有序数对平面直角坐标系
- 格式:ppt
- 大小:3.18 MB
- 文档页数:35
7.1平面直角坐标系 7.1.1 有序数对一、本节的学习目标:1.通过实例认识有序数对,感受有序数对在确定点的位置中的作用。
2.能用有序数对表示实际生活中物体的位置。
3.通过学习感受数学知识来源于生活,培养理论联系实际的意识。
二、本节的学习重难点:重点:用有序数对表示位置。
难点:对有序数对中的有序的理解。
三、学习过程:(一)新课导学自学课本64~65页练习前的内容,并完成下面的自学提纲。
【自学提纲】1.假设我们约定“列数在前,排数在后”, 请你在图中标出下列座位的同学: (1,5),(2,4),(4,2),(3,3),(5,6). 其中(2,4),(4,2)表示的是同一同学么? 答:结合课本请归纳出“有序数对”的概念.有序数对:用含有 的词表示一个确定的位置,其中各个数表示 的含义,我们把这种有 的 个数a 与b 组成的数对,叫做有序数对,记作 。
利用有序数对,可以很准确地表示出一个位置。
(二)完成第65页练习及68页第1、3、4题(直接在书上按要求完成即可). 四、通过本节的学习,总结一下自己都有哪些收获。
五、随堂检测1.如图1所示,一方队正沿箭头所指的方向前进, A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)2.如图1所示,B 左侧第二个人的位置是 ( ) A.(2,5) B.(5,2) C.(2,2) D.(5,5)3.如图1所示,如果队伍向北前进,那么A(3,4)西侧第二个人的位置是 ( ) A.(4,1) B.(1,4) C.(1,3) D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D5.小张看电影,买了一张8排10号的电影票,用有序实数对可表示为 ,如果变换有序数对的位置,所表示的位置和原来的位置 (填“相同”或“不同”).6.如图所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?236541D CB A三行六行六列五列四列三列二列一列答:六、课后作业1.如图1所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母 的下面寻找.2.如图2所示,如果点A 的位置为(3,2),那么点B 的位置为______, 点 C 的位置为______,点D 和点E 的位置分别为______,_______.3.如图3所示,如果点A 的位置为(1,2),那么点B 的位置为_______,点C 的位置为_______.4.如右图所示,请说出图中物体的位置.5.如下图所示,从2街4巷到4街2巷,走最短的路 线,共有几种走法? 请分别写出这些路线.7.1.2 平面直角坐标系(第一课时)一、本节的学习目标:1. 理解平面直角坐标系、坐标的含义;会根据点的位置写出坐标,根据点的坐标描出点.2. 体会特殊点的坐标特征3. 理解通过平面直角坐标系,建立了点与有序实数对的对应关系,从而把数和形结合起来. 二、本节的学习重难点:重点:平面直角坐标系和点的坐标. 难点:根据点的位置确认其坐标. 三、学习过程(一)知识回顾回顾上学期,我们学习了数轴,知道数轴是规定了 、 和的直线.如图,点A 和点B 的位置分别表示的有理数是 和 ,我们就把这两个数分别叫做点A 和点B 的坐标.(4)图3(街)(巷)2354114532(二)新课导学:自学课本65~66页思考前的内容,并完成下面的自学提纲。
考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A.电影城1号厅6排B.北京市海淀区C.北纬31︒,东经103︒D.南偏西40︒【答案】C【分析】本题考查了平面内的点与有序实数对一一对应,根据平面内的点与有序实数对一一对应分别对每个选项判断.【详解】A、电影城1号厅6排不能确定具体位置.故本选项不合题意;B、北京市海淀区不能确定具体位置.故本选项不合题意;C、北纬31︒,东经103︒能确定具体位置.故本选项符合题意;D、南偏西40︒不能确定具体位置.故本选项不合题意.故选:C2.下列表述,能确定准确位置的是()A.威高广场东面B.环翠楼北偏西10︒C.U度影城2号厅一排D.北纬37︒,东经122︒【答案】D【分析】本题考查了有序数对,利用有序数对可以准确的表示出一个位置.确定位置需要两个数据,对各选项分析判断利用排除法即可求解.【详解】解:A、威高广场东面,不能确定具体位置,故本选项不符合题意;B、环翠楼北偏西10︒,不能确定具体位置,故本选项不符合题意;C 、U 度影城2号厅一排,不能确定具体位置,故本选项不符合题意;D 、北纬37︒,东经122︒,能确定具体位置,故本选项符合题意.故选:D .3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒【答案】C【分析】本题考查利用有序实数对表示位置,解题的关键是根据理解题意.