华师大初三数学上期中试题有答案
- 格式:docx
- 大小:78.19 KB
- 文档页数:12
华师大版数学九年级上册期中考试试题一、选择题。
(每小题只有一个正确答案)1x 的取值范围是( )A .5x ≥B .5x >C .5x <D .5x ≤2.一元二次方程2x 2﹣3x +1=0化为(x +a )2=b 的形式,正确的是( )A .23x-=162⎛⎫ ⎪⎝⎭B .2312x-=416⎛⎫ ⎪⎝⎭ C .231x-=416⎛⎫ ⎪⎝⎭ D .以上都不对 3.在ABC 与'A B ’'C 中,有下列条件,如果从中任取两个条件组成一组,那么能判断'''ABC A B C ∽的共有( )组. ①AB BC A B B C =''''; ②BC AC B C A C =''''; ③'A A ∠=∠;④'C C ∠=∠. A .1B .2C .3D .4 4.点()1,3N -可以看作由()1,1?M --()得到. A .向上平移4个单位 B .向左平移4个单位 C .向下平移4个单位 D .向右平移4个单位 5.用公式法解231x x -+=时,先求出a 、b 、c 的值,则a 、b 、c 依次为( ) A .1-,3,1- B .1,3-,1- C .1-,3-,1- D .1-,3,1 6.如图,在Rt △ABC 中,∠C=90°,CD ⊥AB ,垂足为D ,AD=8,DB=2,则CD 的长为( )A .4B .16C .D .7.关于x 的一元二次方程()2a 1x 2x 30--+=有实数根,则整数a 的最大值是( )A .2B .1C .0D .-18.如图所示:两根竖直的电线杆AB 长为6,CD 长为3,AD 交于BC 于点E 点,则E 到地面的距离EF 的长是( )A .2B .2.2C .2.4D .2.59.如果a ,b 是一元二次方程2240x x --=的两个根,那么322a b a b -的值为( ) A .8- B .8 C .16- D .1610.如图,EF 是ABC 的中位线,O 是EF 上一点,且满足2OE OF =.则ABC 的面积与AOC 的面积之比为( )A .2B .32C .53D .3二、填空题11与x 的值是________. 12.在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局胜者记2分,负者记0分,如果平局,两个选手各记1分.某位同学统计了比赛中全部选手的得分总和为110分,则这次比赛中共有________名选手参赛.13.梯形的下底长为8cm ,中位线长为6cm ,则上底长为________cm .14=________.15.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________. 16.ABC 中,A 的坐标是()3,6,以原点为位似中心,将三角形缩小到原来12,则对应点的'A 的坐标是________.17.当1a =,1b =时,11a b-=________.18.若12a c e b d f ===,则a c e b d f++=++________. 19.已知a 、b 、d 、c 是成比例线段,a=4cm ,b=6cm ,d=9cm ,则c=_____.20.在平面直角坐标系中,点()4,2A ,关于x 轴的对称点坐标是________,关于原点对称的点的坐标为________.三、解答题21.如图ABC 的顶点坐标分别为()1,1A ,()2,3B ,()3,0C .(1)以点O 为位似中心画DEF ,使它与ABC 位似,且相似比为2.(2)在()1的条件下,若(),M a b 为ABC 边上的任意一点,则DEF 的边上与点M 对应的点'M 的坐标为________.22.用适当的方法解下列方程:(1)2420x x +-=; (2)()()323x x x -=-.23.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.在正方形ABCD 中,已知13AF AB =,14CG CB =, 求:(1)::EF FG GH ,(2):AE CH .25.如图,在梯形ABCD 中,//AB CD ,15AB =,30CD =,点E ,F 分别为AD ,BC 上一点,且//EF AB .若梯形AEFB ∽梯形EDCF ,求线段EF 的长.26.Rt ABC 中,90A ∠=,8AB cm =,6AC cm =,P 、Q 分别为AC ,AB 上的两动点,P 从点C 开始以1/cm s 的速度向点A 运动,Q 从点A 开始以2/cm s 的速度向点B 运动,当一点到达终点时,P 、Q 两点就同时停止运动.设运动时间为ts .(1)用t 的代数式分别表示AQ 和AP 的长;(2)设APQ 的面积为S ,①求APQ 的面积S 与t 的关系式;②当2t s =时,APQ 的面积S 是多少?(3)当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似?答案与详解1.A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∵∴x −5≥0,解得x ≥5.故选A.【点睛】考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.2.C【分析】先进行移项,再把二次项系数化为1,配方即可.【详解】移项得2x ²-3x =-1, 二次项系数化为1得23122x x -=-, 配方得23919216216x x -+=-+, 即231()416x -=, 故选:C .【点睛】本题考查了配方法解一元二次方程,运用配方法时,方程左右两边同时加上一次项系数一半的平方是解题的关键.3.C【解析】【分析】根据相似三角形的判定定理(①有两角相等的两个三角形相似,②有两边的比相等,并且它们的夹角也相等的两个三角形相似,③有三组对应边的比相等的两三角形相似)得出即可.【详解】能判断△ABC ∽△A ′B ′C ′的有①②或②④或③④,共3组,故选:C.【点睛】考查相似三角形的判定,掌握相似三角形的判定定理是解题的关键.4.A【解析】【分析】根据向上平移,纵坐标加进行计算即可得解.【详解】由M (−1,−1)得到N (−1,3),−1+4=3,所以,向上平移4个单位.故选:A.【点睛】考查点的平移,掌握点的平移规律是解题的关键.5.A【分析】把方程变为一般式,即可确定a ,b ,c .注意a ,b ,c 可同时乘以一个不为零的数.【详解】把方程231x x -+=化为一元二次方程的一般形式为2310x x -+=,∴a =1,b =−3,c =1.但选项里没有这组值,方程两边同乘以−1,得:2310x x -+-=,此时a =−1,b =3,c =−1.故选:A.【点睛】考查公式法解一元二次方程,掌握一元二次方程的一般形式是解题的关键.6.A【详解】∵∠C=90°,CD ⊥AB ,∴∠ADC=∠CDB=90°, ∠CAD+∠CBD=90°,∴∠CAD+∠ACD=90°,∴∠ACD=∠CBD ,∴△ADC ∽△CDB , ∴=CD BD AD CD, ∵AD=8,DB=2∴CD=4.故选A7.C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:∵关于x 的一元二次方程()2a 1x 2x 30--+=有实数根, ∴()a 1a 10{{4412a 10a 3≠-≠⇒∆=--≥≤. 即a 的取值范围是4a 3≤且a 1≠. ∴整数a 的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.8.A【解析】【分析】 根据相似三角形对应边成比例可得DF EF BF EF BD AB BD CD==,, 然后代入数据两式相加其解即可.【详解】∵两根电线杆AB 、CD 都竖直,EF 垂直于地面,∴△ABD ∽△EFD ,△BCD ∽△BEF , ∴DF EF BF EF BD AB BD CD==,, ∴DF BF EF EF BD BD AB CD+=+, 即163EF EF +=, 解得EF =2.故选:A.【点睛】考查相似三角形的应用,掌握相似三角形的判定与性质是解题的关键.9.C【解析】【分析】先根据根与系数的关系得到ab=-4,再把原式表示得到原式=a 2•ab -2a•ab ,利用整体代入的方法可化简得到原式=-4a 2+8a ,接着根据一元二次方程解的定义得到a 2=2a+4,然后再次利用整体代入的方法计算即可.【详解】根据题意,ab =−4,所以原式()222242448a ab a ab a a a a =⋅-⋅=--⋅-=-+, ∵a 是一元二次方程2240x x --=的根,∴a 2−2a −4=0,即a 2=2a +4,∴原式=−4(2a +4)+8a =−8a −16+8a =−16.故选:C.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a+=-= 是解决本题的关键.10.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC,12EF BC=,再求出OE与BC的关系,然后利用三角形的面积公式解答即可.【详解】∵EF是△ABC的中位线,∴EF∥BC,12EF BC=,∵OE=2OF,∴1212123OE BC BC =⨯=+,设点A到BC的距离为h,则11111,22236 ABC AOCS BC h S OE h BC h BC h =⋅=⋅=⨯⋅=⋅,∴△ABC的面积与△AOC的面积之比=3.故选:D.【点睛】考查三角形中位线定理, 三角形的面积,三角形的中位线平行于第三边并且等于第三边的一半.11.2-或5【解析】【分析】直接利用二次根式的性质得出x2-4x=10-x,进而求出即可.【详解】∵与∴x2−4x=10−x,解得:x1=−2,x2=5,故答案为:−2或5.【点睛】考查最简二次根式的定义,掌握同类同类二次根式的定义是解题的关键.12.11【解析】【分析】每局的得分均为2分,2人的比赛只有一局;局数=12×选手数×(选手数-1);等量关系为:2×局数=所得分数.【详解】设这次比赛中共有x 名选手参加,则,12(1)1102x x ⨯⨯-=, 解得x =11,故答案是:11.【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.13.4【解析】【分析】根据梯形的中位线定理得:下底=中位线长的2倍-上底.【详解】根据梯形的中位线定理得,上底=2×6-8=4cm .故答案为:4.【点睛】考查梯形中位线定理,掌握梯形的中位线定理是解题的关键.14.【解析】【分析】由于两个分母互为有理化因式,故先将分式通分,然后再计算.【详解】== 故答案为:【点睛】考查二次根式的加减,掌握分母有理化的方法是解题的关键.15.0a =或316a ≥-【分析】,∴y≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解,∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解)当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为0a =或316a ≥-【点睛】考查无理方程,难度一般,关键是掌握用换元法求解无理方程.16.3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k 求解.【详解】根据题意得对应点的A ′的坐标为(12×3,1 2×6)或(−12×3,−1 2×6), 即A ′的坐标为3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 故答案为:3,32⎛⎫⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【点睛】考查位似变换,位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .17.-2【解析】【分析】由a 与b 求出ab 与b-a 的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.【详解】∵1a =,1b =∴1)12ab b a ==-=-,, 则原式 2.b aab -==-故答案为:−2.【点睛】考查二次根式的化简求值,掌握二次根式的运算是解题的关键.18.12【解析】【分析】 由12aceb d f ===,可得b=2a ,d=2c ,f=2e ,代入可求得a c eb d f ++++的值.【详解】 ∵12ace b df ===,∴b =2a ,d =2c ,f =2e , ∴a c e b d f ++++1.2222()2ac e a c e a c e a c e ++++===++++ 故答案为:1.2【点睛】考查比例的性质,分式的化简求值,根据12a c eb d f ===,可得b=2a ,d=2c ,f=2e ,代入所求代数式是解题的关键.19.13.5cm【解析】解:∵a 、b 、d 、c 是成比例线段,∴a :b =d :c .∵a =4cm ,b =6cm ,d =9cm ,∴4:6=9:c ,∴c =13.5(cm ).故答案为:13.5cm .20.()4,2- ()4,2--【解析】【分析】根据关于x 轴对称的点的规律,关于原点对称的点的规律,可得答案.【详解】在平面直角坐标系中,点A (4,2),关于x 轴的对称点坐标是(4,−2),关于原点对称的点的坐标为(−4,−2),故答案为:(4,−2),(−4,−2).【点睛】考查关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标,掌握关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标规律是解题的关键.21.()2,2a b 或()2,2a b --【解析】【分析】(1)把点A 、B 、C 的横、纵坐标都乘以2可得到对应点D 、E 、F 的坐标,再描点可得△DEF ;把点A 、B 、C 的横、纵坐标都乘以-2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′; (2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【详解】(1)如图,△DEF 和△D′E′F′为所作;(2)点M 对应的点M′的坐标为(2a ,2b )或(-2a ,-2b ).故答案为(2a ,2b )或(-2a ,-2b ).【点睛】考查位似变换,找到对应点是解题的关键.22.(1)12x =-22x =-(2)13x =,22x =-.【解析】【分析】(1)利用配方法解方程;(2)先变形得到x (x-3)+2(x-3)=0,然后利用因式分解法解方程.【详解】(1)242x x +=,2446x x ++=,2(2)6x +=,2x +=所以12x =-22x =-(2)()()3230x x x -+-=,()()320x x -+=,30x -=或20x +=,所以13x =,22x =-.【点睛】考查解一元二次方程,掌握配方法,因式分解法是解题的关键.23.(1)12,32-;(2)证明见解析. 【详解】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.()1 ::3:6:2EF FG GH =;()2 :27:16AE CH =.【解析】【分析】(1)由正方形的性质得AD ∥BC ,CD ∥AB ,再根据平行线分线段成比例定理,由AE ∥BG 得到EF AF FG BF =,而13AF AB =,则12EF FG =,同理可得3FG GH=,然后利用比例性质得到EF :FG :GH=3:6:2; (2)根据平行线分线段成比例定理和(1)中的结论,由AF ∥DH 得到38AE EF AD FH ==,即38AE AD =,同理可得29CH GH CD EG ==,即29CH CD =,根据正方形的性质得AD=CD ,所以AE :CH=27:16.【详解】()1∵四边形ABCD 为正方形,∴//AD BC ,//CD AB ,∵//AE BG , ∴EFAFFG BF =,而13AF AB =, ∴12AFBF =, ∴12EFFG =,∵//CH BF , ∴FGBGGH CG =, 而14CGBG =, ∴3BGCG =, ∴3FGGH =, 即36EFFG =,62FGGH =,∴::3:6:2EF FG GH =;()2∵//AF DH , ∴38AEEF AD FH ==,即38AE AD =,∵//CG DE , ∴29CHGHCD EG ==,即29CH CD =,而AD CD =,∴:27:16AE CH =.【点睛】考查平行线分线段成比例,三条平行线被两条直线所截,所得的对应线段成比例.25..【解析】【分析】根据相似多边形对应边成比例列出关系式,代入已知数据计算即可.【详解】∵AEFB ∽梯形EDCF , ∴AB EF EF CD=, ∴2450EF AB CD =⨯=,解得EF =【点睛】考查相似多边形的性质,相似多边形的对应边成比例.26.()1?2AQ t =,6AP t =-;()2 ①26S t t =-,②28cm ;()3当t 为2.4秒或1811时,以点A 、P 、Q 为顶点的三角形与ABC 相似.【解析】【分析】(1)用t 的代数式分别表示AQ=2t ,AP=6-t ;(2)设△APQ 的面积为S ,①根据三角形的面积公式可知()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即S=6t-t 2; ②当t=2s 时,代入三角形的面积公式即可求值.(3)①当当AQ AP AB AC =时2666t t -=,则有t=2.4(s ); ②当AQ AP AC AB =时2668t t -=,则有()1811t s =; 【详解】()1用t 的代数式分别表示2AQ t =,6AP t =-;()2设APQ 的面积为S ,①APQ 的面积S 与t 的关系式为:()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即26S t t =-,②当2t s =时,APQ 的面积()()2112262822S AQ AP cm ⎡⎤=⨯⋅=⨯⨯⨯-=⎣⎦; ()3当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似,①当AQ AP AB AC =时2666t t -=,∴()2.4t s =; ②当AQ AP AC AB =时2668t t -=,∴()1811t s =; 综上所述,当t 为2.4秒或1811时, 以点A 、P 、Q 为顶点的三角形与ABC 相似.【点睛】 考查相似三角形的性质, 列代数式, 根据实际问题列二次函数关系式,掌握相似三角形的性质是解题的关键.。
