路等。
差动保护的发展趋势随着电力系统的不断发展和现代化要求的提高,差动保护也在不断演变和完善。
目前,差动保护已经实现了微机保护的发展,并结合了现代的通信技术。
微机保护使得差动保护系统的功能更加强大,可实现更精确的测量和判断。
通信技术的应用使得差动保护系统能够实现远程控制和监控,提高了运维效率和安全性。
此外,差动保护系统还在趋向智能化和自适应方向发展。
智能化差动保护系统能够实现自动分析故障类型和区域,准确识别故障类型并采取相应的保护措施。
自适应差动保护系统则能够根据电网的实际运行情况对差动保护参数进行动态调整,提高保护系统的适应性和准确性。
电动机差动保护原理
电动机差动保护是一种保护电动机的措施,其原理是通过比较电动机的不同相电流,来检测是否存在故障。
差动保护通常包括两个主要部分:差动电流互感器和差动保护装置。
互感器位于电动机的供电线路中,用于检测电动机的相电流。
它通过感应电流的变化,将电流信号转化为电压信号。
互感器通常由多个线圈组成,其中一部分连接在供电线路的进线侧,另一部分连接在出线侧。
当电动机正常运行时,进线侧和出线侧的电流应该相等,因此互感器的输出电压应该接近零。
差动保护装置比较互感器的输出电压,如果发现有较大的差异,就会发出故障信号,并采取适当的措施来切断供电。
差异可能是由于电动机内部的故障或线路短路引起的。
差动保护装置通常包括了灵敏性调节装置,用于调整差动保护的动作灵敏度。
差动保护可靠性较高,可以有效地保护电动机不受损坏。
然而,差动保护也有一些限制。
例如,在启动电动机或者母线电压发生偏差时,差动保护可能会误动作。
因此,在设计和配置差动保护装置时,需要考虑这些因素,并进行相应的调整和保护配置。
总之,电动机差动保护通过比较电动机的不同相电流来检测故障,并采取措施来切断电源,以保护电动机的安全运行。
差动保护试验方法差动保护是电力系统中常用的一种保护方式,主要用于检测并定位电力系统的故障。
差动保护试验旨在验证差动保护系统的性能,确保在故障发生时能够及时、准确地切除故障部分,保护电力系统的安全运行。
1.整定试验:差动保护的整定是指根据系统参数和故障情况,确定差动保护系统的各个参数和阈值。
整定试验中主要包括设定电流试验、设定时间试验和设定阻抗试验。
设定电流试验通过改变电压、电流的变化,验证差动保护系统对不同故障情况的反应,以确定设定电流的准确值。
设定时间试验主要通过改变故障发生时的切除时间,验证差动保护的动作时间和灵敏度。
设定阻抗试验是为了验证差动保护系统的阻抗设定是否合理。
2.稳定性试验:差动保护系统的稳定性是指系统在发生故障时,能够正确地切除故障部分,而不会对正常运行的系统造成误动作。
稳定性试验主要包括对称负荷试验和非对称负荷试验。
对称负荷试验是通过改变系统的负荷情况,验证差动保护系统对不同负荷的响应情况,以确保系统在正常运行负荷下不会误动作。
非对称负荷试验是通过改变系统的负荷不平衡情况,验证差动保护系统对非对称故障的切除能力。
3.真实故障试验:差动保护系统的真实故障试验是为了验证差动保护系统对实际系统故障的响应能力。
真实故障试验通过在系统中引入各种类型的故障,并观察差动保护的动作情况,以验证差动保护系统对不同类型故障的切除能力和灵敏度。
4.抗干扰试验:差动保护系统的抗干扰能力是指在存在干扰信号的情况下,保护系统能够正常工作的能力。
抗干扰试验主要包括干扰源试验和抗干扰试验。
干扰源试验是通过在系统中加入各种类型的干扰源,观察差动保护系统的响应情况,以评估差动保护系统的抗干扰能力。
抗干扰试验是通过在差动保护系统的输入端引入干扰信号,并观察系统的响应情况,以评估差动保护系统的抗干扰能力。
差动保护试验主要包括实验前的准备工作、试验方案的制定、试验设备的准备和试验结果的分析等步骤。
实验前的准备工作主要包括对保护装置的检查和维护、系统参数和故障类型的确定等。
发变组差动保护原理
差动保护原理:在发电机或变压器的两侧装设差动保护。
当发电机或变压器内部故障时,故障电流将通过发电机或变压器的两侧流过,差动保护能迅速切除故障,使发电机和变压器的运行得以维持。
差动保护的基本原理:
差动保护是指在两个电流互感器之间产生电流差,由该电流与相应的励磁电流之比而构成的。
当故障电流通过两个电流互感器时,两侧所产生的电流之比(差动比)就是两侧间产生差动所需的励磁电流之比,因而称该差动比为差动保护的励磁电流。
差动保护是以差动保护为基础。
差动保护是发电机和变压器两侧所安装的,用来检测励磁系统故障或不平衡电流而动作的一种装置。