根据()3,330E ︒,()2,30F ︒得到第一个数为由里向外的圈数,第二个数为角度,直接逐个判断即可得到答案【详解】解:∵()3,330E ︒,()2,30F ︒,∴()5,60A ︒,()3,120B ︒,()4,210C ︒,()5,270D ︒,故选:C5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【答案】A【分析】本题考查了坐标确定位置,解题关键是清楚有序数对与排号之间的关系,根据题意可前一个数表示排数,后一个数表示号数即可求解.【详解】解:由“5排2号”记作()5,2可知,有序数对与排号对应,所以()7,9表示第7排9号.故选:A .6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,5【答案】B【解析】略7.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【答案】C【解析】略变式拓展00,【答案】()【分析】本题考查有序数对位置的确定,进而得出答案,采用数形结合的思想是解此题的关键.【详解】解:根据棋子“马”和“车”00,.故答案为()【答案】23【分析】本题主要考查了数字类的规律探索,的数为()1n n+,据此算出第三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()2,3;【答案】(1)()(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,2,3;∴校门的位置为数对()9,7表示的位置为第9列,第7行,(2)解:数对()由图可知,表示的地方为教学楼.14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.【答案】(1)见解析(2)D52(3)见解析【详解】(1)如图所示(2)图中的蜜蜂所在位置记作D52.(3)行进路线如图所示.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领∴点()3,1Q a a -+所在象限是第二象限,故选:B .变式拓展二、填空题所以23a a +=±,解得3a =-(舍去)或1-.故答案为:1-.三、解答题考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .2014【答案】D【分析】本题考查了探究规律,利用规律即可解决问题,涉及坐标与图形变化-对称、规律型:点的坐标,先根据题意写出已知点的坐标,再找到规律为次数是2的奇数倍的偶数,位于x 轴上,横坐标为这个翻转次数;次数是2的偶数倍的偶数,位于x 轴的上方,横坐标为这个翻转次数加上1;据此作答即可.A .()3032,1-B .()3034,4C .()3036,4D .()3031,1【答案】B【分析】本题考查坐标的规律问题,先找到点的规律,然后计算解题即可,解题的关键是找到点的坐标规律.【详解】由题可知,每四个点纵坐标重复一次,横坐标向左平移6个单位长度,∴202345053÷= ,则2023A 的横坐标为:505643034⨯+=,纵坐标为4,故选:B .4.对一组数(),x y 的一次操作变换记为()111,P x y ,定义其变换法则如下:()111,(,)P x y x y x y =+-,()()()()22211111111,,,,n n n n n n n P x y x y x y P x y x y x y ----=+-=+- (n 为大于1的整数),如这组数为(1,2),则1(3,1)P =-,2(2,4)P =,3(6,2)P =-…当这组数为(1,1)-时,2024P =()A .()101210122,2-B .()10120,2-C .()10110,2D .()101110112,2-【答案】A【分析】本题考查了新定义点的坐标,根据操作方法依次求出前几次变换的结果,然后根据规律解答,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.【详解】解:当这组数为()1,1-时,()()11,10,2P -=,()()21,12,2P -=-,()()()231,10,40,2P -==,()()()2241,14,42,2P -=-=-,()()()351,10,80,2P -==,∴()()1012101220241,12,2P -=-,故选:A .二、填空题【答案】()20212,【分析】本题考查了点坐标规律探索,旨在考查学生的抽象概括能力.标为对应的运动次数减3,纵坐标依次为:4,2,1,1,2-,每5次一个循环,据此即可求解.【详解】解:由题意得:动点0()34P -,在平面直角坐标系中的运动为:1()22P -,,()21,1P -,31(0)P -,,42(1)P ,,54(2)P ,,62(3)P ,,...∴横坐标为对应的运动次数减3,则第2024次运动到点2024P 的横坐标为:202432021-=;∵()202415405+÷=,∴第2024次运动到点2024P 的纵坐标为:2;故答案为:()20212,变式拓展【答案】()20242024,0P 【分析】本题考查了坐标系中点的坐标规律探索,仔细观察点的坐标发现第()22,0P ,第4次坐标为()44,0P ,第6次坐标为()66,0P ,故第2024次的坐标为【详解】第2次坐标为()22,0P ,第4次坐标为()44,0P ,第6次坐标为故第2024次的坐标为()20242024,0P .