35kv输电线路继电保护设计
- 格式:doc
- 大小:618.50 KB
- 文档页数:20
35kV变电站继电保护技术探讨35kV变电站属于基层供电的主要设施,其安全运行对于人们的生产生活影响意义重大,一直以来也引起了较多人群的关注。
作为变电站中重要的组成模块继电保护设施,对于变电站整体的安全运行影响意义深远。
针对35kV变电站中存在的继电保护技术,以及整体的运行状态,文章进行了简要的分析。
标签:35kV变电站;继电保护;技术探讨日常生活中人们所应用的家用电器,通常情况下额定电压都为220V或者380V。
35kV变电站的输出电压正为220V和380V,作为需求量巨大的220V电压和380V电压,其安全性和稳定性也引起了较多人群的注意。
35kV变电站中继电保护问题,随之突显了出来。
作者针对35kV变电站继电保护技术,进行简要的分析研究,以期能为我国35kV变电站继电保护技术的应用提供参考。
1 35kV变电站变电站即为改变电压的场所,发电厂发出电力经过输电线路进行传输,为了把将电力输送到距离较远的地区。
工作人员会在发电厂输出电力时,将电力整体电压升高变为高压电。
随后通过电网进行输送工作,电网输送进入变电站。
变电站将高压电电压降低,再经过电网输送到用户端。
其中按照规模大小和电压等级区分,电压在110kV以上的称之为变电站,110kV以下的则称之为变电所,两种类型的变电站主要的工作为电力的升压或降压[1]。
35kV变电站为低压变电所,主要输出的电压为220V和380V。
主要应用于居民用电和小型工厂用电,普遍存在于居住区和小型工厂等地。
35kV变电站在运行的过程中,人们将所有运行的设备大体上分为两类设备。
分别为一次设备和二次设备。
其中涉及到的一次设备有:变压器、隔离开关、断路器、电流互感器、接地开关、电压互感器、母线、避雷器、电容器等电器设备。
二次设备主要是保护、计量、遥控、测量、遥视、五防等方面组成。
2 继电保护电力设备在运行的过程中,系统故障问题经常出现。
为了保障整体设备的安全运行,以及设备损毁方面的顾虑。
1 前言在如今随着科学的发展,电力系统的能否安全稳定运行,会直接影响国民经济和社会发展。
电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。
继电保护(包括安全自动装置)是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。
许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。
因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。
为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的整定值,以保持各保护之间的相互配合关系。
做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。
继电保护装置的基本任务是:自动,迅速,有选择性将系统中故障部分切除,使故障元件损坏程度尽量可能降低,并保证该系统无故障部分迅速恢复正常运行。
反映电器元件的不正常运行状态,并根据运行维护的具体条件和设备的承受能力,发出信号,减负荷或者延时跳闸。
2继电保护的介绍2.1继电保护结构原理继电保护主要利用电力系统中元件发生短路或异常情况时的电气量,电流、电压、功率、频率等的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。
大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分和定值调整部分、逻辑部分、执行部分。
继电保护原理结构方框图如下:图2.1继电保护原理结构方框图2.2继电保护的基本组成测量比较部分:测量所要保护的电气元件上的电气参数并与标准值比较。
逻辑判断部分:由以上比较结果判断系统是在正常运行状态,还是发生故障或是在不正常运行状态。
执行部分:根据判断出的运行状态去动作或不动作。
2.3继电保护的基本要求在技术上必须满足选择性、速动性、灵敏性、可靠性四个基本要求。
35KV变电站继电保护方案摘要:继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行;当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。
可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。
关键词:35KV变电站;继电保护;短路电流;电路配置1 引言继电保护及自动化是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。
因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。
基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。
2 继电保护相关知识2.1 继电保护的概述研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。
因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。
当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。
2.2 继电保护基本原理继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。
因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。
依据反映的物理量的不同,保护装置可以构成下述各种原理的保护。
2.3 对继电保护装置的要求继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。
35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。
然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。
为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。
本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。
首先,我们需要了解什么是继电保护。
继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。
一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。
在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。
2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。