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列选项中,使根式有意义的a 的取值范围为a <1的是( )A .a 1-B .1a -C .()21a -D .11a -2.若tan(a+10°a 的度数是 ( )A .20°B .30°C .35°D .50°3.在化简甲、乙、丙三位同学化简的方法分别是甲:原式233633==;乙:原式33===( ) A .甲 B .乙 C .丙 D .都正确4.用配方法解方程x 2﹣23x ﹣1=0时,应将其变形为( ) A .(x ﹣13)2=89 B .(x+13)2=109 C .(x ﹣23)2=0 D .(x ﹣13)2=109 5.如图,已知123∠=∠=∠,则下列表达式正确的是( )A .AB DE AD BC= B .AC AD AE AB = C .AB AD AC AE = D .BC AE DE AC = 6.如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为( )A .5mB .4mC .6mD .8m7.如图,A 、B 的坐标分别为(2,0)、(0,1).若将线段AB 平移至11A B ,1A 、1B 的坐标分别(3,)b 、(,2)a ,则+a b 的值为( )A .2B .3C .4D .58.如果代数式225x x -+的值等于7,则代数式2361x x --的值为( )A .5B .6C .7D .89.某商务酒店客房有50间供客户居住.当每间房 每天定价为180元时,酒店会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,酒店当天的利润为10890元?设房价定为x 元,根据题意,所列方程是( )A .()18020501089010x x ⎛⎫+--= ⎪⎝⎭ B .()1805050201089010x x ⎛⎫+--⨯= ⎪⎝⎭ C .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ D .()18020501089010x x -⎛⎫--= ⎪⎝⎭10.如图,在四边形ABCD 中,90A ∠=︒,AB =3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .3B .4C .4.5D .5二、填空题11__.12.计算:÷=__.13.如图,A 、B 、C 、D 为矩形的四个顶点,16AB cm =,8AD cm =,动点P ,Q 分别从点A 、C 同时出发,点P 以3/cm s 的速度向B 移动,一直到达B 为止;点Q 以2/cm s 的速度向D 移动.当P 、Q 两点从出发开始到__秒时,点P 和点Q 的距离是10cm .14.如图,ABC ∆是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连结CE ,则tan ACE ∠的值为__.三、解答题15.计算 sin 230°+cos 245°·tan45°;16.在ABC ∆中,90C ∠=︒,若BC ,3AC =,求A ∠和AB 的值.17.已知2240x x c -+=的一个根,求方程的另一个根及c 的值. 18.如图,大楼AB 高16m ,远处有一塔CD ,某人在楼底B 处测得塔顶C 的仰角为38.5°,在楼顶A 处测得塔顶的仰角为22°,求塔高CD 的高及大楼与塔之间的距离BC 的长. (参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).19.如图,在ABC ∆中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么何时QBP ∆与ABC ∆相似?20.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕,且tan ∠EFC=34. (1)△AFB 与△FEC 有什么关系?试证明你的结论.(2)求矩形ABCD 的周长.21.一个小风筝与一个大风等形状完全相同,它们的形状如图所示,其中对角线AC ⊥BD .已知它们的对应边之比为1:3,小风筝两条对角线的长分别为12cm 和14cm .(1)小风筝的面积是多少?(2)如果在大风筝内装设一个连接对角顶点的十字交叉形的支撑架,那么至少需用多长的材料?(不记损耗)(3)大风筝要用彩色纸覆盖,而彩色纸是从一张刚好覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪下来的,那么从四个角裁剪下来废弃不用的彩色纸的面积是多少?22.如图,在△ABC 中,BC =3,D 为AC 延长线上一点,AC =3CD ,∠CBD =∠A ,过D 作DH ∥AB ,交BC 的延长线于点H .(1)求证:△HCD ∽△HDB .(2)求DH 长度.23.在矩形ABCD 中,E 为DC 边上一点,把ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE ~;(2)若AB =AD =4,求EC 的长.24.如图,一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合)过点P 分别作OA 和OB 的垂线,垂足为C ,D .(1)关于矩形OCPD 面积的探究:①点P 在何处时,矩形OCPD 的面积为1?写出计算过程;②是否存在一点P ,能使矩形OCPD 的面积为32?说说你的理由. (2)设点P 的坐标是(P x ,23)(0)x x -+>,图中阴影部分的面积为S ,尝试完成下列问题: ①建立x 与S 的关系式,并类比一次函数猜想S 是x 的什么函数,能否对此类函数下一个描述性的定义,其中包含它的一般形式;②我们知道代数式2(1)9x ++有最小值9,试问当P 在何处时S 有最小值,请把你的理由.参考答案1.D【详解】解:A .当a ≥1时,根式有意义.B .当a ≤1时,根式有意义.C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1.故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.2.D【分析】根据特殊角的三角形函数值即可求解.【详解】∵tan60︒=tan(a+10°∴a+10°=60°,即a=50°.故选D.【点睛】本题考查了特殊角的三角函数值.牢记tan60︒=.3.D【分析】根据二次根式的性质化简,方法过程可以略有不同,本题甲、乙、丙三位同学化简的方法和结果都是正确的.【详解】甲:原式233633==,正确;乙:原式33==丙:原式==故选:D.【点睛】本题考查二次根式的性质和化简,熟练掌握性质,灵活运用化简方法是关键.4.D【详解】分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.详解:∵x2﹣23x﹣1=0,∴x2﹣23x=1,∴x2﹣23x+19=1+19,∴(x﹣13)2=109.故选D.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.C【分析】题目中给出的条件主要是角度相等,观察图形,寻找其他等角,根据“有两个角对应相等的三角形相似”,找出图中所有相似三角形,对答案逐一判断.【详解】12∠=∠,12DAC DAC∴+=+∠∠∠∠,即BAC DAE∠=∠,23∠=∠,AFE DFC∠=∠,C E∴∠=∠,BAC DAE∠=∠,C E∠=∠,BAC DAE∴∆∆∽,∴AB BCAD DE=,A选项错误;BAC DAE∆∆∽,∴AC ABAE AD=,B选项错误;BAC DAE∆∆∽,∴AB ADAC AE=,C选项正确;BAC DAE∆∆∽,∴BC ACDE AE=,D选项错误;故选:C.【点睛】本题主要考查相似三角形的判定和性质,认真观察图形,找到角的相等关系,运用判定定理找出所有相似三角形是关键.6.B【分析】根据题意可得△ABD ∽△ACE ,根据相似三角形的性质可求得AE=6m ,再由DE=AE-AD 即可求得DE 的长.【详解】根据题意,BD ⊥AE ,CE ⊥AE ,∴△ABD ∽△ACE ,又AD=2m ,BD=3m ,CE=9m . ∴BD AD CE AE =,即329AE=, ∴AE=6m ,∴DE=AE-AD=4m .故选B.【点睛】本题考查了相似三角形的判定及性质,解决本题要把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例解答即可.7.A【分析】根据点在平面直角坐标系中左右上下平移与坐标变化的关系解答,()2,0A 变为()13,A b ,说明线段右移一个单位,()0,1B 变为()1,2B a ,说明线段上移一个单位,由此判断,a b 的值即可.【详解】观察图形可知将线段向右平移一个单位,再向上平移一个单位得到线段11A B ,1a ,1b =,2a b ∴+=,故选:A .【点睛】本题主要考查平面直角坐标系中点的平移与坐标的变化之间的关系,结合图形,熟练掌握这种关系是解答关键.8.A【分析】仔细观察已知代数式与要求的代数式,可发现它们的二次项与一次项存在倍数关系,据此可用整体代入法解决问题.【详解】代数式225x x -+的值等于7,222x x ,2361x x ∴--23(2)1x x =--61=-5=.故选:A .【点睛】本题考查运用整体带入法求代数式的值,找到已知条件与要求的代数式之间的数量关系是关键.9.D【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x 元,根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭ 故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.10.A【分析】根据三角形中位线定理可知EF =12DN ,求出DN 的最大值即可. 【详解】解:如图,连结DN .∵DE =EM ,FN =FM ,∴EF =12DN ,当点N 与点B 重合时,DN 的值最大即EF最大.在Rt△ABD中,∵∠A=90°,AD=3,AB∴BD,∴EF的最大值=12BD=3.故选A.点睛:本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.11【分析】.【详解】=【点睛】本题考查了二次根式的化简与同类二次根式的意义,理解掌握该知识点是解答关键. 12.3.【分析】先将括号中两数化为最简二次根式,再根据乘法分配律分别除以. 【详解】原式=÷=3=.故答案为:3.【点睛】本题主要考查二次根式的化简与计算,熟练掌握化简方法,运用运算律解答是关键. 13.2或225. 【分析】本题可作PE CD ⊥,设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,再表示出AP ,DQ ,EQ 的长度,在Rt PEQ 中根据勾股定理列出方程式,解之即可,需注意有两个答案.【详解】设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,此时3AP xcm =,(162)DQ x cm =-,()1623EQ x x cm =--在Rt PEQ 中有:222(1623)810x x --+=,解得:12x =,2225x =. 答:当P 、Q 两点从出发开始到2秒或225秒时,点P 和点Q 的距离是10cm . 故答案为:2或225. 【点睛】 本题是综合了矩形与勾股定理等知识的动点问题,除了掌握知识点之外,动点问题一定要将整个运动过程思考清楚,在运动过程中寻找符合要求的节点和此时的数量关系.14.3.【分析】想求tan ACE ∠,需构造与之相关的直角三角形,可作EF AC ⊥于F ,设BE x =,则BD ,通过等腰直角三角形各边的数量关系用x 表示出EF ,CF 即可解答.【详解】作EF AC ⊥于F ,如图,ABC ∆是等腰三角形,90ACB ∠=︒,45A B ∠,AC BC ==, EF AC ⊥,DE AB ⊥,AEF ∴∆和BED ∆都是等腰直角三角形,设BE x =,则BD =,点D 为BC 的中点,BC AC ∴==,4AB x ∴==,43AE x x x ∴=-=,AF EF AE x ∴===,CF AC AF ∴=-=-=, 在Rt EFC ∆中,tan 3EF ECF CF ∠===. 故答案为3.【点睛】本题结合三角函数考查了等腰直角三角形的性质,关键还是根据等腰直角三角形的性质求出与三角函数相关的边长.15.34【分析】此题主要考查特殊角三角函数值的应用,代入值就可以求得结果.【详解】解:原式=(12)2+(2)2 1=14+12=34考点:特殊角三角函数值16.30A ∠=︒,AB =【分析】在直角三角形中根据勾股定理和三角函数关系解答即可.【详解】如图,在ABC ∆中,90C ∠=︒,BC ,3AC =,则AB ==tan BC A AC ∠== 30A ∴∠=︒.【点睛】本题考查的是根据勾股定理和三角函数的解直角三角形,熟练掌握三角函数与勾股定理是解答关键.17.1x 2=1c =【解析】试题分析:设另一根为x 1,由根与系数的关系得,两根和为4,求得x 1,,再根据两根积求得常数项c.试题解析:设另一根为x 1,由根与系数的关系得:12x 4∴=1x 2∴=∴(2c =∴1c =考点:根与系数的关系.18.40米【解析】【分析】过点A 作AE ⊥CD 于点E ,由题意可知:22,CAE ∠= 38.5CBD ∠=,ED =AB =16米,设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x ,分别在Rt △BCD 中和Rt △ACE 中,用x 表示出CD 和CE ,利用CD −CE =DE ,得到有关x 的方程求得x 的值即可.【详解】解:过点A 作AE ⊥CD 于点E ,由题意可知:22,38.5CAE CBD ,∠=∠= ED =AB =16米设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x (不设未知数x 也可以)∵在Rt △BCD 中,tan ,CD CBD BD∠= ∴ t an?38.50.8,CD BD x =⋅≈∵在Rt △ACE 中,tan ,CE CAE AE∠=∴ t an220.4,CE AE x =⋅≈∵CD −CE =DE ,∴0.8x −0.4x =16 ,∴x =40,即BD =40(米) ,CD =0.8×40=32(米),答:塔高CD 是32米,大楼与塔之间的距离BD 的长为40米.19.经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【分析】观察图形可得,QBP ∆与ABC ∆已经有公共角B ,根据题意需要考虑B 的两条边对应成比例,此时会出现两种情况,BP BQ BA BC =和BP BQ BC BA=,可设经过t 秒时QBC ∆与ABC ∆相似,用时间t 分别表示出相关线段的长度,代入比例式解答即可.【详解】设经过t 秒时,QBC ∆与ABC ∆相似,则2AP t =,82BP t =-,4BQ t =,PBQ ABC ∠=∠,∴当BP BQ BA BC=时,BPQ BAC ∆∆∽,即824816t t -=,解得2()t s =; 当BP BQ BC BA=时,BPQ BCA ∆∆∽,即824168t t -=,解得0.8()t s =; 即经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【点睛】本题是结合了相似三角形的判定的动点问题,在运动过程中寻找符合要求的节点,转化为判定三角形的相似是解答关键.20.(1)△AFB ∽△FEC (2)36cm【分析】(1)由四边形BCD 是矩形,可得∠AFE=∠D=90°,又由同角的余角相等,可得∠BAF=∠EFC ,即可证得:△AFB ∽△FEC ;(2)由Rt △FEC 中,tan ∠EFC=34,可得34CE CF =,则可设CE=3k ,则CF=4k ,由勾股定理得EF=DE=5k .继而求得BF 与BC ,则可求得k 的值,由矩形ABCD 的周长=2(AB+BC )求得结果.【详解】解:(1)△AFB ∽△FEC .证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠BAF+∠AFB=90°,由折叠的性质可得:∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△AFB ∽△FEC ;(2)∵tan ∠EFC=34, ∴在Rt △EFC 中,设EC=3xcm ,FC=4xcm ,5(cm)EF x ∴==,由折叠的性质可得:DE=EF=5xcm ,∴AB=CD=DE+CE=8x (cm ),∵∠BAF=∠EFC ,3tan 4BF BAF AB ∴∠==, ∴BF=6x (cm ),10(cm)AF x ∴==,(cm)AE ∴==, 5AE =,∴x=1,∴AD=BC=AF=10x=10(cm ),AB=CD=8x=8(cm ),∴矩形ABCD 的周长为:10+10+8+8=36(cm ).21.(1)84(cm )2;(2) 78cm;(3) 756(cm )2【分析】(1)根据三角形的面积公式列式计算即可;(2)根据相似三角形的性质得到A′C′=3AC=42cm ,同理B′D′=3BD=36cm ,于是得到结论; (3)根据矩形和三角形的面积公式即可得到结论.【详解】解:(1)∵AC ⊥BD ,∴小风筝的面积S=12AC•BD=12×12×14=84(cm)2;(2)∵小风筝与大风筝形状完全相同,∴假设大风筝的四个顶点为A′,B′,C′,D′,∴△ABCD∽△A′B′C′D′,∵它们的对应边之比为1:3,∴A′C′=3AC=42cm,同理B′D′=3BD=36cm,∴至少需用42+36=78cm的材料;(3)从四个角裁剪下来废弃不用的彩色纸的面积=矩形的面积﹣大风筝的面积=42×36﹣9×84=756(cm)2.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.22.(1)见解析;(2)DH的长度为2.【分析】(1)根据两个角对应相等即可证明△HCD∽△HDB;(2)根据DH∥AB,AC=3CD,对应线段成比例可得CH=1,再结合(1)△HCD∽△HDB,对应边成比例即可求出DH的长度.【详解】(1)证明:∵DH∥AB,∴∠A=∠HDC,∵∠CBD=∠A,∴∠HDC=∠CBD,又∠H=∠H,∴△HCD∽△HDB;(2)∵DH∥AB,∴CD CH AC BC=,∵AC=3CD,∴133CH =,∴CH=1,∴BH=BC+CH=3+1=4,由(1)知△HCD ∽△HDB , ∴DH CH BH DH=, ∴DH 2=4×1=4,∴DH=2(负值舍去).答:DH 的长度为2.【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,解决本题的关键是掌握相似三角形的判定与性质.23.(1)证明见解析;(2 【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩, ∴ABF FCE ~;(2)设EC x =,由翻折的性质得:4AF AD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~, ∴CF ECAB BF =2x =,解得x =即EC =. 【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)①当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1;②不存在一点P ,能使矩形OCPD 的面积为32;理由见解析;(2)①29234S x x =-+,它是二次函数,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数;②当3(4P ,3)2时,S 有最小值. 【分析】(1)①可设(P x ,23)(0)x x -+>,则矩形OCPD 的面积可表示为(23)x x -+,令其等于1,解方程即可. ②令矩形OCPD 的面积表达式(23)x x -+等于32,解方程看是否有解即可. (2)①观察图形可知,阴影部分面积等于AOB 的面积减去矩形OCPD 的面积,代入数值计算整理为函数的一般形式即可. ②把第①问里的二次函数整理变形为顶点式,根据二次函数的性质求最值即可.【详解】(1)点P 在线段AB 上,∴设(P x ,23)(0)x x -+>,①由题意得,(23)1x x -+=,解得:11x =,212x =,21 231x ∴-+=或1232x -+=, 综上所述,当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1; ②由题意得,3(23)2x x -+=, 整理得,24630x x -+=,△36480=-<,此方程无实数根,∴不存在一点P ,能使矩形OCPD 的面积为32; (2)①一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,3(2A ∴,0),(0,3)B , ()213932323224AOB OCPD S S S x x x x ∆∴=-=⨯⨯--+=-+矩形, 它是二次函数,类比得到一般的,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数; ②22939232()448S x x x =-+=-+, ∴当34x =时,S 有最小值, ∴当3(4P ,3)2时,S 有最小值.【点睛】本题结合平面直角坐标系中由一次函数形成的图形的面积问题考查了二次函数及其性质,理解题意,熟练掌握函数及其性质是解答关键.。