故答案为:()20242024,0P .7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.【答案】5-【分析】本题主要考查了规律型:点的坐标,解答本题的关键是准确理解题意,发现变换规【答案】()2023,1-【分析】本题主要考查的是坐标系中的规律探究问题,计算P 的时间,根据规律即可求得第2023秒P 点位置,找出运动规律是解题的关键.【详解】由题意可知,点P 运动一个半圆所用的时间为:π÷三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.【答案】(1)2,0;4,0;6,0;(2)()2,0n (3)向右.【分析】(1)本题考查了在平面坐标系中点的坐标特点,根据题意知道按向上、向右、向下、向右的方向每次移动1个单位,即可解题.(2)本题考查了在平面坐标系中坐标的特点和坐标的规律,观察点4A 的位置,由图可知,蚂蚁每走4步为一个周期,得出4n OA 的值,再根据点4n A 在x 轴的正半轴上,即可解题.(3)本题考查了在平面坐标系中坐标的特点和坐标的规律,根据点4n A 的坐标,分析可得点2020A 的坐标,再结合题意知道按方向每次移动1个单位,得到点2021A 和点2021A 的坐标,即可解题.【详解】(1)解:由图可知,点4A ,点8A ,点12A 都在x 轴的正半轴上,小蚂蚁每次移动1个单位,42OA ∴=,84OA =,126OA =,()42,0A ∴,()84,0A ,()126,0A ,故答案为:2,0;4,0;6,0.(2)解:由图可知,蚂蚁每走4步为一个周期,44422n OA n n ∴=÷⨯=,点4n A 在x 轴的正半轴上,()42,0n A n ∴.(3)解: 当2020n =时,4505n ∴=⨯,∴点2020A 的坐标为()1010,0,∴点2021A 的坐标为()1010,1,点2022A 的坐标为()1011,1,∴蚂蚁从点2021A 到点2022A 的移动方向为向右.。
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
平面直角坐标系知识点归纳总结一、知识网络结构二、知识要点1、有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对,记做(a,b )。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P ,过P 分别向x 轴,y 轴作垂线,垂足分别在x 轴,y 轴上,对应的数a,b分别叫点P 的横坐标和纵坐标,记作P(a ,b);点P(a ,b)到x 轴的距离是 |b| ,到y 轴的距离是 |a| 。
点P(a ,b)到x 轴或横坐标轴的距离是 |b| (纵坐标的绝对值),到y 轴或纵坐标轴的距离是 |a| (横坐标的绝对值)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点 ①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。
7、坐标轴上点的坐标特点 ①x 轴正半轴上的点:横坐标 0,纵坐标 0;②x 轴负半轴上的点:横坐标 0,纵坐标 0;③y 轴正半轴上的点:横坐标 0,纵坐标 0;④y 轴负半轴上的点:横坐标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。
(填“>”、“<”或“=”x 轴上的点:纵坐标 0,y 轴上的点:横坐标 08、对称点的坐标特点 ①关于x 轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y 轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、点P(2,3) 到x 轴的距离是 ; 到y 轴的距离是 ;点P(2,3) 关于x 轴对称的点坐标为( , );点P(2,3) 关于y 轴对称的点坐标为( , )。
第七章平面直角坐标系专题9 有序数对与平面直角坐标系知识要点1.有序数对:有顺序的两个数a和b组成的数对,记作(a,b),用于表示平面内点的位置.2.平面直角坐标系:平面内两条互相垂直且原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,通常取向右为正方向;竖直的数轴称为y轴或纵轴,通常取向上为正方向,两轴的交点为原点.平面直角坐标系是以数轴为基础的平面图形.坐标平面内的点和有序数对是一一对应的.3.象限:坐标轴把坐标平面分成四个象限,坐标轴上的点不属于任何象限.点P(x,y)在第一、二象限时,y>0;点P(x,y)在第三、四象限时,y<0;点P(x,y)在第一、四象限时,x>0;点P(x,y)在第二、三象限时,x<0;点P(x,y)在第一、三象限时,xy>0;点P(x,y)在第二、四象限时,xy<0.4.平面直角坐标系中的坐标特征[如图9—1所示,点A(x,y)为坐标系中任意一点](1)x轴上的点B表示为(x,0),即x轴上的点的纵坐标为0.