数字电子技术基础课后答案_阎石_第五版第一章习题答案(1)
- 格式:doc
- 大小:1.67 MB
- 文档页数:19
5> (-101010B) 原码=( )反码=()补码一、填空题:(每空3分,共15分)1 •逻辑函数有四种表示方法,它们分别是(2 .将2004个“ 1”异或起来得到的结果是( 3. 由555定时器构成的三种电路中,( 4. TTL 器件输入脚悬空相当于输入( 5. 基本逻辑运算有:()、(6. 采用四位比较器对两个四位数比较时,先比较(7.触发器按动作特点可分为基本型、 ()、(&如果要把一宽脉冲变换为窄脉冲应采用()9. 目前我们所学的双极型集成电路和单极型集成电路的典型电路分别是 电路。
10.施密特触发器有( )个稳定状态•,多谐振荡器有()个稳定状态。
11. 数字系统按组成方式可分为 、 两种;12.两二进制数相加时,不考虑低位的进位信号是( )加器。
13. ______________________ 不仅考虑两个 ___________________ 相加,而且还考虑来自 相加的运算电路, 称为全 加器。
14. ________________________________ 时序逻辑电路的输出不仅和 ___ 有关,而且还与 有关。
15. _______________________________________ 计数器按CP 脉冲的输入方式可分为 和 。
16.触发器根据逻辑功能的不同,可分为 _________ 、)、()° )和( )是脉冲的整形电路。
)电平。
)和()运算。
)位。
)和边沿型; 触发器()电路和(19.若将一个正弦波电压信号转换成冋一 频率的矩形波, 应采用 20. 把JK 触发器改成 T 触发器的方法是。
. 数制转换(5分):1、(11.001)2 =( )16=( )12、(8F.FF) 16=( )2=( )103、( 2 5.7) 10=()2=()164、(+1011B)原码=() 反码=() 补码____ 电路。
第8章 可编程逻辑器件一、选择题1.(多选)关于PROM和PAL的结构,以下叙述正确的是()。
A.PROM的与阵列固定,不可编程B.PROM与阵列、或阵列均不可编程C.PAL与阵列、或阵列均可编程D.PAL的与阵列可编程【答案】AD【解析】PROM由存储矩阵、地址译码器和输出电路组成。
其中与阵列是固定的,不可编程,初始时所有存储单元中都存入了1,可通过将所需内容自行写入PROM而得到要求的ROM,PROM的内容一经写入以后(改变的是或阵列),不能修改。
PAL器件由可编程的与逻辑阵列、固定的或逻辑阵列和输出电路三部分组成。
二、填空题1.与PAL相比,GAL器件有可编程的输出结构,它是通过对______行编程设定其______的工作模式来实现的,而且由于采用了______的工艺结构,可以重复编程,使它的通用性很好,使用更为方便灵活。
【答案】机构控制字;输出逻辑宏单元;E2CMOS2.PAL是______可编程,EPROM是______可编程。
【答案】与阵列;或阵列3.GAL 是______可编程,GAL 中的OLMC 称______【答案】与阵列;输出逻辑宏单元4.在图8-1所示的可编程阵列逻辑(PAL )电路中,Y 1=______,Y 3=______。
图8-1【答案】;123234134124I I I I I I I I I I I I +++12I I ⊕【解析】×表示连通,在一条线上的×表示与,然后通过或门连接在一起。
三、简答题1.如图8-2所示为PAL16L8的一部分电路,试分析该电路,写出电路在X 控制下的函数F 对应于输入A 、B 、C 的逻辑表达式。
图8-2答:当X=0时,F所在三态门选通;X=1时,三态门关闭。
故该电路的逻辑关系式为:。
2.下面图8-3所示的3个卡诺图代表3个4变量逻辑的逻辑函数。
(1)用PROM实现,画出码点矩阵图;(2)用PLA实现,画出码点矩阵图。
【最新整理,下载后即可编辑】第一章1.1 二进制到十六进制、十进制(1)(10010111)2=(97)16=(151)10 (2)(1101101)2=(6D)16=(109)10(3)(0.01011111)2=(0.5F)16=(0.37109375)10 (4)(11.001)2=(3.2)16=(3.125)10 1.2 十进制到二进制、十六进制(1)(17)10=(10001)2=(11)16(2)(127)10=(1111111)2=(7F)16(3) (0.39) 10 (0.0110 0011 1101 0111 0000 101 0)2 (0.63 D70 A )161.8 用公式化简逻辑函数(1)Y=A+B(2)Y ABC A B C 解:Y BC A B C C A B C (1 A+A=1)(4)Y ABCD ABD ACD 解:Y AD(BC B C ) AD(B C C) AD(5)Y=0(4) (25.7) 10 (11001.101 1 0011)2 (19.B3)16(3)Y=1(7)Y=A+CD(6)Y AC(CD AB) BC(B AD CE) 解:Y BC(B AD CE) BC(B AD) CE ABCD(C E ) ABCDE(8)Y A (B