当发生不平衡电流时,其两侧产生的差动比分别为零,即两侧间产生的差动比为零。
这是因为当发电机内部故障时,励磁系统将产生一个很大的不平衡电流;而在变压器内部故障时,励磁系统将产生很小的不平衡电流。
—— 1 —1 —。
差动保护的原理差动保护是电力系统中常用的一种保护方式,它主要用于保护电力系统中的发电机、变压器、母线等设备。
差动保护的原理是通过比较设备两端的电流值,来判断设备是否出现故障,从而实现对设备的保护。
下面我们将详细介绍差动保护的原理及其应用。
首先,差动保护的原理是基于基尔霍夫电流定律和对称分量理论的。
在正常情况下,设备两端的电流是相等的,而在设备发生故障时,两端的电流就会出现不相等的情况。
差动保护利用这一特性,通过对设备两端电流的比较,来判断设备是否出现故障。
当两端电流不相等时,差动保护会动作,从而实现对设备的保护。
其次,差动保护可以分为整流差动保护和非整流差动保护两种。
整流差动保护主要用于对发电机和变压器等设备进行保护,而非整流差动保护主要用于对母线等设备进行保护。
整流差动保护和非整流差动保护的原理是一样的,都是通过比较设备两端的电流值来实现对设备的保护,只是在实际应用中会有一些差异。
此外,差动保护还可以通过不同的接线方式来实现。
常见的差动保护接线方式有星形接线和三角形接线两种。
星形接线适用于对称电流较大的情况,而三角形接线适用于对称电流较小的情况。
选择合适的接线方式可以更好地实现对设备的保护。
最后,差动保护在电力系统中有着广泛的应用。
它能够及时准确地对设备进行保护,防止设备发生故障对整个电力系统造成影响。
同时,差动保护还可以实现对设备的局部保护,提高了电力系统的可靠性和安全性。
总之,差动保护作为一种常用的电力系统保护方式,其原理简单而有效。
通过对设备两端电流的比较,可以实现对设备的及时保护,从而保障了电力系统的安全稳定运行。
差动保护在电力系统中的应用前景广阔,将在未来发挥越来越重要的作用。
差动保护工作原理差动保护是电力系统保护中常用的一种保护方式,主要用于检测电力系统中的故障情况,并采取措施防止故障扩大。
差动保护可以用于对各种电气设备进行保护,如变压器、发电机、母线等。
下面将详细介绍差动保护的工作原理。
差动保护是一种基于电流差值的保护方式。
其基本原理是通过比较同一电路的两个或多个点的电流,来判断电气设备是否存在故障。
差动保护一般采用主动式差动保护,也就是主动比较电流并判断是否存在故障,另外还有被动式差动保护,也就是被动接受其他装置的差动信号。
差动保护通常由一个差动继电器组成,该继电器上接入从变压器、发电机以及线路中取得的电流信号。
差动继电器接受这些电流信号,并通过比较这些信号的差异来判断电气设备是否存在故障。
差动保护的工作原理大致可以分为三个步骤:采样、比较和判定。
首先是采样。
差动继电器上接入从电气设备中取得的电流信号。
这些电流信号是通过采样装置采集而来的,通常采用电流互感器获取变压器、发电机以及线路中的电流信号。
采样装置会将采集的电流信号转换成适合差动继电器处理的信号,然后输入到差动继电器中。
接下来是比较。
差动继电器将接收到的电流信号进行比较,比较对象通常是同一电路中的两个或多个点的电流信号。
差动继电器会将这些电流信号进行差分运算,得到一个差值。
如果差值超过所设定的阈值,就会触发差动继电器的动作。
最后是判定。
差动继电器会根据比较得到的差值判断电气设备是否存在故障。
如果差值超过阈值,差动继电器会发出警报信号,并向对应的断路器或开关发送信号,将故障路段进行隔离。
如果差值在阈值之内,差动继电器则认为电气设备正常运行。
差动保护的工作原理中,要特别注意的是阈值的设定。
阈值的大小与电气设备的特性有关,通常需要根据设备的额定电流和故障特性来确定。
阈值设置过小,容易造成误动作,阈值设置过大,容易漏检故障。
差动保护相对来说是一种较为简单、可靠的保护方式。
它可以实时监测电气设备的工作情况,一旦发现故障可以迅速切除故障路段,保护系统的安全稳定运行。
差动保护一、差动保护原理变压器差动保护的动作原理与线路纵差动保护相同,通过比较变压器两侧电流的大小和相位决定保护是否动作,单相原理接线图如图4-4所示。
三绕组变压器的差动保护,其原理与图4-4相类似,只是将三侧的“和电流”接入差动继电器KD ,这里不再赘述。
电力系统中,变压器通常采用Y ,dll 接线方式,两侧线电流的相位相差300。