期中检试题得分________卷后分________评价________ 一、选择题(每小题3分,共30分)1.函数y=x+1x-2,自变量x的取值范围是(C)A.x≥-1 B.x>-1且x≠2C.x≥-1且x≠2 D.x≠22.下列各组二次根式中,属于同类二次根式的是(B)A.12与72B.63与28C.4x3与22x D.18与2 33.已知a<0,化简二次根式-a3b 的正确的结果是(A)A.-a-ab B.-a ab C.a ab D.a-ab4.下列运算正确的是(A)A.(-a)2=-a(a≤0) B.(-5)2·3=-53C.(- a )2=-a D.(2-3)2=2-35.解方程2(5x-1)2=3(5x-1)最适当的方法是(D)A.直接开方法B.配方法C.公式法D.因式分解法6.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是(C)A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解7.能判定△ABC与△A′B′C′相似的条件是(C)A.ABA′B′=ACA′C′B.ABAC=A′B′A′C′,且∠A=∠CC.ABA′B′=BCA′C′,且∠B=∠A′ D.ABA′B′=ACA′C′,且∠B=∠B′8.(安阳二模)《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为(C)A.82+x2=(x-3)2B.82+(x+3)2=x2C.82+(x-3)2=x2D.x2+(x-3)2=829.如图,在平行四边形ABCD中,点E在AD上,连结CE并延长与BA的延长线交于点F,若AE=2ED,CD=3 cm,则AF的长为(B)A.5 cm B.6 cm C.7 cm D.8 cm第9题图第10题图10.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发沿AB 运动到B点,动点E从C点沿CA运动到A点,点D运动的速度为1 cm/s,点E运动的速度为2 cm/s,如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是(A)A.3 s或4.8 s B.3 s C.4.5 s D.4.5 s或4.8 s二、填空题(每小题3分,共15分)11.将方程x2+4x-3=0进行配方,那么配方后的方程是__(x+2)2=7__.12.已知实数a在数轴上的位置如图所示,化简|a-1|+(a-2)2=__1__.第12题图第14题图第15题图13.(商南县月考)已知α,β是方程x 2-2x -4=0的两实根,则α3+8β+6的值为__30__. 14.如图,O 为矩形ABCD 的中心,M 为BC 边上一点,N 为DC 边上一点,ON ⊥OM ,若AB =6,AD =4,设OM =x ,ON =y ,则y 与x 的函数关系式为__y =23x __.15.(河南模拟)边长为2的正方形ABCD 中,E 是AB 的中点,P 在射线DC 上从D 出发以每秒1个单位长度的速度运动,过P 作PF ⊥DE ,当运动时间为__1或52 __秒时,以点P ,F ,E 为顶点的三角形与△AED 相似.三、解答题(共75分) 16.(8分)计算: (1)125 -5145 +14 3.2 -30.2 ; (2)18 -12 ÷2-1+12+1-(2 -1)0. 解:(1)6415 5 解:(2)42 -317.(9分)解方程:(1)(6x -1)2=25; (2)4x 2-1=12x ;解:(1)x 1=1,x 2=-23 解:(2)x 1=32 +102 ,x 2=32 -102(3)x (x -7)=8(7-x ). 解:(3)x 1=7,x 2=-818.(9分)先化简,再求值:a 2-b 2a ÷(2ab -b 2a -a ),其中a =1+2 ,b =1-2 .解:原式=-a +b a -b ,当a =1+2 ,b =1-2 时,原式=-2219.(9分)如图,已知在△ABC 中,AB =AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且满足AB 2=DB ·CE .求证:△ADB ∽△EAC .证明:∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABD =∠ACE ,∵AB 2=DB ·CE ,∴ABCE=DB AB ,∴AB CE =DBAC,∴△ADB ∽△EAC20.(9分)已知关于x的一元二次方程x2+2(m+1)x+m2-1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足(x1-x2)2=16-x1x2,求实数m的值.解:(1)由题意,得Δ=4(m+1)2-4(m2-1)≥0,则m≥-1(2)x1+x2=-2(m+1),x1·x2=m2-1,(x1-x2)2=16-x1x2,(x1+x2)2-4x1x2=16-x1x2,∴(x1+x2)2-3x1x2-16=0,则4(m+1)2-3(m2-1)-16=0,m2+8m-9=0,解得m=-9或m=1,又∵m≥-1,∴m=121.(10分)将如图方格中的△ABC做下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)沿y轴正方向平移3个单位长度;(2)关于x轴对称;(3)以点C为位似中心,将△ABC放大2倍;(4)以点C为中心,将△ABC逆时针旋转180°.解:画图略(1)A1(0,2),B1(1,5),C1(2,4)(2)A2(0,1),B2(1,-2),C2(2,-1)(3)A3(-2,-3),B3(0,3),C3(2,1)(4)A4(4,3),B4(3,0),C4(2,1)22.(10分)某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简):(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?解:(1)80-x200+10x800-200-(200+10x)(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9 000.解得x1=x2=10.当x=10时,80-x=70>50.符合题意.答:第二个月的单价应是70元23.(11分)如图,正方形ABCD的边长为1,AB边上有一动点P,连结PD,线段PD 绕点P顺时针旋转90°后,得到线段PE,且PE交BC于点F,连结DF,过点E作EQ⊥AB 交AB的延长线于点Q.(1)求线段PQ的长;(2)问点P在何处时,△PFD∽△BFP,并说明理由.解:(1)由题意得:PD=PE,∠DPE=90°.∴∠APD+∠QPE=90°,∵四边形ABCD 是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,又∵PD=PE,∴△ADP≌△QPE(AAS),∴PQ=AD=1 (2)∵△PFD∽△BFP,∴PBBF=PDPF,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴PDPF=APBF,∴APBF=PBBF,∴P A=PB,∴P A=12AB=12,∴当P A=12时,△PFD∽△BFP。
华师大版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1)A.3B.3-C.3±D.9 2有意义的条件是()A.x≠2B.x>﹣2C.x≥2D.x>23.一元二次方程230 4y y--=配方后可化为()A.2112y⎛⎫+=⎪⎝⎭B.2112y⎛⎫-=⎪⎝⎭C.21324y⎛⎫+=⎪⎝⎭D.21324y⎛⎫-=⎪⎝⎭4.下面四个等式:①===-,347=+=,其中正确的个数是()A.1B.2C.3D.45.已知34ab=,则下列等式不成立的是()A.4a=3b B.74a bb+=C.43a b=D.37aa b=+6.如图,DE∥FG∥BC,DF=2FB,则下面结论错误的是()A.EG=2GC B.DF=EGC.BF×EG=DF×GC D.DF FB EG GC=7.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2B.4C.6D.88.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=12DB,若S△ADE=3,则S四边形DBCE=()A.12B.15C.24D.279.已知三角形的两边长分别为4和7,第三边长是方程x2﹣16x+55=0的根.则这个三角形的周长是()A.16B.22C.16或22D.010.已知点M(2,2),规定一次变换是:先作点M关于x轴对称,再将对称点向左平移1个单位长度,则连续经过2019次变换后,点M的坐标变为()A.(﹣2016,2)B.(﹣2016,﹣2)C.(﹣2017,2)D.(﹣2017,﹣2)二、填空题112x+3x-是同类二次根式,则x的值为______.12.已知x:y=1:2,2y=3z,则23x yy z++=______.13.设(a2+a+1)2﹣2(a2+a+1)﹣3=0,则a=______.14.如图,在△ABC中,AB=8,AC=6,AM平分∠BAC,CM⊥AM于点M,N为BC 的中点,连结MN,则MN的长为______.15.如图,在△ABC中,AB=8,AC=16,点P从点A出发,沿AB方向以每秒2个长度单位的速度向点B运动:同时点Q从点C出发,沿CA方向以每秒3个长度单位的速度向点A运动,其中一点到达终点,则另一点也随之停止运动,当△ABC与以A、P、Q为顶点的三角形相似时,运动时间为______秒.三、解答题﹣3﹣21).16.计算:17.解方程:(1)2x2﹣7x﹣4=0(2)x2+4x+4=(3x+1)218.在所给格点图中,画出△ABC作下列变换后的三角形,并写出所得到的三角形三个顶点的坐标.(1)沿y轴正方向平移2个单位后得到△A1B1C1;(2)关于y轴对称后得到△A2B2C2.(3)以点B为位似中心,放大到2倍后得到△A3B3C3.19.已知关于x的一元二次方程(k﹣1)x2+(2k+1)x+k=0.(1)依据k的取值讨论方程解的情况.(2)若方程有一根为x=﹣2,求k的值及方程的另一根.20.某学校对毕业班同学三年来参加各项活动获奖情况进行统计,七年级时有48人次获奖,之后两年逐年增加,到九年级毕业时累计共有228人次获奖.求这两年中获奖人次的年平均增长率.21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.22.如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=______°.(2)证明:△AFC∽△AGD;(3)若BFFC=12,请求出FCFH的值.23.在矩形ABCD 中,E 为DC 边上一点,把ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE ;(2)若AB =AD =4,求EC 的长.24.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 是直线AC 上一动点,连接DE ,过点D 作FD ⊥ED ,交直线BC 于点F.(1)如图1,当点E 在线段AC 上时,求证:△DEC ∽△DFB .(2)当点E 在线段AC 的延长线上时,(1)中的结论是否仍然成立?若成立,请结合图2给出证明;若不成立,请说明理由;(3)若ACBC =2,DF =,请直接写出CE 的长.参考答案1.A【解析】3==.故选A.考点:二次根式的化简2.D【分析】根据二次根式和分式有意义的条件可得x﹣2>0,再解即可.【详解】解:由题意得:x﹣2>0,解得:x>2,故选:D.【点睛】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.3.B【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程2304y y--=配方得:22113()()0224y---=,即21()102y--=,∴化成2()x a b+=的形式为21()12y-=.故选:B.【点睛】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.A 【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:①=24,故此选项错误;=,正确;=,故此选项错误;5,故此选项错误;故选:A.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5.C 【分析】依据比例的基本性质,依次判断即可.【详解】解:A.由34a b =,可得4a =3b ,故本选项正确;B.由74a b b +=可得ab +1=74,即34a b =,故本选项正确;C.由4a =3b 可得a b =43,故本选项错误;D.由a a b +=37可得3b =4a ,即34a b =,故本选项正确;故选:C.【点睛】本题主要考查了比例的基本性质.6.B 【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵DE ∥FG ∥BC ,DF =2FB ,∴DF EG2FB GC1==,故A正确;∴BF•EG=DF•GC,故C正确;∴DF FBEG GC=,故D正确;故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.7.D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=12AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.8.C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,:S△ABC是1:9,∴S△ADE=3,∵S△ADE=3×9=27,∴S△ABC=S△ABC﹣S△ADE=27﹣3=24.则S四边形DBCE故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.9.A【分析】求出方程的解,即可得出三角形三边长,看看是否符合三角形三边关系定理即可.【详解】解:x2﹣16x+55=0,(x﹣11)(x﹣5)=0,x﹣11=0,x﹣5=0,x1=11,x2=5,①当三角形的三边是4,7,11,此时4+7=11,不符合三角形三边关系定理,②当三角形的三边是4,7,5,此时符合三角形三边关系定理,三角形的周长是4+7+5=16,故选:A.【点睛】本题考查了三角形三边关系定理,解一元二次方程的应用,关键是求出三角形的三边长.10.D【分析】根据轴对称判断出点M变换后在x轴下方,然后求出点M纵坐标,再根据平移的距离求出点M变换后的横坐标,最后写出坐标即可.【详解】解:由题可得,第2019次变换后的点M在x轴下方,∴点M的纵坐标为-2,横坐标为2﹣2019×1=﹣2017,∴点M的坐标变为(﹣2017,-2),故选:D.【点睛】本题考查了坐标与图形变化-平移,读懂题目信息,确定出连续2019次这样的变换得到点在x轴下方是解题的关键.11.1 2【分析】根据同类二次根式的定义得出方程x+2=3﹣x,求出方程的解即可.【详解】解:由题意,得x+2=3﹣x解得x=1 2.故答案是:1 2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.12.2 3【分析】依据比例的基本性质,即可得到2x=y,进而得出23x yy z++的值.【详解】解:∵x:y=1:2,∴2x=y,又∵2y=3z,∴23x yy z++=2y yy y++=23,故答案为:2 3.【点睛】本题主要考查了比例的基本性质,根据性质变换求解即可.13.1或﹣2【分析】设a2+a+1=t,则原方程为t2﹣2t﹣3=0,利用因式分解法解方程求得t的值,然后再求关于a的一元二次方程即可.【详解】解:设a2+a+1=t,则原方程为t2﹣2t﹣3=0,所以(t﹣3)(t+1)=0.解得t=3或t=﹣1.所以a2+a+1=3,或a2+a+1=﹣1.所以a2+a﹣2=0或a2+a+2=0(无解).所以(a﹣1)(a+2)=0解得a=1或﹣2.故答案是:1或﹣2.【点睛】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.14.1【分析】延长CM交AB于H,证明△AMH≌△AMC,根据全等三角形的性质得到AH=AC=6,CM=MH,根据三角形中位线定理解答.【详解】解:延长CM交AB于H,∵AM平分∠BAC,∠=∠∴MAH MAC在△AMH 和△AMC 中,MAH MAC AM AM AMH AMC 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴△AMH ≌△AMC(ASA)∴AH =AC =6,CM =MH ,∴BH =AB ﹣AH =2,∵CM =MH ,CN =BN ,∴MN =12BH =1,故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.15.4或167【分析】首先设t 秒钟△ABC 与以A 、P 、Q 为顶点的三角形相似,则AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,然后分两种情况当△ABC ∽△APQ 和当△ACB ∽△APQ 讨论.【详解】解:设运动时间为t 秒.AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,当△ABC ∽△APQ ,AP AQ AB AC =,即2163816t t -=,解得t =167;当△ACB ∽△APQ ,AP AQ AC AB =,即2163168t t -=,解得t =4,故答案为4或167.【点睛】本题考查了相似三角形的判定与性质,注意数形结合思想与分类讨论思想.16.533.【分析】先利用平方差公式、完全平方公式和二次根式的除法法则运算,然后合并即可.【详解】解:原式=﹣(3﹣+1)=2×(3﹣1)﹣33﹣=4+533﹣4=533.【点睛】此题主要考查了二次根式的混合运算,熟悉相关性质是解题的关键.17.(1)x 1=4,x 2=﹣12;(2)x 1=12,x 2=﹣34.【分析】(1)利用因式分解法求解即可;(2)开方,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)2x 2﹣7x ﹣4=0,(x ﹣4)(2x+1)=0,∴x ﹣4=0或2x+1=0,∴x 1=4,x 2=﹣12;(2)x 2+4x+4=(3x+1)2,(x+2)2=(3x+1)2,(x+2)=±(3x+1),解得:x1=12,x2=﹣34.【点睛】本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.18.(1)见解析;A1(0,0),B1(3,1),C1(2,3);(2)见解析;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)见解析,A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【分析】(1)将三角形的三点沿y轴正向平移2个单位,即是向上平移两个单位后得到新点,顺次连接得到新图;(2)分别将A,B,C向y轴作垂线,找对应点,顺次连接得到新图形;(3)延长BC、BA,并使其到点B的距离是他们的二倍,找到对应点A3,C3,然后顺次连接,即可得到新图.【详解】解:(1)如图所示,△A1B1C1即为所求;A1(0,0),B1(3,1),C1(2,3);(2)如图所示,△AB2C2即为所求;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)如图所示,△AB2C2即为所求;A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【点睛】本题主要考查了平移,轴对称,位似放大变换作图.注意:位似图形的对应点到位似中心的距离之比等于相似比.19.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba 及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x=﹣135﹣(﹣2)=﹣35.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k值.20.这两年中获奖人次的年平均年增长率为50%.【分析】设这两年中获奖人次的平均年增长率为x,根据到九年级毕业时累计共有228人次获奖,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=228,解得:x1=12=50%,x2=﹣72(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为50%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.旗杆AB的高度是11米.【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.(1)27;(2)证明见解析;(3)FCFH=355.【分析】(1)由四边形ABCD ,AEFG 是正方形,得到∠BAC =∠GAF =45°,于是得到∠BAF+∠FAC =∠FAC+∠GAC =45°,推出∠HAG =∠BAF =18°,由于∠DAG+∠GAH =∠DAC =45°,于是得到结论;(2)由四边形ABCD ,AEFG 是正方形,推出AD AC =AG AF =22,得AD AC =AG AF ,由于∠DAG =∠CAF ,得到△ADG ∽△CAF ,列比例式即可得到结果;(3)设BF =k ,CF =2k ,则AB =BC =3k ,根据勾股定理得到AF =k ,AC AB =k ,由于∠AFH =∠ACF ,∠FAH =∠CAF ,于是得到△AFH ∽△ACF ,得到比例式即可得到结论.【详解】解:(1)∵四边形ABCD ,AEFG 是正方形,∴∠BAC =∠GAF =45°,∴∠BAF+∠FAC =∠FAC+∠GAC =45°,∴∠HAG =∠BAF =18°,∵∠DAG+∠GAH =∠DAC =45°,∴∠DAG =45°﹣18°=27°,故答案为:27.(2)∵四边形ABCD ,AEFG 是正方形,∴AD AC =2,AG AF =2,∴AD AC =AG AF,∵∠DAG+∠GAC =∠FAC+∠GAC =45°,∴∠DAG =∠CAF ,∴△AFC ∽△AGD ;(3)∵BF FC =12,设BF =k ,∴CF =2k ,则AB =BC =3k ,∴AF =k ,AC =AB =k ,∵四边形ABCD ,AEFG 是正方形,∴∠AFH =∠ACF ,∠FAH =∠CAF ,∴△AFH ∽△ACF ,∴AF FH AC CF=,∴FCFH =355.【点睛】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,找准相似三角形是解题的关键.23.(1)证明见解析;(2)233.【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩,∴ABF FCE ~ ;(2)设EC x =,由翻折的性质得:4AFAD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~ ,∴CF ECAB BF =2x =,解得233x =,即233EC =.【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)证明见解析;(2)成立,理由见解析;(3)CE =CE =.【分析】(1)首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(2)方法和(1)一样,首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(3)由(2)的结论得出△ADE ∽△CDF ,判断出CF =2AE ,求出EF ,再利用勾股定理,分三种情形分别求解即可.【详解】(1)证明:如图1中,∵∠ACB =90°,CD ⊥AB ,∴∠ACD+∠A =∠B+∠A =90°,∴∠ACD=∠B,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(2)结论成立.理由:如图2中,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∴∠DCE=∠A+90°,∠DBF=∠A+90°,,∴∠DCE=∠DBF,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(3)∵∠ACD=∠B,∠ADC=∠BDC,∴△ADC∽△CDB∴CDBD=ACBC=12,由(2)有,△CDE∽△BDF,∵DEDF=DCBD=12,∴ADCD=AECF=DEDF=12,∴CF=2AE,在Rt △DEF 中,DE =,DF =,∴EF =,①当E 在线段AC 上时,在Rt △CEF 中,CF =2AE =2(AC ﹣CE)=CE),EF =,根据勾股定理得,CE 2+CF 2=EF 2,∴CE 2+[2(﹣CE)]2=40∴CE =CE (舍)而AC <CE ,∴此种情况不存在,②当E 在AC 延长线上时,在Rt △CEF 中,CF =2AE =2(AC+CE)=,EF =,根据勾股定理得,CE 2+CF 2=EF 2,∴CE 2+[2(+CE)]2=40,∴CE =255,或CE =﹣舍),③如图3中,当点E 在CA 延长线上时,CF =2AE =2(CE ﹣AC)=2(CE ,EF =,根据勾股定理得,CE 2+CF 2=EF 2,∴CE 2+[2(CE )]2=40,∴CE =CE =﹣5(舍)即:CE =2或CE .【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题.。