(2)y轴上的点E表示为(0,y),即y轴上的点的横坐标为0.(3)第一、三象限角平分线(l1)上的点C横坐标和纵坐标相等,即C(x,x);笫二、四象限角平分线(l2)上的点D横坐标和纵坐标互为相反数,即D(x,-x).(4)平行于x轴的直线上的点的纵坐标相同,即y A=y E;平行于y轴的直线上的点的横坐标相同,即x A=x C=x B=x D.(5)坐标系中任意一点A(x,y)到x轴的距离为y,到y轴的距离为x.典例精析例1 如图9-2所示,在象棋盘上建立表示规则,即将第a行第b列的棋子位置用(a,b)表示,如“帅”的位置为(1,5).(1)“炮”的位置为;(2)“兵”从图中的位置走到(5,4),最少的步数为;(3)在新的表示规则下,“马”的位置表示为(8,1),则该规则将的棋子用(a,b)表示.拓展与变式1夏天常有台风侵袭福建省的沿海地区,下列说法中,能确定台风中心位置的是( ).A.福建和广东之间B.距福州280海里C.北纬24°,东经121°D.台湾海峡+=2,且m,n都是整数,求满拓展与变式2对于一种有序数对(m,n)满足等式m n足题意的所有有序数对.例2在平面直角坐标系中,点A(x2-1,3-x)在x轴上,求点A的坐标.拓展与变式3在平面直角坐标系中,点M(x2-1在y轴上,求点M的坐标.拓展与变式4 在平面直角坐标系中,点P (ab ,a +b )在第四象限,则点(a ,b )在第 象限.拓展与变式5 在平面直角坐标系中,点P (a ,在第二象限,则点a 2)在第 象限.【反思】点落在坐标轴上和某个象限内,分别能列出等式和不等式.例3 已知点A (a ,0)和点B (2,0),且AB =5,则点A 的坐标为 ____.拓展与变式6 若AB =5且AB ∥y 轴,若点A 的坐标为(3,-1),则点B 到x 轴的距离为 .拓展与变式7 已知点A (a ,0)和点B (2,0),则关于AB 中点C (k ,0),说法正确的是( ).A .点C 一定在点B 的左侧 B .点C 有可能在某一象限内C .k 表示的数一定大于1D .点(k ,1)有可能在第一、三象限的角平分线上专题突破1.(1)若a >0,则点P (a ,3)应在第 象限;(2)点P (m +3,m -2)在x 轴上,则点P 的坐标为 .2.若点P 到x 轴的距离为a ,到y 轴的距离为b ,求点P 的坐标.3.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有f [g (3,4)]=f (-3,-4)=(-3,4),那么g [f (-3,2)]等于( ).A .(3,2)B .(3,-2)C .(-3,2)D . (-3,-2)4.(1)在平面直角坐标系中,点P (m 2 +1,1m --)在第 象限;(2)在平面直角坐标系中,点P(ab,a-b)在第三象限,则点(a,b)在第象限;(3)将正整数按如图9-3所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(3,2)表示实数5,则(8,3)表示的实数是________.1 (1)2 3 (2)4 5 6 (3)7 8 9 10 (4)…图9-35.已知,在平面直角坐标系中,点P(2a-4,a+2)到两坐标轴的距离相等,求点P的坐标.。
有序数对与平面直角坐标系平面直角坐标系是数学中常用的表示二维空间的工具,通过指定一个原点和两条相互垂直的坐标轴,可以精确地定位平面上的点。
在平面直角坐标系中,有序数对起着重要的作用,它们是用来表示平面上的点的坐标。
概念有序数对是由两个数字按特定顺序排列而成的组合,通常用圆括号将这两个数字括起来。
在平面直角坐标系中,通常将有序数对按照首先给出水平方向坐标(横坐标),然后给出垂直方向坐标(纵坐标)的顺序进行排列。
例如,有序数对(2, 3)表示在平面直角坐标系中,某点的横坐标为2,纵坐标为3。
这样一对数值可以准确地确定平面上的一个点。
表示和性质有序数对可表示为(x, y),其中x表示横坐标,y表示纵坐标。
横坐标和纵坐标的取值可以是实数,也可以是整数,取决于具体问题的需求。
有序数对也可以表示为向量。
向量是具有大小和方向的量,可以用箭头表示。
在平面直角坐标系中,向量的起点为原点,终点为对应点的有序数对。
有序数对还具有一些性质,比如可以进行加法和乘法运算。
两个有序数对之间的加法是将对应的横坐标和纵坐标分别相加,乘法是将对应的横坐标和纵坐标分别相乘。
应用有序数对与平面直角坐标系在数学问题和实际应用中有广泛的应用。
在数学中,有序数对常用来表示平面上的点,从而进行几何图形的研究和分析。
例如,可以通过有序数对表示的直线方程来描述平面上的直线,通过有序数对表示的方程组来解决平面上的方程组问题。
在物理学中,有序数对的概念也得到了广泛的应用。
比如,在描述物体的运动状态时,可以使用有序数对来表示物体在不同时间点的位置。
在计算机图形学中,有序数对与平面直角坐标系的概念是构建计算机模型和进行图像处理的基础。
计算机图形学可以通过对有序数对的处理来生成平面上的图像,实现计算机游戏、虚拟现实等应用。
总结有序数对与平面直角坐标系是数学中重要的概念和工具。
有序数对通过表示平面上的点的坐标,可以帮助我们解决各种与平面上的位置和运动有关的问题。