如果将变压器两侧同名相的线电流经过电流互感器变换后,直接接入保护的差动回路,即使两个电流互感器的变比选择合适,使其二次电流数值相等,即21I I '=',流入差动继电器的电流也不等于零,因此在电流互感器二次采用相位补偿接线和幅值调整。
具体为变压器星形侧的三个电流互感器二次绕组采用三角形接线(自然消除了零序电流的影响),变压器三角侧的三个电流互感器二次绕组采用星形接线,将引入差动继电器的电流校正为同相位;同时,二次绕组采用三角形接线的电流互感器变比调整为原来的3倍。
微型机变压器差动保护,可以通过软件计算实现相位校正。
1.变压器正常运行或外部故障根据图4-4(a)所示电流分布,此时流入差动继电器KD 的电流是变压器两侧电流的二次值相量之差,适当选择电流互感器1TA 和2TA 的变比,再经过相位补偿接线和幅值调整,实际流人差动继电器的电流为不平衡电流,继电器不会动作,差动保护不动作。
此时流人差动继电器的电流为unb TA TA KD I n I n I I I I =-=-=••••''221121 (4—1)式中 TA n 1——电流互感器1TA 、2TA 的变比;unb I ——流人差动继电器的不平衡电流。
2.变压器内部故障根据图4-4(b)所示电流分布,此时流人差动继电器KD 的电流是变压器两侧电流的二次值相量之和,使继电器动作,差动保护动作。
此时流人差动继电器的电流为TA TA KD n I n I I I I 221121••••+=+='' (4—2)如果变压器只有一侧电源,则只有该侧的电流互感器二次电流流人差动继电器;如果变压器两侧有电源,则两侧的电流互感器二次电流都流入差动继电器,且数值相加。
差动保护变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.从能量的角度考虑,电力故障就是电能释放转化为热和光等其它能量的过程,从而在故障点两端测得的(相同电压下或变换为同一电压)电流大小和相位必然是不一样的,测得有电流差即有电能释放,即表明有故障,保护就应动作。
“差动”就是有差即动!变压器的主保护是差动保护还是瓦斯保护?差动保护和瓦斯保护共同组成变压器的主保护。
差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。
瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。
由上可以看出,差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。
而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.变压器的差动保护分为纵联差动和横联差动两种形式.纵联差动保护用于单回路,横联差动保护用于双回路.主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,其保护区在变压器一,二侧所装电流互感器之间.它是利用保护区内发生短路故障时变压器两侧电流在差动回路中引起的不平衡电力而动作的一种保护.主变差动保护跳闸的处理;查看开关位置显示及其电流表,确认主变跳闸,报调度,汇报初步现象。
差动保护的原理
差动保护是一种用于电力系统中保护设备的保护装置,其主要原理是通过比较电流变量来检测系统中的故障。
差动保护的基本原理是根据基尔霍夫电流定律,通过比较进入和离开受保护区域的电流的差值,来判断是否有故障发生。
当系统正常运行时,进入和离开受保护区域的电流应该相等,差动保护的输出信号为零。
但是当系统发生故障时,导致有一部分电流发生了变化,进入和离开受保护区域的电流差值就会不为零,差动保护系统会发现这个差异并产生相应的保护动作。
差动保护通常应用于变压器、发电机、电缆等可能发生故障的设备上。
对于变压器来说,差动保护通常是通过在变压器的电流进出线路上安装电流互感器来实现的。
进入和离开变压器的电流通过电流互感器传递到差动保护装置,该装置比较这些电流的差异并判断是否有故障发生。
如果有故障发生,差动保护装置将发出信号,触发断路器或其他保护设备,切断受保护设备与电力系统的连接,从而保护设备免受进一步的损坏。
总之,差动保护通过比较电流变量来检测电力系统中的故障,当进入和离开受保护区域的电流差异大于预设值时,差动保护系统会触发相应的保护动作,以保护设备的安全运行。
差动保护基本原理差动保护是电力系统中常用的一种保护方式,用于检测电气设备的内、外部短路故障,并迅速切断故障部分,以保护电器设备的安全运行。
它的基本原理是基于电流差值的测量。