期中测试一、选择题(共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点(1,2)M -与点N 关于原点对称,则点N 的坐标为( )A .()2,1-B .()1,2-C .()2,1-D .()1,2-2.已知m 是方程2270x x +-=的一个根,则代数式22m m +=( )A .7-B .7C D .3.如图,点A 为函数()0ky x x=>图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果AOB △的面积为2,那么k 的值为( )A .1B .2C .3D .44.如图,将ABC △绕点C 顺时针方向旋转40°,得''A B C △,若''AC A B ^,则A Ð等于( )A .50°B .60°C .70°D .80°5.将抛物线2y x =向上平移2个单位后,所得的抛物线的函数表达式为( )A .2y x 2=+B .22y x =-C .()22y x =+D .()22y x =-6.如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子( )A .逐渐变短B .逐渐变长C .先变短后变长D .先变长后变短7.如图,某人从O 点沿北偏东30°的方向走了20米到达A 点,B 在O 点的正东方,且在A 的正南方,则此时AB 间的距离是( )A .10米B .米C .米D 米8.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是( )A .15x -<<B .5x >C .1x -<且5x >D .1x -<或5x >9.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是( )A .()115n n -=B .()115n n +=C .()130n n -=D .()130n n +=10.有两个全等的含30°角的直角三角板重叠在一起,如图,将A B C ¢¢¢△绕AC 的中点M 转动,斜边A B ¢¢刚好过ABC △的直角顶点C ,且与ABC △的斜边AB 交于点N ,连接AA ¢、C C ¢、AC ¢.若AC 的长为2,有以下五个结论:①1AA ¢=;②C C A B ¢^¢¢;③点N 是边AB 的中点;④四边形AA CC ¢¢为矩形;⑤12A NBC ¢=¢=,其中正确的有( )A .2个B .3个C .4个D .5个二、填空题(共6小题,每小题4分,满分24分)11.若22(2) 10mm x mx ---+=是一元二次方程,则m 的值为________.12.在①正方形;②长方形;③等边三角形;④线段;⑤锐角;⑥平行四边形中,绕某个点旋转180°后能与自身重合的有________个.13.已知两个相似三角形相似比是3:4,那么它们的面积比是________.14.抛物线2()0y ax bx c a =++>过点()1,0-和点()0,3-,且顶点在第四象限,则a 的取值范围是________.15.直角三角形两直角边的长分别为x ,y ,它的面积为3,则y 与x 之间的函数关系式为________.16.如图,一段抛物线()(5)05y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;…如此进行下去,得到一“波浪线”,若点()2018,P m 在此“波浪线”上,则m 的值为________.三、解答题(共9小题,满分86分)17.(8分)计算:2cos30sin 45tan 60°+°-°.18.(8分)如图,ABC △中,DE BC ∥,如果2AD =,3DB =,4AE =,求AC 的长.19.(8分)解下列方程:(1)()()3323x x x +=+(2)22630x x --=20.(8分)如图,在平面直角坐标系xOy 中,直线1y x =+与双曲线ky x=的一个交点为(),2P m .(1)求k 的值;(2)()2,M a ,(),N n b 是双曲线上的两点,直接写出当a b >时,n 的取值范围.21.(8分)已知关于x 的一元二次方程22(20)1m m x mx --+=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为整数且3m <,a 是方程的一个根,求代数式22212324a a a +--+的值.22.(10分)如图,已知ABC △和AEF △中,B E Ð=Ð,AB AE =,BC EF =,25EAB Ð=°,57F Ð=°;(1)请说明EAB FAC Ð=Ð的理由;(2)ABC △可以经过图形的变换得到AEF △,请你描述这个变换;(3)求AMB Ð的度数.23.(10分)如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF DE ^交BC 于点F ,连接DF ,已知4cm AB =,2cm AD =,设A ,E 两点间的距离为cm x ,DEF △面积为2cm y .小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x 的取值范围是________;(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如表:/cmx 00.511.522.533.5 (2)/cm y 4.03.73.93.83.32.0…(说明:补全表格时相关数值保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当DEF △面积最大时,AE 的长度为________cm .24.(12分)如图,90BAD Ð=°,AB AD =,CB CD =,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC .(1)在FCE Ð旋转的过程中,当FCA ECA Ð=Ð时,如图1,求证:AE AF =;(2)在FCE Ð旋转的过程中,当FCA ECA йÐ时,如图2,如果30B Ð=°,2CB =,用等式表示线段AE ,AF 之间的数量关系,并证明.图1图225.(14分)把函数21230()C y ax ax a a =--¹:的图象绕点0(),P m 旋转180°,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(0)t ,.(1)填空:t 的值为________(用含m 的代数式表示)(2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式;(3)当0m =时,2C 的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90°,得到它的对应线段A D ¢¢,若线A D ¢¢与2C 的图象有公共点,结合函数图象,求a 的取值范围.期中测试答案解析一、1.【答案】D【解析】解:Q 点2(1,)M -与点N 关于原点对称,点N 的坐标为()1,2-,故选:D .2.【答案】B【解析】解:m Q 是方程2270x x +-=的一个根,2270m m \+-=,227m m \+=.故选:B .3.【答案】D【解析】解:根据题意可知:122AOB S k ==△,又反比例函数的图象位于第一象限,0k >,则4k =.故选:D .4.【答案】A 【解析】解:如图,ACB Q △绕点C 顺时针方向旋转40°得A CB ¢¢△,点B 与B ¢对应,40BCB ACA \Т=Т=°,A A Ð=Т,AC A B ^¢¢Q ,90CDA \Т=°,904050A \Т=°-°=°,50A A \Ð=Т=°.故选:A .5.【答案】A【解析】解:Q 抛物线2y x =向上平移2个单位后的顶点坐标为(0,2),\所得抛物线的解析式为22y x =+.故选:A .6.【答案】A【解析】解:小亮在路灯下由远及近向路灯靠近时,其影子应该逐渐变短,故选:A .7.【答案】B【解析】解:根据题意知60AOB Ð=°、20OA =(米),则sin 20sin 6020AB OA AOB =Ð=°=(米),故选:B .8.【答案】D【解析】解:由对称性得:抛物线与x 轴的另一个交点为()1,0-,由图象可知不等式20ax bx c ++<的解集是:1x -<或5x >,故选:D .9.【解析】解:设有n 支球队参加篮球比赛,则此次比赛的总场数为12()1n n -场,根据题意列出方程得:52()111n n -=,整理,得:即1(30)n n -=,故选:C .10.【解析】解:①Q 点M 是线段AC 、线段A C ¢¢的中点,2AC =,1AM MC A M MC \==¢=¢=,30MA C Т=°Q ,30MCA MA C \Т=Т=°,1803030120A MC \Т=°-°-°=°,180********A MA A MC \Т=°-¢=°-°=°,60AMA C MC \Т=Т=°,AA M \¢△是等边三角形,1AA AM \¢==,故①正确;②30A CM Т=°Q ,60MCC Т=°,90ACA A CM MCC \Т=Т+Т=°,CC A C \¢^¢,故②正确;③30A CA NAC Т=Ð=°Q ,60BCN CBN Ð=Ð=°,AN NC NB \==,故③正确;④AA M C CM ¢¢Q △≌△,AA CC \¢=¢,60MAA C CM Т=Т=°,AA CC \¢¢∥,\四边形AA CC ¢¢是平行四边形,90AA C AA M MA C Т=Т+Т=°Q ,四边形AA CC ¢¢为矩形,故④正确;⑤12AN AB ==,30NAA Т=°,90AA N Т=°,12'A N AN \==故选:C .二、11.【答案】2-【解析】解:根据题意得:22022m m -¹ìïí-=ïî,解得:2m =-.故答案是:2-.12.【答案】4【解析】解:①正方形是中心对称图形;②长方形是中心对称图形;③等边三角形不是中心对称图形;④线段是中心对称图形;⑤锐角,不是中心对称图形;⑥平行四边形是中心对称图形;所以,①②④⑥共4个.故答案为:4.13.【答案】9:16【解析】解:Q 两个相似三角形的相似比是3:4,\它们的面积为9:16.故答案为9:16.14.【答案】03a <<【解析】解:Q 抛物线2()0y ax bx c a =++>过点()1,0-和点()0,3-,03a b c c -+=ì\í=-î,所以,3a b -=,3b a =-,Q 顶点在第四象限,202404b aac b a ì-ïï\í-ïïî,即302a a-->①,24(3)(3)04a a a×---②,解不等式①得,3a <,不等式②整理得,()230a +>,所以,3a ¹-,所以,a 的取值范围是03a <<.故答案为:03a <<.15.【答案】6y x=【解析】解:根据题意知132xy =,则6xy =,6y x\=,故答案为:6y x=.16.【答案】6-【解析】解:Q 一段抛物线:()(5)05y x x x =--≤≤,\图象与x 轴交点坐标为:()0,0,()5,0,Q 将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;…如此进行下去,由201854033¸=L 可知抛物线404C 在x 轴下方,\抛物线404C 的解析式为()()20152020y x x =--,()2018,P m Q 在第404段抛物线404C 上,()()20182015201820206m \=--=-.故答案为6-.三、17.【答案】解:原式2=+,=,=.18.【答案】解:DE BC Q ∥,AD AE DB EC \=,即243EC=,解得:6EC =,4610AC AE EC \=+=+=;19.【答案】解:(1)()()3323x x x +=+Q ,()()3320x x \+-=,3x \=-或23x =.(2)22630x x --=Q ,2a \=,6b =-,3c =-,362460\=+=△,x \==.20.【答案】解:(1)Q 直线1y x =+与双曲线k y x =的一个交点为(),2P m .212m k m =+ìï\í=ïî1m \=,2k =(2)2k =Q ,\双曲线每个分支上y 随x 的增大而减小,当N 在第一象限时,a b Q >,2n \>,当N 在第三象限时,0n \<,综上所述:2n >或0n <.21.【答案】解:(1)由题意有:()2220440m m m m m ì-¹ïí--ïî>,解得0m >且1m ¹;(2)0m Q >且1m ¹,而m 为小于3的整数,2m \=,当2m =时,方程化为22410x x -+=,a Q 是方程的一个根,22410a a \-+=,即2241a a =-,\原式41141324a a a -+=---+12a a =--+1=.22.【答案】解:(1)B E Ð=ÐQ ,AB AE =,BC EF =,ABC AEF \△≌△,C F \Ð=Ð,BAC EAF Ð=Ð,BAC PAF EAF PAF \Ð-Ð=Ð-Ð,25BAE CAF \Ð=Ð=°;(2)通过观察可知ABC △绕点A 顺时针旋转25°,可以得到AEF △;(3)由(1)知57C F Ð=Ð=°,25BAE CAF Ð=Ð=°,572582AMB C CAF \Ð=Ð+Ð=°+°=°.23.【答案】(1)04x ≤<(2)3.8 4.0(3)描点,连线,画出如图所示的图象:(4)0 2【解析】解:(1)Q 点E 在AB 上,04x \≤<,故答案为:04x ≤<;(2)Q 四边形ABCD 是矩形,2BC AD \==,4CD AB ==,90A B Ð=Ð=°,90ADE AED \Ð+Ð=°,EF DE ^Q ,90AED BEF \Ð+Ð=°,ADE BEF \Ð=Ð,90A B Ð=Ð=°Q ,ADE BEF \△∽△,90A B Ð=Ð=°Q ,ADE BEF \△∽△,AD AE BE BF\=,AE x =Q ,4BE AB AE x \=-=-,24x x BF\=-,(4)2x x BF -\=,当1x =时,32BF =,22312CF BC BF \=-=-=,11311282134 3.75 3.22822ADE BEF CDF ABCD y S S S S =---=-´´-´´-´´=»△△△矩形,当2x =时,2BF =,0CF BC BF \=-=,此时,点F 和点C 重合,1182222 4.022ADE BEF ABCD y S S S =--=-´´-´´=△△矩形故答案为:3.8,4.0(3)描点,连线,画出如图所示的图象:(4)由图象可知,当0x =或2时,DEF △面积最大,即:当DEF △面积最大时,0AE =或2,故答案为0,2.24.【解析】(1)证明:AB AD =Q ,CB CD =,AC AC =,()ABC ADC SSS \△≌△,45BAC DAC \Ð=Ð=°,135FAC EAC \Ð=Ð=°,FCA ECA Ð=ÐQ ,()ACF ACE ASA \△≌△,AE AF \=.(2)证明:作CG AB ^于G .2BC =Q ,30B Ð=°,112CG BC \==,1AG AC ==Q ,AC \=,135FAC EAC Ð=Ð=°Q ,45ACF F \Ð+Ð=°,45ACF ACE Ð+Ð=°Q ,F ACE \Ð=Ð,ACF AEC\△∽△AC AF AE AC\=,2AC AE AF \=×,2AE AF \×=.图1图225.【解析】解:(1)()2212314C y ax ax a a x a =--=--:,顶点()1,4a -围绕点(),0P m 旋转180°的对称点为()21,4m a -,()22214C y a x m a =--++:,函数的对称轴为:21x m =-,21t m =-,故答案为:21m -;(2)1a =-时,()2114C y x =--+:①当112t ≤<时,12x =时,有最小值2154y =,x t =时,有最大值()2114y t =--+,则()212151414y y t -=--+-=,无解;②312t ≤≤时,1x =时,有最大值14y =,12x =时,有最小值()2214y t =--+,12114y y -=¹(舍去);③当32t >时,1x =时,有最大值14y =,x t =时,有最小值()2214y t =--+,()21211y y t -=-=,解得:0t =或2(舍去0),故()222244C y x x x =--=-:;(3)0m =,()2214C y a x a =-++:,点A 、B 、D 、A ¢、D ¢的坐标分别为()1,0、()3,0-、()0,3a 、()0,1、()3,0a -,当0a >时,a 越大,则OD 越大,则点D ¢越靠左,当2C 过点A ¢时,()20141y a a =-++=,解得:13a =,当2C 过点D ¢时,同理可得:1a =,故:103a <≤或1a ≥;当0a <时,当2C 过点D ¢时,31a -=,解得:13a =-,故:13a -≤;综上,故:103a <≤或1a ≥或13a -≤.。