C)(A B C)(A B C) 解:Y A (B C)(A B C)(A B C) A (ABC BC)(A B C) A BC( A B C) A ABC BC A BC(9)Y BC AD AD(10)Y AC AD AEF BDE BDE1.9 (a) Y ABC BC(b)(c) Y1 AB AC D,Y2 AB AC D ACD ACD (d) Y1 AB AC BC,Y2 ABC ABC ABC ABC 1.10 求下列函数的反函数并化简为最简与或式Y ABC ABC(1) (2)Y A C DY AC BC(3)Y (A B)(A C)AC BC 解:Y ( A B)(A C)AC BC [(A B)(A C) AC] BC(4)Y A B C ( AB AC BC AC)(B C) B C【最新整理,下载后即可编辑】(5)Y AD AC BCD C 解:Y (A D)(A C)(B C D)C AC(A D)(B C D) ACD(B C D) ABCD1.11 将函数化简为最小项之和的形式(6)Y 0(1)Y ABC AC BC 解:Y ABC AC BC ABC A(B B )C ( A A)BC ABC ABC ABC ABC ABC ABC ABC ABC ABC(2)Y ABCD ABCD ABCD ABCD ABCD ABCD (3)Y A B CD解:Y A(BC D BCD BCD BCD BC D BCD BCD BCD) B( ACD ACD ACD ACD AC D ACD ACD ACD) (AB AB AB AB)CD ABC D ABCD ABCD ABCD ABC D ABCD ABCD ABCD ABC D ABCD ABCD ABCD ABCD (13)(4)Y ABCD ABCD ABCD ABC D ABCD ABCD ABCD ABCD (5)Y LM N LMN LMN LMN L M N LMN1.12 将下列各函数式化为最大项之积的形式(1)Y (A B C )( A B C)( A B C )(2)Y (A B C)( A B C)( A B C)(3)Y M 0 M 3 M 4 M 6 M 7(4) Y M 0 M 4 M 6 M 9 M12 M13(5)Y M 0 M 3 M 51.13 用卡诺图化简法将下列函数化为最简与或形式:(1)Y A D(3)Y 1(2)Y AB AC BC CD(4)Y AB AC BC(5)Y B C DY C D AB(7)(9)Y B D AD BC ACD (8)Y ( A, B, C, D) m (0,1,2,3,4,6,8,9,10,11,14)Y AB AC(6)Y AB AC BCY C(10)Y ( A, B, C) (m1,m4 , m7 )Y B CD AD 【最新整理,下载后即可编辑】Y ABC ABC ABC1.14 化简下列逻辑函数 (1)Y A B C D (3)Y AB D AC (5)Y AB DE CE BDE AD ACDE1.20 将下列函数化为最简与或式 (1)Y ACD BCD AD (3)Y A B C (5)Y 1 第三章3.1 解:由图可写出 Y1、Y2 的逻辑表达式:Y1 ABC ( A B C) AB AC BC ABC ABC ABC ABCY2 AB AC BC真值表:(2)Y CD ACD (4)Y BC BD(2)Y B AD AC (4)Y A B D (6)Y CD B D AC3.2 解: , comp 1、Z 0 时,Y1 A,Y2 A2,Y3 A2 A3 A2 A3,Y4 A2 A3 A4comp 0、Z 0 时,Y1 A1,Y2 A2,Y3 A3,Y4 A真值表:3.3 解:【最新整理,下载后即可编辑】3.4 解:采用正逻辑,低电平=0,高电平=1。
数电第五版答案阎⽯第⼀三章1.1⼆进制到⼗六进制、⼗进制(4)(11.001)2=(3.2) 16=(3.125) 10(3) Y (A B)(A C)AC BC第⼀章(1)Y=A+B(3)Y=1(2)Y ABC A BC(4)Y ABCD ABD ACD解:Y BC AB CC A B C 1(A + A =1)解:Y AD(BC B C) AD(B C C) AD(5)Y=0(7)Y=A+CD(6)Y AC (CD :AB) BC(BAD CE)解:Y BC(B AD CE) BC(B AD) CE ABCD(CE) ABCDE(0.63D70A )16(2)(127) 10=(1111111) 2=(7F) 16(4) (25.7)10(11001.101 1 0011)2(19.B3)16⑻丫解:A Y A (B C)(A B C)(A B A (B C)(A B C)(AC A A (ABC \ BCBC)(A B C)BC(A B C) AABC (9)Y BCA D AD(10)Y AC AD AEF BDE BDE1.9 (a)Y ABC BC(b)Y ABC ABC(c) Y 1AB ACD,Y 2AB ACDACD , ACD(d) 丫 1 AB AC BC,Y 2ABC ABCABC ABC1.10 求下列函数的反函数并化简为最简与或式 Y A C D (1)Y