差动保护的原理可以分为两个方面:差动原理和差流原理。
一、差动原理当设备正常运行时,设备两端的电流大小是相等的,因为电器设备是采用闭合的回路。
而当设备发生内、外部短路故障时,由于故障电流的存在,电流的值和方向会发生变化,导致设备两端电流不再相等。
差动保护通过测量设备两端电流的差值,当差值超过设定的阈值时,判断故障发生,并发送保护信号,进行故障切除或报警。
二、差流原理差流原理是差动保护中常用的一种实现方法。
它通过将电流采样器放置在设备两端,测量设备两端的电流,并将测量结果进行差分运算,得到差流信号。
差流信号经过放大、整定之后与设定的阈值进行比较,当差流信号超过设定的阈值时,判断设备发生故障,进行切除或报警。
差流原理的实现可以使用各种电流互感器和差流计算器来完成。
差动保护的基本原理可以用以下示意图来表示:```───────────────────────监控│╔═══╦═══╗│设备1→→││多绕组变压器│←←设备2││││←←信号源│─────→→╚═══╩═══╝││││差动保护装置```以上示意图中,设备1和设备2之间连接一个多绕组变压器,通过变压器的中继作用,将设备两端的电流进行采样并传输到差动保护装置。
差动保护装置通过差分运算,计算设备两端电流的差值,并将计算结果与设定的阈值进行比较,如果差值超过设定的阈值,说明设备发生故障,差动保护装置会发送信号进行保护动作。
差动保护具有快速、可靠的动作特性,可以有效地检测电气设备的内、外部短路故障,并迅速切除故障部分,保护电器设备的安全运行。
差动保护在电力系统中得到广泛的应用,常见的应用包括变压器差动保护、母线差动保护、发电机差动保护等。
并且随着电力系统的智能化发展,差动保护装置也在不断地发展,逐渐向数字化、网络化的方向发展。
关于差动保护相关参数的描述,帮助大家理解PMC装置差动保护原理。
差动保护装置可用于双绕组变压器、电抗器、发电机、大型电动机以及其它双端设备的电流差动保护。
继电器可适应各种电力变压器连接。
继电器能自动补偿各种连接来获取适用的差动动作量。
差动保护装置的变压器差动保护功能设计了一套可整定的动作电流启动量以及两个百分比制动折线特性。
这样可使继电器设置灵敏,同时使继电器能够在高故障电流情况下区分内部和外部故障。
继电器也提供一种无制动元件来快速去除高值内部故障。
二次和五次谐波闭锁使继电器可通过电流信号中的频率分量来区分由内部故障和由励磁涌流或过励磁引起的差动电流。
谐波闭锁元件具有可整定的门槛。
差动保护装置原理与国内的微机型差动保护原理几乎是一样的,即使是与常规的电磁型比拟,原理也是类似,只不过微机型保护的应用更方便。
如:常规电磁型差动保护星三角变换(CT接线)需在外部完成,微机型差动保护既可以在外部完成,也可在内部完成(外部两侧CT均可接成星型);常规电磁型差动保护电流调平衡是用改变线圈缠绕匝数来完成的,微机型差动保护经过自动计算或输入变压器额定电流值(二次值)即可。
差动保护装置的百分比制动折线一般只应用第一段(SLP1),第二段关闭(SLP2=0FF).比例制动差动保护动作条件:IOP>(SLP1/1OO)*IRT且I0P>087P;如果二次谐波I2>(PCT2/100)*I0P,那么闭锁差动保护。
即差流大于一定比例的制动电流且差流大于差动启动值(差动门槛),差动保护动作。
但二次谐波较大时,闭锁差动保护(主要是考虑励磁涌流)。
差动速断保护动作条件:I0PXJ87P。
一般来说,差动速断启动值要大于可能出现的励磁涌流最大值。
其中:IOP为经过星三角变换与幅值调平衡后的上下压侧差流标么值,IRT为经过星三角变换与幅值调平衡后的制动电流标么值,12为二次谐波标么值。
计算公式:IOP=Ih+Il IRT=(|lh| + |ll|)/2上式Ih、H为经过星三角变换与幅值调平衡后的上下压侧电流标么值,差流计算为相量运算后取模(幅值),制动电流为上下压侧幅值相加再除以二。
发电机差动保护的原理及作用发电机差动保护是指在发电机内部进行保护,以保证发电机的稳定运行和安全性。
差动保护的原理是通过比较发电机两端的电流差异来判断是否存在故障。
本文将详细介绍发电机差动保护的原理、作用以及实现方法。
一、差动保护的原理差动保护的原理基于电流的基本定律——基尔霍夫定律,即在一个封闭电路内,流入的电流等于流出的电流。
因此,当发电机两端的电流不相等时,就说明存在故障。
发电机差动保护的核心就是利用这个原理进行保护。
具体来说,差动保护的原理是将发电机两端的电流通过互感器进行变压,再通过差动继电器进行比较。