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案) 1.下列根式是最简二次根式的是( )A B C D 2.下列运算正确的是( )A =BC =D 23= 3.已知关于x 的方程2(1)210a x x -+-=有实数根,则a 的取值范围是( ) A .1a ≠B .2a ≤C .2a ≤且1a ≠D .无法确定4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是A .12DE BC =B .AD AEAB AC = C .△ADE ∽△ABC D .:1:2ADEABCS S=5.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). A .20%;B .40%;C .18%;D .36%.6.如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC ,若S △BDF :S △DFC =1:4,则S △BDF :S △DCA =( )A .1:16B .1:18C .1:20D .1:247.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAECAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A .①②③B .①C .①②D .②③8.在ABC 中,13,cos 2AB AC B ∠===BC 边长为( ) A .7B .8C .7或17D .8或179.如图,在直角BAD 中,延长斜边BD 到点C ,使12DC BD =,连接AC ,若tanB=53,则tan CAD ∠的值( )A B C .13D .1510.已知△ABC ∽△A 1B 1C 1,且∠A =60°,∠B 1=40°,则∠C 1的度数为( ) A .40° B .60°C .80°D .100°二、填空题 11.若23b a =,则a ba b +=-______________. 12.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.13.如图,在一块长为22m 、宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m 2.若设道路宽为xm ,则根据题意可列方程为 .14.如图,在矩形ABCD 中,点E 为AB 的中点,点F 为射线AD 上一动点,A 'EF 与AEF 关于EF 所在直线对称,连接AC ,分别交E A '、EF 于点M 、N ,AB =AD =2.若EMN 与AEF 相似,则AF 的长为_____.三、解答题15.(1)计算: 2|1+-(2)解下列方程①2(2)24x x -=- ②2410x x --=(配方法)16.先化简,再求值:222444(2)11x x x x x x x-+++-+÷--,其中x 满足x 2﹣4x +3=0.17.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为12x x ,,且221210x x +=,求m 的值.18.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?19.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE . (1)求证:△ABE ∽△DEF .(2)若正方形的边长为4,求BG 的长.20.如图,在ABCD 中,AM BC ⊥,AN CD ⊥,垂足分别为M ,N .求证:(1)~AMB AND ∆∆; (2)AM MNAB AC=.21.先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4,∵(y +2)2≥0,∴(y +2)2+4≥4,∴y 2+4y +8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15 m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20 m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?22.在△ABC中,AB=8,BC=6,∠B为锐角且cosB=12.(1)求△ABC的面积.(2)求tanC.23.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则PMPN=,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则PMPN=;(3)如图3,若BDAB=k,BC=m,AC=n,请直接写出PMPN的值.(用k,m,n表示)参考答案1.A【分析】根据最简二次根式的定义,逐一验证排除即可.【详解】A是最简二次根式,故此选项正确;BCD=故选:A.【点睛】本题考查了最简二次根式的定义,熟记最简二次根式的定义是解题的关键.2.C【分析】根据二次根式的加减乘除运算法则进行计算即可.【详解】AB2-C=,故此选项正确; D= 故选:C . 【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键. 3.B 【分析】根据方程2(1)210a x x -+-=有实数根,分情况讨论:方程为关于x 的一次方程时,则1a -=0计算可得;方程为关于x 的二次方程时,10a -≠且0∆≥计算即可得,综合二种情况即可. 【详解】根据题意知,若方程是关于x 的一次方程时,可得1a -=0,解得a =1;若方程为二次方程时,10a -≠且0∆≥,解得2a ≤且1a ≠,综合二种情况可得2a ≤, 故选:B . 【点睛】本题考查了方程的根的判定,分情况讨论的思想,掌握分情况讨论思想是解题的关键. 4.D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC=, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D. 5.A 【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20% 故选A . 【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键. 6.C 【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果. 【详解】∵S △BDF :S △DFC =1:4, ∴BF :FC=1:4, ∴BF :BC=1:5, ∵DF ∥AC , ∴△BFD ∽△BCA ,∴2125BFD BCASBF SBC ⎛⎫== ⎪⎝⎭, 设S △BFD =k ,则S △DFC =4k ,S △ABC =25k , ∴S △ADC =20k ,∴S △BDF :S △DCA =1:20. 故选C . 【点睛】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.7.A【详解】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,∴AC AD AB AE=∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵∴2CB 2=CP•CM 所以③正确 故选A .点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案. 8.C 【分析】由B 的余弦值得到它的度数,再分情况讨论,画出图象,利用锐角三角函数求出BC 的长. 【详解】解:∵cos B ∠= ∴45B ∠=︒,如图,当ABC 是钝角三角形时,∵AB =,45B ∠=︒, ∴12AD BD ==, ∵13AC =, ∴5CD =,∴1257BC BD CD =-=-=, 如图,当ABC 是锐角三角形时,12517BC BD CD =+=+=.故选:C .【点睛】本题考查解直角三角形,解题的关键是掌握解直角三角形的方法,需要注意进行分类讨论.9.D【分析】延长AD ,过点C 作CE AD ⊥,垂足为E ,由5tan 3B =,即53AD AB =,设5AD x =,则3AB x =,然后可证明CDE BDA ∆∆∽,然后相似三角形的对应边成比例可得:12CE DE CD AB AD BD ===,进而可得32CE x =,52DE x =,从而可求1tan 5EC CAD AE ∠==. 【详解】解:如图,延长AD ,过点C 作CE AD ⊥,垂足为E ,5tan 3B =,即53AD AB =, ∴设5AD x =,则3AB x =,CDE BDA ∠=∠,CED BAD ∠=∠,CDE BDA ∴∆∆∽, ∴12CE DE CD AB AD BD ===, 32CE x ∴=,52DE x =, 152AE x ∴=, 1tan 5EC CAD AE ∴∠==. 故选:D .【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD ∠放在直角三角形中. 10.C【分析】直接利用相似三角形的性质得出对应角相等进而得出答案.【详解】解:∵△ABC∽△A1B1C1,∴∠A1=∠A=60°,∠B=∠B1=40°,则∠C1=180°﹣60°﹣40°=80°.故选:C.【点睛】此题主要考查了相似三角形的性质,正确得出对应角度数是解题关键.11.5【分析】根据题意,把23ba=化简整理得23b a=,代入所求代数式计算即可.【详解】由题意得,23b a=,代入所求代数式,可得原式=253352133a a aa a a+==-,故答案为:5.【点睛】本题考查了分式的化简求值,整体代换的思想,掌握整体代换的思想是解题的关键.12.12【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案. 【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 13.(22-x )(17-x )=300.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【详解】设道路的宽应为x 米,由题意有(22﹣x )(17﹣x )=300,故答案为(22﹣x )(17﹣x )=300.14.1或3【分析】分两种情形①当EM ⊥AC 时,△EMN ∽△EAF .②当EN ⊥AC 时,△ENM ∽△EAF ,分别求解.【详解】解:①当EM ⊥AC 时,△EMN ∽△EAF ,∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴tan ∠CAB =3BC AB =, ∴∠CAB =30°,∴∠AEM =60°,∴∠AEF =30°,∴AF =AE•tan30°1, ②当EN ⊥AC 时,△ENM ∽△EAF ,由(1)可知,∠CAB =30°,EN ⊥AC∴∠AEN=∠MEN=60°,∵1122AE AB ==⨯= ∴tan tan 60AF AEF AE ∠=︒=,= ∴AF =3,故答案为:1或3.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(1)②3;(2)①12x =,24x =;②12x =22x =【分析】(1)①先把每个二次根式进行化简,化成最简二次根式,然后进行合并计算即可; ②先把每个式子进行化简,利用最简二次根式,二次根式平方的性质,绝对值的性质,化简后进行计算即可;(2)①先去括号,把一元二次方程化简为一般形式,然后利用因式分解法解方程即可; ②利用配方法直接求解一元二次方程即可.【详解】(1)①原式3=-,=②原式21=,3=,故答案为:3;(2)①把原方程化简为:244240x x x -+-+=,2680x x -+=,(2)(4)0x x --=,解得:12x =或24x =,故答案为:12x =或24x =;②原方程可化为:2445x x +=-,2(2)5x -=,2x =解得:12x =22x =故答案为:12x =22x =【点睛】本题考查了二次根式的化简计算,绝对值的性质,二次根式平方的性质,一元二次方程的解法,掌握计算的方法是解题的关键.16.化简结果是12x -+,求值结果是:15-. 【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【详解】解:原式=2224(2)(1)1(112)⎛⎫-+---⋅ ⎪--⎝⎭-+x x x x x x x x =222243211(2)-+-+--⋅-+x x x x x x x =2211(2)+-⋅-+x x x x =12x -+, ∵x 满足x 2﹣4x +3=0,∴(x -3)(x -1)=0,∴x 1=3,x 2=1,当x =3时,原式=﹣132+=15-; 当x =1时,分母等于0,原式无意义.∴分式的值为15-. 故答案为:化简结果是12x -+,求值结果是:15-. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.17.(1)证明见详解.(2)m 的值为3或1-.【分析】(1)根据240b ac =->,即可证明方程有两个不相等的实数根(2)根据根与系数的关系,通过变形计算即可求出答案.【详解】解:(1)证明:∵22[(22)]4(2)m m m ∆=----=2248448m m m m -+-+=40>∴该方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得:1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=,即22(22)2(2)10m m m ---=,化简,得2230m m --=,解得13m =,21m =-,∴m 的值为3或1-.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.18.解:设购买了x 件这种服装,根据题意得:()802x 10x 1200⎡⎤--=⎣⎦,解得:x 1=20,x 2=30.当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去.答:她购买了30件这种服装.【详解】试题分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.19.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A =∠D ,根据已知可得AE :AB =DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE ∽△DEF ;(2)根据相似三角形的预备定理得到△EDF ∽△GCF ,再根据相似的性质即可求得CG 的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD 为正方形,∴AD =AB =DC =BC ,∠A =∠D =90 °.∵AE =ED ,∴AE :AB =1:2.∵DF =14DC , ∴DF :DE =1:2,∴AE :AB =DF :DE ,∴△ABE ∽△DEF ;(2)解:∵ABCD 为正方形,∴ED ∥BG ,∴△EDF ∽△GCF ,∴ED :CG =DF :CF .又∵DF =14DC ,正方形的边长为4, ∴ED =2,CG =6,∴BG =BC+CG =10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得B D ∠=∠,AD BC =,再由AM BC ⊥,AN CD ⊥得到90AMB AND ∠=∠=︒,然后根据相似三角形的判定方法即可得到结论;(2)由~AMB AND ∆∆得到AM AB AN AD=,再证明出B MAN ∠=∠,利用AD BC =,从而证明出~AMN BAC ∆∆即可得出结论.【详解】解:(1)四边形ABCD 为平行四边形,B D ∴∠=∠,AD BC =,AM BC ⊥,AN CD ⊥,90AMB AND ∴∠=∠=︒,~AMB AND ∴∆∆;(2)~AMB AND ∆∆,AM AB AN AD∴=, 而AD BC =, AM AB AN BC∴=①, //AD BC , 90DAM AMB ∴∠=∠=︒,90MAN DAN ∠=︒-∠,而90D DAN ∠=︒-∠,MAN D ∴∠=∠,而D B ∠=∠,B MAN ∴∠=∠②,由①②得,~AMN BAC ∆∆,AM MN AB AC∴=. 【点睛】本题考查了平行四边行的性质应用,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.21.(1)154;(2)5;(3)当x =5m 时,花园的面积最大,最大面积是50m 2. 【详解】试题分析:(1)、将原式进行配方,然后根据非负数的性质得出最小值;(2)、将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.试题解析:(1)、m 2+m+4=(m+)2+, ∵(m+)2≥0, ∴(m+)2+≥,则m 2+m+4的最小值是; (2)、4﹣x 2+2x=﹣(x ﹣1)2+5, ∵﹣(x ﹣1)2≤0, ∴﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值为5;(3)、由题意,得花园的面积是x (20﹣2x )=﹣2x 2+20x ,∵﹣2x 2+20x=﹣2(x ﹣5)2+50=﹣2(x ﹣5)2≤0, ∴﹣2(x ﹣5)2+50≤50,∴﹣2x 2+20x 的最大值是50,此时x=5, 则当x=5m 时,花园的面积最大,最大面积是50m 2.考点:一元二次方程的应用22.(1)(2)【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题.(2)解直角三角形求出AH ,CH 即可解决问题.【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC 2AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)1,证明见解析;(2)n m;(3)()1kn k m - . 【分析】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,只需证明△PHM ∽△PGN ,根据相似三角形对应边成比例即可得;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H 通过证明△PHM ∽△PGN ,可得PM PH PN PG =,再根据△PHC ∽△ACB ,PG=HC ,即可得PM n PN m=; (3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,易证△PMH ∽△PGN ,可得PM PH PN PG =,由1·21·2ACD BCD AC DT S AD S BD BC DK==,得出()1DK kn DT k m =-,再根据DT ∥PG ,DK ∥PH ,可得PH CPPGDK CD DT ==,从而可推导得出()1PHDK knPG DT k m ==-,据此问题得以解决.【详解】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵AC=BC ,∠ACB=90°,且D 为AB 的中点,∴CD 平分∠ACB ,∵PG ⊥AC 于G ,PH ⊥BC 于H ,∴PG=PH ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN ,∴PM PHPN PG ==1,故答案为:1;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN , ∴PMPHPN PG =,∵PG=HC , ∴C PMPHPN H =∵D 为AB 中点,∴DC=DB ,∴∠DBC=∠DCB ,∴△PHC ∽△ACB , ∴PHACHC BC =, ∴HC PMPHACnPN BC m === 故答案为:nm ;(3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,同(2)可得△PMH ∽△PGN , ∴PMPHPN PG =, ∵1·21·2ACD BCD AC DTSAD S BDBC DK ==,∴()1DK kn DT k m=-, ∵DT ∥PG ,DK ∥PH , ∴PH CP PG DK CD DT==, ∴()1PH DK kn PG DT k m==-, ∴()1PM kn PN k m=-. 【点睛】本题考查了相似三角形的综合题,涉及相似三角形的判定与性质、角平分线的性质定理、三角形的面积等,解题的关键是灵活运用所知识、添加辅助线构造直角三角形解决问题.。
