信号与系统概论第二章
- 格式:pdf
- 大小:3.13 MB
- 文档页数:60
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
《信号与系统》课程教学大纲课程代码:110031112课程英文名称:Signals and Systems课程总学时:48 讲课:40 实验:8 上机:0适用专业:探测制导与控制技术大纲编写(修订)时间:2017.10一、大纲使用说明(一)课程的地位及教学目标《信号与系统》是一门重要的学科基础课程,是联系基础理论与专业技术知识的重要专业技术基础课。
本课程是继电路理论基础课之后的深入研究线性非时变电路系统的课程,为探测制导与控制技术专业和信息对抗技术专业的学生提供信号与线性系统的基本概念,以及信号通过线性系统的一系列分析与计算方法,为该专业后续课程的学习建立必要的概念和理论基础。
(二)知识、能力及技能方面的基本要求通过本课程的学习使学生了解信号与系统的基本概念,掌握信号与线性系统在时域和变换域上分析的基本理论和基本方法,理解傅立叶变换、拉普拉斯变换及Z变换的基本内容、性质与应用,特别要建立信号与线性系统的频域分析的概念及系统函数的概念,并对这些理论与方法在工程中的某些应用有初步了解,为进一步学习研究信号处理与信号检测等学科内容打下必要的基础。
(三)实施说明理论性和系统性是《信号与系统》课程的两大特点。
该课程讲授过程中,需要把深奥的数学理论和应用信息技术进行深入融合,系统对比式的讲解将会提高学生对该课程的理解与掌握。
本课程着重讲授信号分析与线性时不变系统分析的基本概念和基本方法,以求系统响应为主要线索,按照先时域后变换域,先连续后离散的顺序进行,力求做到循序渐进。
讲授各种分析方法时,尽量避免枯燥繁琐的数学推导,着重阐明其包含的物理意义,注意多举具体应用的例子,提高学生的学习兴趣,增强学习效果。
(四)对先修课的要求本课程先修课程:高等数学、电路和复变函数与积分变换。
(五)对习题课、实践环节的要求1. 习题是帮助学生理解基本理论,掌握基本分析方法并学习运用理论处理实际问题的一个重要环节。
本课程理论性较强,课程的每一部分内容均安排一定数量的习题课与理论知识相配合。
(1)信号与系统概论知识点参考资料:《信号与系统(第⼆版)》杨晓⾮何丰信号的描述施加于系统的信号叫做输⼊信号或者激励,系统产⽣的信号叫做系统的输出信号或者响应。
信号的时间特性:信号可以描绘成随时间变化的波形图,信号在某⼀时刻的⼤⼩,信号持续时间的长短,信号变化的快慢等都可以在波形图上反应出来的特性。
信号的频率特性:信号在⼀定条件下可以分解成不同频率的正弦分量之和,正弦分量的振幅和初相位,频率之间的关系反映出来的特性。
信号的分类确定信号:信号可以写出⼀个确定的时间函数表达式,对于每⼀时刻t都有确定的函数值与其对应。
随机信号:信号不能写出确定时间的函数表达式,只能⽤概率统计的⽅法来描述,只能预测某⼀个时刻为⼀个值的概率,但是该时刻的具体数值是未知的。
连续时间信号(简称连续信号):除了有限的间断点之外,如果⼀个信号在任意时刻均有定义值,那么该信号称为连续信号。
时间⾃变量t必须是连续变化的,函数值可允许个别时刻跳变,如果信号的时间⾃变量和函数值均是连续变化的,则称为模拟信号。
离散信号:只在⼀系列离散的瞬间有确切定义⽽在其他时刻⽆定义的信号叫做离散时间信号,离散信号可以对连续信号以等间隔时间T进⾏取样得到,其⾃变量是离散时间KT,⽽不是连续时间t。
取样信号:时间离散⽽函数取值连续的信号。
如何理解这⾥的时间离散但函数取值连续呢??通过对连续信号进⾏等间隔时间取样,可以知道所谓的时间离散指的是时间单位是可以量化的,也就是等间隔的,离散的。
函数取值并不是等间隔的,幅值可能有⽆限多个值,因此不是离散的,⽽是连续的。
如果我们现在对函数值以0,1,2,3,4,5,6...进⾏量化,量化后的值取决于函数值与0,1,2,3,4,5,6...的接近程度,那么量化之后,所有的函数值都变成离散的了,当⼀个取样信号时间和函数取值均为离散的时候,这样的信号称为数字信号。
周期信号:按照⼀定的时间周期T周⽽复始地重复出现并且时间域是⽆始⽆终的信号。
信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f j i dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
海南大学硕士研究生入学考试《838 –信号与系统》考试大纲一、考试性质海南大学硕士研究生入学考试初试科目。
二、考试时间180分钟。
三、考试方式与分值闭卷、笔试。
满分150分。
四、考试内容第一章概论第一节信号的定义及其分类;第二节信号的运算;第三节系统的定义与分类;第四节线性时不变系统的定义及特征。
第二章连续时间系统的时域分析第一节微分方程的建立与求解;第二节零输入响应与零状态响应的定义和求解;第三节冲激响应与阶跃响应;第四节卷积的定义,性质,计算等。
第三章傅里叶变换第一节周期信号的傅里叶级数和典型周期信号频谱;第二节傅里叶变换及典型非周期信号的频谱密度函数;第三节傅里叶变换的性质与运算;第四节周期信号的傅里叶变换;第五节抽样定理;抽样信号的傅里叶变换;第六节能量信号,功率信号,相关等基本概念;以及能量谱,功率谱,维纳-欣钦公式。
第四章拉普拉斯变换第一节拉普拉斯变换及逆变换;第二节拉普拉斯变换的性质与运算;第三节线性系统拉普拉斯变换求解;第四节系统函数与冲激响应;第五节周期信号与抽样信号的拉普拉斯变换;第五章 S域分析、极点与零点第一节系统零、极点分布与其时域特征的关系;第二节自由响应与强迫响应,暂态响应与稳态响应和零、极点的关系;第三节系统零、极点分布与系统的频率响应;第四节系统稳定性的定义与判断。
第六章连续时间系统的傅里叶分析第一节周期、非周期信号激励下的系统响应;第二节无失真传输;第三节理想低通滤波器;第四节佩利-维纳准则;第五节希尔伯特变换;第六节调制与解调。
第七章离散时间系统的时域分析第一节离散时间信号的分类与运算;第二节离散时间系统的数学模型及求解;第三节单位样值响应;第四节离散卷积和的定义,性质与运算等。
第八章离散时间信号与系统的Z变换分析第一节 Z变换的定义与收敛域;第二节典型序列的Z变换;逆Z变换;第三节 Z变换的性质;第四节 Z变换与拉普拉斯变换的关系;第五节差分方程的Z变换求解;第六节离散系统的系统函数;第七节离散系统的频率响应;第八节数字滤波器的基本原理与构成。