如果两端的电流差异超过设定值,就会启动保护动作,切断故障电路,以确保发电机的安全运行。
二、差动保护的作用发电机差动保护的作用是保护发电机本身,防止因为内部故障导致发电机损坏。
具体来说,差动保护可以保护发电机内部的绕组、绝缘材料、开关设备等,防止电流过大或者电流短路等故障。
差动保护还可以防止因为外界故障引起发电机内部故障,如电网短路、线路故障等。
在这些情况下,差动保护可以及时切断故障电路,防止故障扩大,保护发电机的安全。
三、差动保护的实现方法差动保护的实现方法通常包括三个步骤:测量、比较和保护。
具体来说,差动保护的实现方法如下:1.测量测量是差动保护的第一步,即通过互感器对发电机两端的电流进行测量。
互感器是一种电器元件,能够将电流变成电压。
互感器的作用是将发电机两端的电流变成对应的电压信号,以便进行比较。
2.比较比较是差动保护的第二步,即将测量到的电流信号进行比较。
比较的方法通常是利用差动继电器,将发电机两端的电流信号进行差分运算,得到差值信号。
如果差值信号超过设定值,就说明存在故障,需要启动保护动作。
3.保护保护是差动保护的第三步,即根据比较的结果进行保护动作。
保护动作通常是通过继电器实现的,可以切断故障电路,防止故障扩大。
同时,保护动作还需要发送信号给控制系统,以便进行相应的处理。
四、总结发电机差动保护是保护发电机的重要手段之一,通过测量、比较和保护三个步骤,可以及时发现和切断发电机内部的故障电路,保证发电机的稳定运行和安全性。
差动保护知识点总结差动保护是电力系统中一种常见的电气保护装置,主要用于检测和保护电力系统中的发电机、变压器、母线等设备。
差动保护的作用是在设备内部发生故障时,能够迅速检测到故障并及时切断故障电路,保护设备和系统的安全运行。
在电力系统中,差动保护是非常重要的一部分,掌握差动保护的知识对于电力系统的稳定运行和设备的安全保护至关重要。
一、差动保护原理差动保护的基本原理是通过比较设备两端的电流,对两端电流的差值进行检测,当这个差值超出一定范围时,即视为设备内部发生故障,需要切断电路。
在差动保护中,通常使用比率系数和阈值等参数来确定差值的范围,并设置报警和动作信号。
差动保护主要有线性差动保护和非线性差动保护两种形式。
线性差动保护是指在一定电流范围内,设备两端电流之差与设备载流量成正比。
而非线性差动保护则指设备两端电流之差与设备在额定载流以下时成正比,在超过额定载流时成指数关系。
这两种差动保护的选择取决于具体的设备类型和应用场合。
二、差动保护的应用差动保护主要应用于发电机、变压器、母线等设备的保护。
发电机的差动保护是断路器和继电保护装置之间的一个重要环节,用于检测发电机线圈内部的短路、接地故障等情况。
变压器的差动保护则是用于检测变压器绕组内部的故障,如短路、接地等。
母线的差动保护主要是用于保护母线两端设备的并联运行,确保母线两侧设备的平衡运行。
此外,差动保护还可以应用于电力系统中的其他设备保护,如电网端口、电容器等。
差动保护在发电厂、变电站、工矿企业等电力系统中都有广泛的应用。
三、差动保护的特点1. 灵敏性高:差动保护能够灵敏地检测设备内部的故障,迅速切断电路,保护设备和系统的安全运行。
2. 可靠性好:差动保护的设计和运行经验丰富,经过长期的实践检验,具有较高的可靠性。
3. 抗干扰能力强:差动保护能够在电力系统复杂的工况下,依然能够正常工作,具有很强的抗干扰能力。
4. 适应性强:差动保护在不同类型的设备上都能够灵活应用,适应性较强。
差动保护是针对变压器的一种保护措施,其工作原理基于基尔霍夫电流定律。
当变压器正常工作或区外故障时,流入和流出变压器的电流相等,差动保护不动作。
当变压器内部故障时,差动保护感受到差电流,会采取相应的动作。
差动保护采取的具体措施包括以下两个方面:
减小稳态情况下的不平衡电流:在变压器差动保护中,各侧用的电流互感器选用变压器差动保护专用的D级电流互感器,当通过外部最大稳态短路电流时,差动保护回路的二次负荷要能满足10%误差的要求。
减小电流互感器的二次负荷:这实际上相当于减小二次侧的端电压,相应地减少电流互感器的励磁电流。
减小二次负荷的常用办法有:减小控制电缆的电阻(适当增大导线截面,尽量缩短控制电缆长度);采用弱电控制用的电流互感器(二次额定电流为lA)等。
此外,在处理差动保护动作时,应先对差动保护范围内的一次设备进行仔细检查,如观察有没有着火的现象,要是有的话,应该快速进行灭火处理,将其熄灭。
同时,也要检查是不是因为存在保护误动的现象,或者是有人误碰。