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列各式中,一定是二次根式的是()A B C D .2.方程x 2﹣9=0的解是()A .x=3B .x=9C .x=±3D .x=±93.下列计算正确的是()A =B =C =D .3=-4.用配方法解方程2850x x -+=,将其化为2()x m n +=的形式,正确的是()A .2(4)11x +=B .2(4)21x +=C .2(8)11x -=D .2(4)11x -=5.当0xy <等于()A .-B .C .D .-6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为()A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=07.已知34x y =,那么下列等式中,不成立的是()A .37x x y =+B .14x y y -=C .3344x y +=+D .4x=3y8.如图,在Rt △ABC 中,∠C=90°.CD 是斜边AB 上的高,若得到CD 2=BD•AD 这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断9.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.二、填空题11有意义,则x的取值范围是__.12.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是_____.13.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有__________支.14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.15.在等腰三角形ABC 中,4AB AC ==,3BC =,将ABC ∆的一角沿着MN 折叠,点B 落在AC 上的点D 处,如图所示,若ABC ∆与DMC ∆相似,则BM 的长度为__________.三、解答题16.计算:(1+(2131)(1()3---17.解下列方程(1)3(2)2(2)x x x -=-(2)231060x x -+=(配方法).18.先化简,再求值:22222212a b a b a b ab ab ⎛⎫-+÷- ⎪+⎝⎭,其中a =3,b =319.已知关于x 的一元二次方程22(21)10x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)在(1)的结论下,若m 取最小整数,求此时方程的两个根.20.如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD ,线段BE 与CD 相交于点F .(1)求证:PC CE CD CB=;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由.21.“早黑宝”葡萄品种是我省农科院研制的优质新品种在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场查发现,当“早黑宝”的售价为20元千克时,每天售出200千克,售价每降价1元,每天可多售出50千克,为了推广直传,基地决定降价促销,同时减存已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”天获利1750元,则售价应降低多少元?22.如图1,在矩形ABCD 中,2AB =,5BC =,1BP =,90MPN ∠= ,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F ,当PN 旋转至PC 处时,MPN ∠停止旋转.(1)特殊情形:如图2,发现当PM 过点A 时,PN 也恰巧过点D ,此时ABP ∆PCD ∆(填“≌”或“∽”);(2)类比探究:如图3,在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由.23.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:C D 为△ABC 的完美分割线.(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB 的度数.(3)如图2,△ABC 中,AC =2,BC =,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.参考答案1.D【分析】a≥)的式子叫二次根式,根据定义判断即可.(0【详解】解:A被开方数a表示任意实数,不是二次根式,故本选项错误;B、被开方数-10<0,不是二次根式,故本选项错误;C、被开方数a+1表示任意实数,不是二次根式,故本选项错误;D被开方数a2+1为非负数,即a2+1>0,是二次根式,故本选项正确.故选D【点睛】本题考查对二次根式的定义的应用,对二次根式定义的条件的理解是解答此题的关键. 2.C【解析】试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.解:移项得;x2=9,两边直接开平方得:x=±3,故选C.考点:解一元二次方程-直接开平方法.3.C【分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【详解】解:A、原式,所以A选项错误;B、原式,所以B选项错误;C、原式,所以C选项正确;D 、原式=3,所以D 选项错误.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【分析】先把5移到方程的右边,然后方程两边都加16,最后把左边根据完全平方公式写成完全平方的形式,然后两边同时开平方即可.【详解】2850x x -+=,移项得285x x -=-,配方得2816516x x -+=-+,即2(4)11x -=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.5.A【分析】a =,再根据绝对值化简法则进行化简.【详解】∵0xy <,且2xy 为非负数,∴x>0,y<0,y ×=-.故选A【点睛】本题考查二次根式的化简,a =化简此题是关键之处.6.C【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.7.B【详解】【分析】根据比例的基本性质逐项进行求解即可.【详解】A ,∵x 3y 4=,∴x 3x y 7=+,此选项正确,不合题意;B ,∵x 3y 4=,∴x y y -=–14,此选项错误,符合题意;C ,∵x 3y 4=,∴x 33y 44+=+,此选项正确,不合题意;D ,∵x 3y 4=,∴4x=3y ,此选项正确,不合题意,故选B .【点睛】本题考查了比例的性质,熟练掌握和应用比例的性质是解题的关键.8.C【解析】试题分析:根据题意可得:CD AD BD CD=,结合∠ADC=∠CDB 可得:△ADC ∽△CBD.9.B【详解】试题分析:①、MN=12AB ,所以MN 的长度不变;②、周长C △PAB =12(AB+PA+PB ),变化;③、面积S △PMN =14S △PAB =14×12AB·h ,其中h 为直线l 与AB 之间的距离,不变;④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线10.D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴AD AH AC AB=,∴24yx=,∴y=8x,∵AB<AC,∴x<4,∴图象是D.故选D.11.x≥﹣1【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】有意义,∴:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.【点睛】本题考查的知识点为二次根式有意义的条件.二次根式的被开方数是非负数.12.x1=﹣1,x2=﹣3.【解析】【分析】换元法即可求解,见详解.【详解】令2x+3=t,则方程(2x+3)2+2(2x+3)﹣3=0化为t2+2t﹣3=0,解得:t=1或-3,即2x+3=1或2x+3=-3解得:x1=﹣1,x2=﹣3.【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键. 13.20支【分析】设参赛队伍有x支,根据参加比赛采用双循环制(每两队之间都进行2场比赛),共有比赛380场,可列出方程,求解即可.【详解】解:设参赛队伍有x支,根据题意得,x x-=()1380解得,x1=20,x2=-19(不符合题意,舍去)∴参赛队伍有20支.故答案为:20【点睛】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.14.57.5【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.15.32或127【分析】根据折叠得到BM=ND,根据相似三角形的性质得到CM MDCB AB=或CM MDAC AB=,设BM=x,则CM=3-x,即可求出x的长,得到BM的长.【详解】解:∵△BMN沿MN折叠,B和D重合,∴BM=DM,设BM=x,则CM=3-x,∵当△CMD∽△CBA,∴CM MD CB AB=,∴334x x -=,解得:x=127,即BM=127;∵当△CMD∽△CAB,∴CM MD CA AB=,∴344x x -=,解得:x=32,即BM=32;∴BM=32或127.故答案为:32或127【点睛】本题主要考查相似三角形性质以及图形的折叠问题,根据相似三角形的性质列出比例式是解答此题的关键.16.(1)3(2)4【分析】(1)化简各项二次根式,再合并同类二次根式;(2a =化简绝对值,利用平方差公式(a+b )(a-b )=a 2-b 2,根据负指数幂1p p aa -=进行计算.【详解】(1)解:原式223=+⨯-3=-433=(2)原式2(13)=---224=--【点睛】进行实数的运算,要明确有理数的运算法则及性质在实数范围内仍然成立.特别地,碰到化简绝对值的运算,首先判断绝对值符号里代数式整体的正负,再根据绝对值的意义,整体取正或负.17.(1)12x =,223x =-(2)1573x =,2573x -=【分析】(1)利用因式分解法解方程;(2)方程两边同时除以3,使二次项系数为1,利用配方法解方程.【详解】(1)移项,得3(2)2(2)0x x x ---=方程左边分解因式,得(2)(32)0x x -+=∴20x -=或320x +=∴12x =,223x =-(2)移项,得23106x x -=-方程两边同时除以3,得21023x x -=-配方,得2221055(2()333x x -+=-+即257()39x -=.直接开平方,得5733x -=±.∴1573x +=,2573x =【点睛】本题考查了解一元二次方程,根据方程系数特征,选用恰当的方法解方程是解答此题的关键.18.2a b-,55.【分析】先将括号里的分式进行通分,再将括号里分式进行相减,最后再根据分式的除法法则计算,最后代入数值即可求解.【详解】原式=222222222a b a b ab a b ab ab ab ⎛⎫-+÷- ⎪+⎝⎭,=()()()()22a b a b a b ab a b ab ⎛⎫+-- ⎪÷ ⎪+⎝⎭,=2a b-,把a =3b =3代入可得:原式【点睛】本题主要考查分式的化简求值,解决本题的关键是要熟练掌握分式的通分,分式减法和分式的除法法则.19.(1)54m >-(2)10x =,21x =【分析】(1)根据方程的系数和根的判别式Δ=b 2-4ac>0,列出关于m 的不等式,求出解集即可解答;(2)在m 的解集中,确定m 的最小整数后再确定原方程,求根即可.【详解】解:(1)∵方程22(21)10x m x m +++-=有两个不相等的实数根,∴22(21)4(1)450m m m +--=+>解得54m >-∴当54m >-时,方程有两个不相等的实数根.(2)由(1),得54m >-,故m 的最小整数值是-1当1m =-时,原方程为20x x -=解得10x =,21x =即此时方程的两个根分别为10x =,21x =【点睛】本题考查了一元二次方程根的差别式,明确由一元二次方程根的判别式和方程实数根的个数关系及正确解方程是解答此题的关键.20.(1)证明见解析;(2)AC ∥BD ,理由见解析.【分析】(1)证明△BCE ∽△DCP ,相似三角形的对应边成比例;(2)由△PCE ∽△DCB ,证∠CBD =∠CEP =90°.【详解】(1)∵,△ABC 和△BEC 均为等腰直角三角形,且∠ACB =∠BEC =90°,∴∠ECB =∠PCD =45°,∠CEB =∠CPD =90°,∴△BCE ∽△DCP ,∴PC CE CD CB=;(2)AC ∥BD ,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵PC CECD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.【点睛】本题考查了相似三角形的判定与性质,判定两个三角形相似的方法有:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;②三边成比例的两个三角形相似;③两边成比例且夹角相等的两个三角形相似;④有两个角相等的三角形相似.21.(1)40%(2)3元【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得关于x的一元二次方程,解方程,然后根据问题的实际意义作出取舍即可;(2)设售价应降低y元,根据每千克的利润乘以销售量,等于1750,列方程并求解,再结合问题的实际意义作出取舍即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得100(1+x)2=196解得x1=0.4=40%,x2=−2.4(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y元,则每天可售出(200+50y)千克根据题意,得(20−12−y)(200+50y)=1750整理得,y2−4y+3=0,解得y1=1,y2=3∵要减少库存∴y1=1不合题意,舍去,∴y=3答:售价应降低3元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程,是解题的关键.22.(1)∽(2)PE PF 的值为定值12,详见解析【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过同角的余角相等得出BAP CPD ∠=∠,由此即可得出ΔABP ∽ΔPCD;(2)过点F 作FG ⊥PC 于点G ,根据矩形的性质以及角的关系找出∠B=∠FGP=90°,∠BEP=∠FPG,由此得出△EBP ≌△PGF,根据相似三角形的性质找出边与边之间的关系,即可得出结论.【详解】(1)∽,理由如下:∵90MPN ∠= ,90B = ∠,∴90BAP APB CPD APB ∠+∠=∠+∠=∴BAP CPD∠=∠又∵B C∠=∠∴ABP ∆∽PCD∆(2)在旋转过程中,PE PF的值为定值理由如下:过点F 作FG BC ⊥于点G ,如图所示,则B FGP∠=∠∵90,90MPN B ∠=∠=∴90BEP EPB CPF EPB ∠+∠=∠+∠=∴BEP CPF∠=∠∴EBP ∆∽PGF∆∴PE PB PF FG=在矩形ABGF 中,2FG AB ==,1PB =∴12PB FG =∴12PE PF =,即PE PF 的值为定值12.【点睛】本题考查相似三角形的性质和判定的综合应用,以及矩形性质和旋转性质,证明三角形相似用其性质列出对应边成比例是解答此题的关键.23.(1)证明见解析;(2)∠ACB =96°或114°;(3【分析】(1)根据完美分割线的定义只要证明①△ABC 不是等腰三角形,②△ACD 是等腰三角形,③△BDC ∽△BCA 即可.(2)分三种情形讨论即可①如图2,当AD =CD 时,②如图3中,当AD =AC 时,③如图4中,当AC =CD 时,分别求出∠ACB 即可.(3)设BD =x ,利用△BCD ∽△BAC ,得BC BD BA BC =,列出方程即可解决问题.【详解】(1)如图1中,∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线.(2)①当AD =CD 时,如图2,∠ACD =∠A =45°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°.②当AD =AC 时,如图3中,∠ACD =∠ADC =(180°-48°)÷2=66°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°.③当AC =CD 时,如图4中,∠ADC =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍弃,∴∠ACB =96°或114°.(3)由已知AC =AD =2,∵△BCD ∽△BAC ,∴BC BD BA BC=设BD =x ,∴2(2)x x =+),∵x >0,∴x 1-,∵△BCD ∽△BAC ,∴CD BDAC BC =∴CD.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.。
A CB D华师大版九年级数学第一学期期中考试题及答案 一、认真填一填 (本题共10题, 每空2分,共20分)1.当x 时,2-x 有意义。
2.已知a 、b 、c 、d 是成比例线段,其中a =5cm ,b=3cm ,c=6cm .则线段d=___________cm .3.若x ∶y =1∶2,则yx y x +-=_____________.4.请你写一个能先提公因式、再运用公式来分解因式来解的方程,并写出方程的解 . 5.设x 1,x 2是方程x(x-1)+3(x-1)=0的两根,则2212x x += 。
6.等腰梯形的周长是36cm ,腰长是7cm ,则它的中位线长为________cm .7.如图,在ABC △中,90ACB ∠=,CDAB =,则CD 为 _____.8.在平面直角坐标系中,将线段AB 平移到A ′B ′,若点A 、B 、 A ′的坐标(-2,0)、(0,3)、(2,1),则点B ′的坐标是 。
9.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,通过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.10. 已知,如图所示,在△ABC 中,P 为AB 上一点,在下列四个条件中:①B ACP ∠=∠;②ACB APC ∠=∠;③AP AC =2·AB ;④AB ·AP CP =·CB 。
其中,能满足△ABC 和△ACP 相似的条件是 。
(填序号)二.精心选一选(本题共8题,每题3分,共24分)11.下列方程中一定是一元二次方程的是( )A .ax 2-bx =0B .2x 2+2x2-2=0C .(x -2)(3x +1)=0D .3x 2-2x =3(x +1)(x -2)12. 下列运算正确的是( )。
A. 232a a a =+ B.94)9()4(-⨯-=-⨯-C. ()63293a a= D. +=13. 假如2是一元二次方程x 2=x+c 的一个根,那么常数c 是( )。
一、选择题1.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP =D .2ABC AEPF S S =四边形2.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 3.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .3C .4D .454.如图,将等边ABC 绕点C 逆时针旋转得到A B C '',旋转角为()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°5.下列四个图案中,不是中心对称图案的是( )A .B .C .D . 6.如图,把△ABC 绕着点A 逆时针旋转40°得到△ADE ,∠1=30°,则∠BAE =( )A .10°B .30°C .40°D .70° 7.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( ) A . B .C .D .8.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小 9.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个10.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t << 11.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根12.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++= 13.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( )A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 14.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2 二、填空题15.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.16.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.17.2251=-+-y x x 的图象不经过__________象限;18.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.19.关于x 的方程2880kx x -+=有两个实数根,则k 的取值范围______________. 20.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.三、解答题21.如图,已知△ABC 的顶点均在格点上,A (1,-4),B (5,-4),C (4,-1) 以原点O 为对称中心,画出△ABC 关于原点O 对称的△111A B C ,并写出点1A ,1B ,1C 的坐标.22.如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为格点.已知△ABC 的顶点均在格点上,建立如图所示的平面直角坐标系,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于原点对称的△A 1B 1C 1,并直接写出△A 1B 1C 1各顶点的坐标; (2)将线段AB 绕点A 顺时针旋转90 °后得到AB 2,画出旋转后的图形,并直接写出点B 2的坐标;(3)△A 1B 1C 1的面积为 .23.已知关于x 的方程222(1)2()10a x a b x b +-+++=.(1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.24.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)若点E 在抛物线上,且BCE 是以BC 为底的等腰三角形,求点E 的横坐标. 25.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 26.