ABC ACBC解: Y ABCAC Be A BC A (B B)C (AA)BCA BC ABC ABC ABC ABC A B CABC ABC⑵YABCD ABCD ABCD ABCD ABCDA BCDACD(B C D) ABCD将函数化简为最⼩项之和的形式ABC(3)(0.01011111) 2=(0.5F) 16=(0.37109375) 10 1.2⼗进制到⼆进制、⼗六进制(1)(17) 10=(10001) 2=(11) 16 (3) (0.39)10 (0.0110 0011 1101 0111 0000 1010) 2 1.8⽤公式化简逻辑函数 (1) Y AC BC 解:丫 (A B)(A C)AC BC[(AB)(A C) AC] BC(5)Y(AB AC BCAD AC BCD C 解:丫 (A D)( A C)(BAC)(BC)C D)C AC(A D)(B D)1.11(3) Y A B CD解:Y A(BCDBCD BCD BCD BCD BCD BCD BCD)B(ACDACDA CD A CD ACD ACD ACDACD) (AB AB AB AB)CDABCD ABCDABCD ABCD ABCDABCD ABCD ABCDA B CD A B C D A BCD A BCDABCD (13)⑷ Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD(5) Y LMN LMN LMN LMN LMN LMN 1.12 将下列各函数式化为最⼤项之积的形式(1) Y (A B C)(A B C)(A B C) (2)(5) Y M o M 3 M 5 1.13⽤卡诺图化简法将下列函数化为最简与或形式:1.20将下列函数化为最简与或式(1) Y ACD BCD AD (2) Y B AD AC(3) Y A BCA BD(5) Y 1(6)YCDBD ACY (A B C)(A B C)(A B C)(3) Y M o M 3 M 4 M 6 M 7Y M 0 M 4 M 6 M 9 M 12 M 13(1) Y A D (2) Y AB AC BCCD AB AC BC0 i r:0 J 1i1 1[1JLi)D AB(6)(9)E p0 011〕 0ABACY AB AC BC Y BD AD BCA CD(8) Y(A,B,C,D) m (0,1,2,3,4,6,8,9,10,11,14) (10) Y (A ,B ,C)10 0 J 0 0 D 1j i11B CD AD1 0 0 11Y ABC ABC ABC(1) YABCD (2) ⑶ YAB D AC(4)⑸ Y A B D E CEBDE AD A C DEY CD ACD YBC BD00 01 II 10,1 JIt LCM 01.11 1001 11 101.14化简下列逻辑函数3.1解:由图可写出 Y i 、Y 2的逻辑表达式:Y 1 ABC (A B C) ―AC ―BCABC ABC ABC ABC Y 2 AB AC BC真值表:ABC Yi Yi0 0 0 0 Q0 & 1 0 1 0 ;J 曲真值表知,电路是⼀亍⼀位全加器。
第1章数制和码制1.1复习笔记一、数字信号与数字电路1.模拟信号和数字信号模拟信号:幅度和时间连续变化的信号。
例如,正弦波信号。
数字信号:在幅度和时间上取值离散的信号。
例如,统计一座桥上通过的汽车数量。
模拟信号经过抽样、量化、编码后可转化为数字信号。
数字信号的表示方式:(1)采用二值数字来表示,即0、1数字;0为逻辑0,1为逻辑1。
(2)采用逻辑电平来表示,即H(高电平)和L(低电平)。
(3)采用数字波形来表示。
2.模拟电路和数字电路模拟电路:工作在模拟信号下的电路统称为数字电路。
数字电路:工作在数字信号下的电路统称为数字电路。
数字电路的主要研究对象是电路的输入和输出之间的逻辑关系;主要分析工具是逻辑代数关系;表达电路的功能的方法有真值表,逻辑表达式及波形图等。
二、几种常用的进制不同的数码既可以用来表示不同数量的大小,又可以用来表示不同的事物。
在用数码表示数量的大小时,采用的各种计数进位制规则称为数制,主要包括进位制、基数和位权三个方面。
进位制:多位数码每一位的构成以及从低位到高位的进位规则。
基数:在进位制中可能用到的数码个数。
位权:在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数,这个固定的数就是这一位的权数,权数是一个幂。
常用的数制有十进制、二进制、八进制和十六进制几种。
1.十进制在十进制数中,每一位有0~9十个数码,所以计数基数为10。
超过9的数必须用多位数表示,其中低位和相邻高位之间的关系是“逢十进一”,故称为十进制。
十进制的展开形式为式中,是第i位的系数,可以是0~9十个数码中的任何一个。
任意N进制的展开形式为式中,是第i位的系数,N为计数的基数,为第i位的权。
2.二进制在二进制数中,每一位仅有0和1两个可能的数码,计数基数为2。
低位和相邻高位间的进位关系是“逢二进一”。
二进制的展开形式为例如,(101.11)2=1×22+0×21+1×20+1×2-1+0×2-2=(5.75)10。