然后对差动回路与继电器进行仔细检查。
如需获取更多关于“差动保护采取的具体措施”的信息,建议咨询专业人士或查阅有关专业书籍。
什么叫差动保护差动保护是输入的两端CT电流矢量差,当达到设定的动作值时启动动作元件。
保护范围在输入的两端CT之间的设备(可以是线路,发电机,电动机,变压器等电气设备)逆相序上面两位已经解释了,有功反向是逆功率而不是逆相序,一般用在发电机保护中。
电流差动保护是继电保护中的一种保护,说的差动保护和逆相序都是对的。
正相序是A超前B,B超前C各是120度。
反相序(即是逆相序)是 A 超前C,C超前B各是120度。
有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序。
变压器差动保护是指对变压器内部短路故障的保护,就是检测变压器的上游侧与下游侧电流的差值,如果差值为零的话,表明不存在内部短路,如果差值不等于零的话,表明变压器存在内部故障。
变压器差动保护与电动机差动及母线差动保护相类似。
横差:在平行的双回线路上,由于阻抗相等,其电流和相位也相等,当一回线路故障时,流过两线路的故障电流大小将不等,利用双回线路这个特点构成的保护。
纵差:比较线路差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。
怎样才知道差动保护的运行情况呢?怎样才知道差动保护的整定、接线正确呢?唯有用负荷电流检验。
但检验时要测哪些量?测得的数据又怎样分析、判断呢?下面就针对这些问题做些讨论。
2 变压器差动保护的简要原理差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
3 变压器差动保护带负荷测试的重要性变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。
差动保护
差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。
变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护
首先,搞明白差动保护的原理。
差动保护,是利用基尔霍夫电流定理工作的,也就是把被保护的电气设备看成是一个接点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。
当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。
当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。
其保护范围在输入的两端电流互感器之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。
电力变压器的差动保护,其电流就是取自变压器高、低压侧的变压器电流互感器。
输电线路的差动保护,其电流就是取自该线路两端变电站内线路用电流互感器。
差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的
正比于故障点电流,差动继电器动作。
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。
另外差动保护还有线路差动保护、母线差动保护等等。
变压器差动保护是防止变压器内部故障的主保护。
其接线方式,按回路电流法原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略不平衡电流,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。
如果内部故障,如图ZD点短路,流入继电器的电流等于短路点的总电流。
即:iJ=ibp=iI2+iII2。
当流入继电器的电流大于动作电流,保护动作断路器跳闸。
纵联差动
就是利用辅助导引线将线路两侧电流大小和相位进行比较,决定保护是否动作的一种快速保护。
用环流回路比较两侧电流大小和相位,两侧电流的大小相等,相位同时差动回路几乎无电流,差动继电器不动作,两侧电流的大小不等或相位不同时,差动回路电流大,差动继电流动作。
横联差动
应用于并联电路(或双回线)的一种差动保护。
其动作取决于这些电路中电流的不平衡分配。
在阻抗相同的两条平行线路上可装设横联差动方向保护。
横联差动方向保护反应的是平行线路的内部故障,而不反应。