用配方法解方程:22450x x +-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【详解】∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,AP ⊥BC ,∠C=∠B=∠BAP=∠CAP=45°,∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP CP EAP FCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△APE ≌△CPF (ASA ),∴AE=CF ,EP=PF ,S △AEP =S △CPF ,∴△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,即2S 四边形AEPF =S △ABC , A 、B 、D 均正确, ∵旋转过程中,EP 的长度的变化的,故EP≠AP ,C 错误;故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定及性质的运用,解答时证明三角形全等是关键.2.B解析:B【分析】设A 的坐标为(,)m n ,根据旋转的性质得到C 是A 和A '的中点,利用中点公式可以求出点A '的坐标.【详解】解:设A 的坐标为(,)m n ,∵A 和A '关于点(0,1)C 对称, ∴02m a +=,12n b +=,解得m a =-,2n b =-+, ∴点A '的坐标2(),a b --+. 故选:B .【点睛】本题考查图形的旋转,解题的关键是利用中点公式求出旋转后的点坐标.3.A解析:A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B' C=∠B=60°,于是可判断CA A'为等腰三角形,所以∠CA A'=∠A'=30°,再利用三角形外角性质计算出∠B'CA=30°,可得B'A=B'C=1,然后利用A A'=A B'+A'B'进行计算.【详解】解:∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵ABC绕点C顺时针旋转得到A'B'C,∴A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B'C=∠B=60°,∴CA A'为等腰三角形,∴∠CA A'=∠A'=30°,∵A、B'、A'在同一条直线上,∴∠A'B'C=∠B'AC+∠B'CA,∴∠B'CA=60°﹣30°=30°,∴B'A=B'C=1,∴A A'=A B'+A'B'=2+1=3.故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.4.A解析:A【分析】利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案;【详解】解:如图,∵ABC 和A B C ''均为等边三角形,∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=,∵160BDA '∠=︒∴160DOA A ''∠+∠=︒∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒ ∴20ACA '∠=︒∴α的大小是20°故选:A【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.5.C解析:C【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断即可.【详解】A :该图形即是中心对称图形也是轴对称图形,不符合题意;B :该图形即是中心对称图形也是轴对称图形,不符合题意;C :该图形是轴对称图形,但不是中心对称图形,符合题意;D :该图形是中心对称图形,但不是轴对称图形,不符合题意;故选:C.【点睛】本题主要考查了中心对称图形的判断,熟练掌握相关概念是解题关键.6.D解析:D【分析】先找到旋转角,根据∠BAE =∠1+∠CAE 进行计算.【详解】解:根据题意可知旋转角∠CAE =40°,所以∠BAE =30°+40°=70°.故选D .【点睛】本题主要考查了旋转的性质,解题的关键是找准旋转角.7.C解析:C【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案.【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0,∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600,∴顶点坐标为(20,600),∵s 从0开始到最大值时停止,∴0≤t≤20,∴C 选项符合题意,故选:C .【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.8.D解析:D【分析】根据二次函数的性质进行判断即可.【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误; B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴函数图象与x 轴有两个交点,故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大,故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确,故选:D .【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.9.D解析:D【分析】根据抛物线的开口方向、对称轴、顶点坐标、最值、以及不等式的性质进行判断即可.【详解】抛物线开口向下,因此a <0,对称轴为x =−b 2a=1>0,a 、b 异号,因此b >0,且2a +b =0,抛物线与y 轴的交点在正半轴,因此c >0,所以:abc <0,因此①正确;当x =2时,y =4a +2b +c >0,因此②正确;当x =−1时,y =a−b +c <0,即,a +c <b ,因此③不正确;∵a−b +c <0,2a +b =0,∴−12b−b +c <0,即2c−3b <0,因此④正确; 当x =1时,y 最大值=a +b +c ,当x =n (n≠1)时,y =an 2+bn +c <y 最大值,即:a +b +c >an 2+b +c ,也就是2a+b an +bn(n 1)>≠,因此⑤正确,正确的结论有:①②④⑤,故选:D .【点睛】考查二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.10.C解析:C【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b ⨯=1, 解得b=-2,所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键. 11.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.12.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.13.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1x 2-4x+4=1+4(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.14.D解析:D【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0,提公因式,得(x ﹣2)(x ﹣1)=0,∴x ﹣2=0或x ﹣1=0,解得x =2或x =1.故选:D .【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题15.(30)(-10)【分析】设一元二次方程的另一个根为利用根与系数的关系即可求得进而得到对应的函数与轴的交点坐标【详解】设一元二次方程的另一个根为∵即解得:∴抛物线与轴的交点坐标为(30)(-10)故解析:(3,0),(-1,0)【分析】设一元二次方程220x x k -++=的另一个根为2x ,利用根与系数的关系即可求得2x ,进而得到对应的函数22y x x k =-++与x 轴的交点坐标. 【详解】设一元二次方程220x x k -++=的另一个根为2x , ∵12b x x a+=-,即232x +=, 解得:21x =-,∴抛物线22y x x k =-++与x 轴的交点坐标为(3,0),(-1,0),故答案为:(3,0),(-1,0).【点睛】本题考查了一元二次方程根与系数的关系,抛物线与x 轴交点的坐标.解题时,注意二次函数22y x x k =-++与一元二次方程22y x x k =-++间的转化关系. 16.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式.【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4∴y=2(x+1)2-1.故答案为:y=2(x+1)2-1.【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键. 17.第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断.【详解】解:对于2251=-+-y x x ,∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1,∴当x ﹤0时,y ﹤﹣1,即y ﹤0,∴函数图象不经过第二象限,故答案为:第二.【点睛】 本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.18.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项 解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.19.且【分析】利用根的判别式b2-4ac 由于原方程有实数根那么判别式大于或等于零【详解】解:∵关于x 的方程有两个实数根且解得:且故答案为且【点睛】关于x 的方程有两个实数根(1)说明这是一个一元二次方程故解析:k 2≤且0k ≠【分析】利用根的判别式b 2-4ac .由于原方程有实数根,那么判别式大于或等于零.【详解】解:∵关于x 的方程2880kx x -+=有两个实数根,2(8)480k ∆=--⋅⋅≥,且0k ≠,解得:k 2≤且0k ≠,故答案为k 2≤且0k ≠,.【点睛】关于x 的方程有两个实数根,(1)说明这是一个一元二次方程,故“二次项系数不能为0”;(2)“根的判别式△的值要大于或等于0”;这两个条件要同时满足,解题时不要忽略了第一个条件.20.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.三、解答题21.画图见详解;A 1(-1,4),B 1(-5,4),C 1(-4,1).【分析】根据网格结构找出点A 、B 、C 关于坐标原点O 的对称点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可.【详解】解:△A 1B 1C 1如图所示;A 1(-1,4),B 1(-5,4),C 1(-4,1).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(1)图见解析;A 1(-1,-1),B 1(-4,-2),C 1(-3,-4);(2)B 2(2,-2);(3)3.5【分析】(1)先找到A 、B 、C 关于原点对称的A 1、B 1、C 1,再连线即可;(2)根据网格结构点A 、B ,找出将线段AB 绕点A 顺时针旋转90°的对应点B 2,然后连接A B 2,写出坐标即可;(3)△A1B1C1的面积即为三角形ABC的面积,利用“割补法”即可求得.【详解】解:(1)如图所示,△A1B1C1即为所求:A1(-1,-1),B1(-4,-2),C1(-3,-4);(2)如图所示,A1B2即为所求:B2(2,-2);(3)S△ABC=11133232113222⨯-⨯⨯-⨯⨯-⨯⨯=3.5,∴△A1B1C1的面积= S△ABC=3.5,故填:3.5.【点睛】本题考查了坐标与图形变化−旋转与对称,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.(1)12;(2)27y -≤< 【分析】(1)把2b =、2x =代入方程可得()()22212222210a a +⋅-+⋅++=,然后解a 关于的方程即可得解;(2)根据根的判别式的意义可得()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦,整理得()210ab -≤,利用非负数的性质得到1ab =,则函数242y a a ab =++为:()222y a =+-,再由51a -<<-可求得函数的取值范围.【详解】解:(1)∵若2b =,且2x =是此方程的根∴()()22212222210a a +⋅-+⋅++= ∴2102a ⎛⎫-= ⎪⎝⎭ ∴1212a a ==∴a 的值为12. (2)∵方程222(1)2()10a x a b x b +-+++=有实数根∴()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦ ∴()210ab -≤ ∴10ab -=∴1ab =∴函数242y a a ab =++为:()224222y a a a =++=+-∵51a -<<-∴可画出函数图象,如图:∴函数242y a a ab =++的取值范围是:27y -≤<.【点睛】本题考查了含参数的一元二次方程、一元二次方程的根的判别式、由自变量取值范围求函数取值范围等,熟练掌握相关知识点是解题的关键.24.(1)213222y x x =-++;(2)1412-或1412-【分析】(1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)根据等腰三角形性质,然后列方程求解.【详解】解:(1)∵抛物线22y ax bx =++经过点(1,0),(4,0)A B -, ∴2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为213222y x x =-++; (2)设点E 为213,222⎛⎫-++ ⎪⎝⎭m m m 依题意得,EC EB = ∴22EC EB =,即2222221313(4)22222m m m m m m ⎛⎫⎛⎫+-+=-+-++ ⎪ ⎪⎝⎭⎝⎭化简得,2100m m +-=解得:1122m =-+2122m =--∴点E 的横坐标为12-+或12- 【点睛】本题为二次函数的综合应用,涉及待定系数法、等腰三角形等,根据等腰三角形性质列方程式解题的关键.25.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键.26.121122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,12x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.。
华师大版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列二次根式中,与不是同类二次根式的是()A .BCD 2.方程3x (x-2)=x-2的根为()A .x 2=B .x 0=C .1x 2=,2x 0=D .121x 2,x 3==3.关于x 的方程ax 2﹣3x+1=2x 2是一元二次方程,则a 的取值范围为()A .a≠0B .a >0C .a≠2D .a >24.计算:(﹣)的结果是()A .2B .1﹣3C .23D 5.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为()A .±B .C .2或3D6.如图,下列条件不能判定△ADB ∽△ABC 的是()A .∠ABD=∠ACB B .∠ADB=∠ABC C .AB 2=AD•ACD .AD ABAB BC=7.如图,某小区有一长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为()米.A .2B .1C .8或1D .88.下列四个选项中的三角形,与图中的三角形相似的是()A .B .C .D .9.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A′的坐标是()A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)10.关于x 的方程mx 2+x ﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不相等的实数解;③无论m 取何值,方程都有一个负数解,其中正确的是()A .①②B .②③C .①③D .①②③二、填空题11.方程x 2-4x=0的解为______12.关于x 的一元二次方程22(1)60m x x m m -++-=的一个根是0,则另一个根是___13.如图,四边形ABCD 中,AD ∥BC ,∠B=∠ACD=90°,BC=2,DA=3,则△ABC 与△DCA 的面积比为______14.已知一次函数y=kx+b的大致图象,则关于x的一元二次方程x2-2x+kb+1=0的根的情况是______.15.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为______.16.小红家的阳台上放置了一个晒衣架,如图1,图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点在地面上,经测量得到AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32cm,垂挂在衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?三、解答题17.-)232218.(126x=(2)用配方法解方程:3x2=4x+219.某商店连续一至四月销售额的增长率都相同,今年2月份的销售额是2万元,4月份的销售额是2.88万元.该商店销售额每月的增长率是多少?1月份的销售额是多少?20.如图,已知ED∥BC,∠EAB=∠BCF.求证:(1)四边形ABCD为平行四边形;(2)OB2=OE•OF;21.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC 的周长.22.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为9 04⎛⎫ ⎪⎝⎭,(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.23.如图,已知△ABC∽△ADE,AE=6cm,EC=3cm,BC=6cm,∠BAC=∠C=47°.(1)求∠AED和∠ADE的大小;(2)求DE的长.24.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,,CE=4,则DE的长为______.参考答案1.B【分析】对各选项中的二次根式进行化简,然后利用同类二次根式的定义逐一进行判断即可得.【详解】A﹣B、不是同类二次根式,故此选项符合题意;C、=3D是同类二次根式,故此选项不符合题意,故选B.【点睛】本题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键.2.D【解析】【分析】先移项得到3x(x-2)-(x-2)=0,然后利用因式分解法解方程.【详解】解:3x(x-2)=x-2,3x(x-2)-(x-2)=0,(x-2)(3x-1)=0,x-2=0或3x-1=0,所以x1=2,x2=1 3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.C 【解析】试题解析:22312ax x x -+=,()22310a x x --+=,∵关于x 的方程22312ax x x -+=是一元二次方程,20a ∴-≠,即2a ≠,故选C .4.A 【解析】【分析】根据二次根式除法的计算法则计算即可求解.【详解】(﹣)=﹣=2故选:A .【点睛】此题考查了二次根式的混合运算,二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.5.A 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,解得:k=±故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.6.D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.7.B【分析】设人行道的宽度为x米,则两块矩形绿地可合成长为(18-3x)米、宽为(6-2x)米的矩形,根据矩形的面积公式结合两块绿地的面积之和为60平方米,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:设人行道的宽度为x米,则两块矩形绿地可合成长为(18-3x)米、宽为(6-2x)米的矩形,根据题意得:(18-3x)(6-2x)=60,整理得:x2-9x+8=0,解得:x1=1,x2=8.∵8>6,∴x2=8舍去.故选B.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2.A、三角形的三边分别为2,,三边之比为3,故本选项错误;B、三角形的三边分别为2,4,,三边之比为1:2,故本选项正确;C、三角形的三边分别为2,3,三边之比为2:3D,4,三边之比为4,故本选项错误.故选:B.【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.9.D【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ABO∽△A′B′O且OA' OA=1 3.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.10.C【解析】【分析】分别讨论m=0和m≠0时方程mx2+x-m+1=0根的情况,进而填空.【详解】当m=0时,x=-1,方程只有一个解,①正确;当m≠0时,方程mx2+x-m+1=0是一元二次方程,△=1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;故选C.【点睛】本题主要考查了根的判别式以及一元一次方程的解的知识,解答本题的关键是掌握根的判别式的意义以及分类讨论的思想.11.【详解】试题分析:x2﹣4x提取公因式x,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.解:x2﹣4x=0x(x﹣4)=0x=0或x﹣4=0x1=0,x2=4故答案是:x1=0,x2=4.考点:解一元二次方程-因式分解法.12.6【分析】把x=0代入一元二次方程(m−1)x2+6x+m2−m=0得出m2−m=0,求出m=0,代入方程,解方程即可求出方程的另一个根.【详解】把x=0代入方程(m−1)x2+6x+m2−m=0得出m2−m=0,解得:m=0或1,∵方程(m−1)x2+6x+m2−m=0是一元二次方程,∴m−1≠0,解得:m≠1,∴m=0,代入方程得:−x2+6x=0,−x(x−6)=0,x1=0,x2=6,即方程的另一个根为6.故答案为:6.【点睛】本题考查了解一元二次方程,一元二次方程的解的定义的应用,解题的关键是求出m的值.13.4∶9【分析】求出△CBA ∽△ACD ,得出23AB CD =,得出△ABC 与△DCA 的面积比=49.【详解】∵AD ∥BC ,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA ∽△ACD ,23AB CD =,∵22439ABC DCA S S == (),∴△ABC 与△DCA 的面积比为4:9.故答案为4:9.【点睛】本题主要考查了三角形相似的判定及性质,解决本题的关键是利用△ABC 与△DCA 的面积比等于相似比的平方.14.有两个不相等的实数根【解析】【分析】观察函数图象,利用一次函数图象与系数的关系可得出k >0,b <0,进而可得出kb <0,再由根的判别式△=-4kb >0,可得出关于x 的一元二次方程x 2-2x+kb+1=0有两个不相等的实数根.【详解】解:∵一次函数y=kx+b 的图象经过第一、三、四象限,∴k >0,b <0,∴kb <0.又∵△=(-2)2-4×(kb+1)=-4kb >0,∴关于x 的一元二次方程x 2-2x+kb+1=0有两个不相等的实数根.故答案为:有两个不相等的实数根.【点睛】本题考查了根的判别式以及一次函数图象与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】解:如图所示:过点D作DC⊥AB于点C,连接AE,由题意可得:DE=BC=1m,BE=1.5m,∵一根长为1m的竹竿的影长是0.5m,∴AC=2CD=3m,故AB=3+1=4(m).故答案为4m.【点睛】此题主要考查了平行投影,解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同.16.120【详解】分析:先根据等角对等边得出∠OAC=∠OCA=12(180°-∠BOD)和∠OBD=∠ODB=12(180°-∠BOD),进而利用平行线的判定得出即可,再证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.详解:过点O作OM⊥EF于点M,∵AB 、CD 相交于点O ,∴∠AOC=∠BOD∵OA=OC ,∴∠OAC=∠OCA=12(180°-∠BOD ),同理可证:∠OBD=∠ODB=12(180°-∠BOD ),∴∠OAC=∠OBD ,∴AC ∥BD ,在Rt △OEM 中,22OE EM -=30(cm ),过点A 作AH ⊥BD 于点H ,同理可证:EF ∥BD ,∴∠ABH=∠OEM ,则Rt △OEM ∽Rt △ABH ,∴OE OM AB AH=,AH=•OM AB OE =3013634⨯=120(cm ),所以垂挂在衣架上的连衣裙总长度小于120cm 时,连衣裙才不会拖落到地面上.故答案为120.点睛:此题主要考查了相似三角形的判定与性质以及解直角三角形,根据已知构造直角三角形利用锐角三角函数解题是解决问题的关键.17.1934-2-【解析】【分析】先根据二次根式的乘除法则和积的乘方进行计算,然后化简后合并即可.【详解】解:原式-[)]22•)=-4-(3-2)•)=-1534=-1934-.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(1)x1,x 2(2)x 1=23+,x 2=23【解析】【分析】(1)把方程化成一般式,然后利用公式法求解即可;(2)移项后,二次项系数化成1,然后两边加上9变形后,开方即可求出解.【详解】解:(1)原方程可化为x 2,∵△=(2-4×1×1=8,∴x=23821±⨯,∴x 1,x 2;(2)3x 2=4x+2,x 2-43x=23,x 2-43x+49=23+49,即(x-23)2=109,∴x-23=±103,∴x1=23,x2=23-.【点睛】此题考查了解一元二次方程-公式法,配方法,以及直接开平方法,熟练掌握各种解法是解本题的关键.19.该商店销售额每月的增长率是20%,1月份的销售额是53万元【解析】【分析】设该商店销售额每月的增长率是x,根据该商店2月份及4月份的销售额,即可得出关于x 的一元二次方程,解之即可得出x的值,将其正值代入“1月份的销售额=2月份的销售额÷(1+增长率)”,即可求出1月份的销售额.【详解】解:设该商店销售额每月的增长率是x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(舍去),∴2÷(1+20%)=53(万元).答:该商店销售额每月的增长率是20%,1月份的销售额是53万元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.(1)见解析(2)见解析【分析】(1)由ED∥BC,∠EAB=∠BCF,可证得∠EAB=∠D,即可证得AB∥CD,则得四边形ABCD为平行四边形;(2)由平行线分线段成比例定理,即可证得OB2=OE•OF.【详解】解:(1)∵DE∥BC,∴∠D=∠BCF,∵∠EAB=∠BCF,∴∠EAB=∠D,∴AB∥CD,∵DE∥BC,∴四边形ABCD为平行四边形;(2)∵DE∥BC,∴OBOE=OCOA,∵AB∥CD,∴OCOA=OFOB,∴OB OF OE OB,∴OB2=OE•OF;【点睛】此题考查了相似三角形的判定与性质,平行四边形的性质,平行线分线段成比例定理等,解题时要注意识图,灵活应用数形结合思想.21.(1)证明见解析;(2)△ABC的周长为5.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,∴无论k取任何实数值,方程总有实数根.(2)当a=1为底边时,则b=c,∴△=(k-2)²=0,解得:k=2,∴方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∴△ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∴1-(k+2)+2k=0,解得:k=1,∴方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∴1、1、2不能构成三角形,综上所述:△ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.22.(1)(134,0)(2)y=34x+94(3)t=25125936或时以点A、P、Q为顶点的三角形与△AEB相似【分析】(1)由题意可求点A,点C的坐标,用待定系数法可求直线AB的函数表达式;(2)由题意可求点B的坐标,即可求AC,BC,AB的长,由Rt△ABC∽Rt△AEB,可得,可求AE的长,即可求点E的坐标;(3)分△APQ∽△ABE,△APQ∽△AEB两种情况讨论,可求t的值.【详解】解:∵点A、C的横坐标是一元二次方程x2+2x-3=0的两根∴点A、C的横坐标分别为-3,1∴点A(-3,0),点C(1,0)设直线AB解析式:y=kx+94,且过点A∴0=-3k+9 4∴k=3 4∴直线AB解析式:y=34x+94(2)如图:过B作BE⊥AB交x轴于E,当x=1时,则y=34+94=3∴点B(1,3)∴AC=4,BC=3∴AB=5∵Rt△ABC∽Rt△AEB∴AB AC AE AB=∴54 AE5=∴AE=25 4∴OE=254-3=134∴点E(134,0)(3)由题意可得:AP=t,AQ=25 4-t如图:若△APQ∽△ABE∴AP AQ AB AE=∴25t t425 54-=∴t=25 9如图:若△APQ∽△AEB∴AP AQ AE AB=∴25t t4 255 4-=∴t=125 36综上所述:t=25125936或时以点A、P、Q为顶点的三角形与△AEB相似.【点睛】本题考查相似三角形综合题,待定系数法求解析式,运用分类讨论的思想是解决本题的关键.23.(1)∠AED=47°;∠ADE=86°;(2)4(cm).【分析】(1)根据相似三角形的对应角相等、三角形内角和定理计算;(2)根据相似三角形的对应边的比相等列出比例式,代入计算即可.【详解】解:(1)∵△ABC∽△ADE,∴∠AED=∠C=47°,∠ADE=180°﹣∠BAC﹣∠AED=86°;(2)∵△ABC∽△ADE,∴=AE DE AC BC ,即6=96DE ,解得,DE=4(cm ).【点睛】本题考查了相似三角形的性质,掌握相似三角形的对应边的比相等、对应角相等是解题的关键.24.探究:成立;拓展:52.【解析】【分析】感知:先判断出,∠BAP=∠DPC ,进而得出结论;探究:同理根据两角相等相等,两三角形相似,进而得出结论;拓展:利用相似三角形△BDP ∽△CPE 得出比例式求出BD ,三角形内角和定理证得AC ⊥AB 且AC=AB ;然后在直角△ABC 中由勾股定理求得AC=AB=6;最后利用在直角△ADE 中利用勾股定理来求DE 的长度.【详解】感知:∵∠APD=90°,∴∠APB+∠DPC=90°,∵∠B=90°,∴∠APB+∠BAP=90°,∴∠BAP=∠DPC ,∵AB ∥CD ,∠B=90°,∴∠C=∠B=90°,∴△ABP ∽△DCP .探究:∵∠APC=∠BAP+∠B ,∠APC=∠APD+∠CPD ,∴∠BAP+∠B=∠APD+∠CPD .∵∠B=∠APD ,∴∠BAP=∠CPD .∵∠B=∠C ,∴△ABP ∽△PCD ,拓展:同探究的方法得出,△BDP∽△CPE,∴BD BP CP CE=,∵点P是边BC的中点,∴,∵CE=4,324=,∴BD=9 2,∵∠B=∠C=45°,∴∠A=180°﹣∠B﹣∠C=90°,即AC⊥AB且AC=AB=6,∴AD=AB﹣BD=6﹣92=32,AE=AC﹣CE=6﹣4=2,在Rt△ADE中,52 ==.故答案是:5 2.【点睛】此题是相似综合题.主要考查了相似三角形的判定与性质、勾股定理、三角形内角和定理以及三角形外角定理.解本题的关键是△ABP∽△PCD.。
我郑重承诺:
在考试中奉守诚实原则,自觉约束、规范自己的言行,严格遵守考试纪律.
承诺人____________
期中试卷
苏州立达学校2007~2008学年度
第一学期
初三数学
班级初三( ) 学号___姓名_________成绩__________一、填空(每空2分,共20分)
1.方程(x+1)(x+2)=0的根是________________.
2.已知关于x的方程3x2-9x+k=0的一个根是1,k=_________.
3.两个数的和为5,积为4,请写出一个以这两个数为根的一元二次方程:_________________________.
4.已知(x2+y2-2) (x2+y2)=3,则x2+y2=__________.
5.若关于x的方程mx2-mx+2=0有两个相等的实数根,则m=__________.
6.若函数y=ax2(a≠0)图象过点P(-2,-9),则函数解析式为____________.
7.将抛物线y=2x2-2向右平移3个单位后所得的抛物线顶点坐标为_______.
8.已知二次函数y =ax 2
+bx +c (a ≠0)的顶点坐标(-1,-8
3
)及部分图象(如图所示),由
图象可知关于x 的一元二次方程ax 2+bx +c =0的两个根分别是x 1=1和x 2=__________.
9.抛物线y =ax 2+bx +c 如下图所示,则与它关于x 轴对称的抛物线的解析式是
(第8题) (第9题)
10.在距离地面2米高的某处把一物体以初速度v 0 (米/秒)竖直向上抛出,在不计空气阻
力的情况下,其上升高度s (米)与抛出时间t (秒)满足:s =v 0t -1
2gt 2 (其中g 是常
数,通常取10米/秒2),若v 0=10米/秒,则该物体在运动过程中最高点距离地面___________米.
二、选择题(每题2分,共20分)
11.下列各解析式中,y 是x 的二次函数的是( )
(A) y =1
x
2-x (B) y =(x +1)(x -1)-(x -1)2
(C) y =x 3-1 (D) y =2x 2+x
12.方程x2+6x-5=0的左边配成完全平方后所得方程为( )
(A) (x+3)2=14 (B) (x+3)2=9 (C) (x-3)2=14 (D) (x+6)2=1 2
13.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是( )
(A) 11 (B) 13 (C) 11或13 (D) 11和13
14.已知x1、x2是方程x2-2x-1=0的两个根,下列等式不成立的是( )
(A) x1+x2=2 (B) x1x2=-1 (C) 1
x
1
+
1
x
2
=-2 (D) x12+x22=2
15.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则每次平均降低成本( )
(A) % (B) 9% (C) % (D) 10%
16.二次函数y=-2x2+4x ( )
(A) 当x=0时,y有最大值0 (B) 当x=0时,y有最小值0
(C) 当x=1时,y有最大值2 (D) 当x=1时,y有最小值2
17.下列函数中,当x<0时,y随x的增大而减小的函数是( )
(A) y=4x (B) y=-1
x
(C) y=x2 (D) y=-x2
(A) (B) (C) (D)
19.二次函数y=x
2+bx+c的图象如图所示,则下列结论正确的是 ( )
(A) 顶点坐标(-1,-4) (B) 当x>-1时,y随x的增大而减小
(C) 线段AB的长为3 (D) 当-3<x<1时,y>0
(第19题) (第20题)
20.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x =-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且x3<-1<x1<x2,则y1,y2,y3的大小关系是 ( )
(A) y1<y2<y3 (B) y2<y3<y1 (C) y3<y1<y2 (D) y2<y1<y3
三、解答题(共60分) 21.解方程:
(1) x2+4x-1=0 (5分) (2) 2
3
x2-1
6
x-1
2
=0 (5分)
(3)
1
x+2
+
4 x
x2-4
+
2
2-x
=1 (5分)
22.已知关于x的一元二次方程(k+4)x2+3x+k2+3k-4=0的一个根为0,求k的值 (5分)
23.已知关于x的一元二次方程x2-(m+1)x+1
4
m2+1=0的两根是一个矩形两邻边的长.
(1)m取何值时,方程有两个正.实数根;
(2)当矩形的对角线长为5时,求m的值.(6分)
24.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中小
黑点的个数为y.
解答下列问题:
(1)填表:
(2)当n=8时,y=______________;
(3)根据上表中的数据,把n作为横坐标,把y作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y),其中1≤n≤5;
(4)请你猜一猜上述各点会在某一函数的图象上吗如果在某一函数的图象上,请写出该函数的解析式.(6分)
25.已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点
(1)求这条抛物线的解析式;
(2)写出这条抛物线的开口方向、对称轴和顶点坐标.(6分)
26.如图,一小球从斜坡O点处抛出,球的抛出路线可用二次函数y=4x-1
2
x2的图象表示,
斜坡可以用一次函数y=1
2
x的图象表示.(7
(1)求小球到达最高点的坐标;
(2)若小球的落点是A,求点A的坐标.
A
D
N C B M
27.如图所示,有一块铁皮,拱形边缘呈抛物线状,MN =8m ,抛物线顶点处到MN 的距离是
4m ,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在MN 上,A 、D 落在抛物线上,问截下的矩形的周长能否等于18m 如果能,请求出矩形的边长;如果不能,请说明理由.(7分)
28.已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线
y=-x2+bx+c的图象经过点A(m,0)、B(0,n).(8分)
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标
和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH
分成面积之比为2︰3的两部分,请求出P点的坐标.
_____________________________________________________________________________ 拟 稿:谢 珺 校 对:田冬梅 审 阅:潘 诚 考试时间:120分钟
苏州立达学校2007~2008学年度第 一 学 期期中试卷
初三数学答案 一、填空(每空2分,共20分)
1.x 1=-1,x 2=-2 2.6 3.x 2-5x +4=0 4.3 5.8
6.y =-94
x 2 7.(3,-2) 8.-3 9.y =-x 2+4x -3 10.7 二、选择题(每题2分,共20分)
11.D 12.A 13.B 14.D 15.D 16.C 17.C 18.D 19.A 20.D
三、解答题(共60分)
21.(1) x 1=-2+5,x 2=-2- 5 (5分) (2) x 1=-34
,x 2=1 (5分) (3) x =1 (5分)
22.k =1 (5分) 23.(6分) (1)m ≥32
;(2) m =2. 24.(6分) (1)填表:21;(2)57;(3)略;(4) y =n 2-n +1
25.(6分) (1) y =x 2-2x -3;(2)开口向上,对称轴为直线x =1,顶点坐标(1,-4).
26.(7分) (1) (4,8);(2)A (7,72
). 27.(7分)不能,理由略 28.(8分)(1)1,5m n == 所以A (1,0),B (0,5)抛物线的解析式为245y x x =--+
(2)C (-5,0).D (-2,9).过D 作x 轴的垂线交x 轴于M. 则1279(52)22DMC S ∆=⨯⨯-=12(95)142
MDBO S =⨯⨯+=梯形, 1255522BOC S ∆=⨯⨯=所以,2725141522
BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形. (3)设P 点的坐标为(,0a )BC 所在的直线方程为5y x =+.
PH 与直线BC 的交点坐标为(,5)E a a +,PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.由题意,得 ①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+,解得32
a =-或5a =-(舍去) ②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+,解得23a =-或5a =-(舍去) 故P 点的坐标为3(,0)2-或2(,0)3
-.。