3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。
4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。
在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。
这些方法各自有其特点和适用场景。
1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。
当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。
当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。
当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。
当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
摘要电力系统的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。
但是一旦发生故障如不能及时有效控制,就会破坏稳定运行,造成大面积停电,给社会带来灾难性的严重后果。
随着电力系统的迅速发展,大量机组、超高压输变电的投入运行,对继电保护不断提出新的更高要求。
继电保护是电力系统的重要组成部分,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段。
因此,加强线路继电保护非常重要。
根据线路继电保护的要求,给35KV的输电线路设计合适的继电保护。
本次课程设计首先介绍了继电保护的作用和发展,然后详细介绍了35KV线路主保护及后备保护的选择与整定,35KV线路三相一次重合闸及防雷保护,最后介绍35KV系统的微机保护。
关键词:继电保护;主保护;整定;微机保护目录1 继电保护的作用和发展 (1)1.1 继电保护的作用 (1)1.1.1 继电保护在电力系统中的作用 (1)1.1.2 继电保护的基本原理和基本要求 (1)1.2 继电保护的发展 (2)2 35KV线路主保护选择与整定 (4)2.1 电流、电压保护整定计算考虑原则 (4)2.1.1 电流、电压保护的构成原理及使用范围 (4)2.2 电流闭锁电压保护 (5)3 35KV线路后备保护选择与整定 (12)4 35KV线路三相一次重合闸 (17)5 线路及变压器防雷保护 (18)6 微机保护 (19)6.1 微机保护的软硬件组成 (19)6.1.1微机保护的特点 (19)6.1.2微机保护装置硬件结构 (19)6.1.3微机保护的软件组成 (20)6.2 微机保护的算法 (21)6.3 35KV系统微机保护配置 (22)总结 (24)致谢 (25)参考文献 (26)1继电保护的作用和发展1.1 继电保护的作用1.1.1 继电保护在电力系统中的作用电力系统在生产过程中,有可能发生各类故障和各种不正常情况。
其中故障一般可分为两类:横向不对称故障和纵向不对称故障。
35Kv输电线路的继电保护设计
35kV输电线路的继电保护设计需要考虑以下几个方面:
1. 选择合适的继电保护装置:根据35kV输电线路的特点和要求,
选择适合的继电保护装置,例如差动保护装置、过电流保护装置、
跳闸保护装置等。
2. 确定保护区域:根据线路的拓扑结构和电气参数,确定继电保护
的保护区域,即需要保护的线路段和设备。
3. 设置保护动作条件:根据线路的额定电流、短路容量和故障类型,设置继电保护的动作条件,例如过电流保护的动作电流、时间等。
4. 确定保护动作时间:根据线路的长度和传输速度,计算继电保护
的动作时间,以确保故障发生时能够及时切除故障区域。
5. 设置保护动作逻辑:根据线路的拓扑结构和故障类型,确定继电
保护的动作逻辑,即保护装置的动作顺序和动作方式。
6. 考虑通信和互锁功能:根据线路的通信需求和操作要求,设计继
电保护的通信和互锁功能,以实现线路的自动化控制和远程监控。
7. 进行保护设备的参数设置和校验:根据线路的实际运行情况,设
置继电保护装置的参数,并进行校验和测试,以确保保护装置的可
靠性和准确性。
8. 编制继电保护接线图和操作手册:根据继电保护设计的结果,编
制继电保护接线图和操作手册,以供操作人员参考和使用。
需要注意的是,35kV输电线路的继电保护设计需要根据具体的工程
要求和标准进行,以上仅为一般性的设计步骤,具体设计还需根据
实际情况进行细化和调整。
35KV降压变电所继电保护设计35KV降压变电所继电保护设计引言降压变电所是输电线路与配电线路之间的重要组成部分,起到将高电压输电线路的电压降低至适合配电网的电压水平的作用。
为了确保降压变电所的运行安全和稳定,继电保护系统在其中起着至关重要的作用。
本文将针对35KV降压变电所继电保护设计进行详细探讨。
一、继电保护的基本原理继电保护是一种用来保护电力系统设备免受电流过大、电压过高、频率不稳定等异常情况造成的损坏的系统。
其基本原理是通过在电网中布置感应元件(如电流互感器、电压互感器等)检测电流、电压等参数,并根据这些参数的变化来触发保护装置,切断故障电路,保护变电设备的安全运行。
二、降压变电所继电保护设计的要求1. 保护性能要求高。
由于降压变电所处于电力系统的输电与配电之间的过渡区域,其部分电流和电压参数高于配电线路,因此继电保护系统需要具备较高的抗干扰能力,能够准确快速地识别和保护故障。
2. 系统可靠性要求高。
降压变电所所处地域一般是电力负荷比较密集的地区,电网运行的可靠性要求较高。
因此,继电保护系统需要具备较高的可靠性,能够正常运行并及时发现、切除故障。
3. 考虑灵活性和扩展性。
降压变电所的规模和负荷有可能随着用电需求的变化而增加,因此继电保护系统需要具备一定的灵活性和扩展性,以便满足未来的需求。
三、继电保护的主要功能在35KV降压变电所的继电保护设计中,主要应包含以下功能:1. 电缆故障保护电缆故障保护是降压变电所继电保护系统中最重要的功能之一。
通过设置不同的保护区域,可以实现对电缆线路中的短路、接地故障的保护。
2. 变压器保护降压变电所主要功能是将高压输电线路的电压降低到适合配电的电压,因此变压器是降压变电所的核心设备。
继电保护系统需要对变压器进行过电流、过温度、过电压等故障的保护。
3. 线路保护降压变电所连接着输电线路和配电线路,因此对输电线路和配电线路进行继电保护是非常重要的。
主要包括对线路的过流、短路、接地等故障进行保护。
35KV变电所继电保护分析【摘要】在变电所中,继电保护有着非常重要的作用。
当电力系统发生故障时,继电保护可以在最快的时间内消除异常情况,进而保证人身安全以及设备的正常运行。
基于此,本文就以东台宏仁35KV变电所继电保护作为研究对象,对其进行研究。
关键词:35KV;变电所;继电保护继电保护是变电站设备安全正常运行的重要保障。
作为继电保护装置能反应电气设备的故障和不正常工作状态并自动迅速地、有选择性地动作于断路器将故障设备从系统中切除,保证无故障设备继续正常运行,将事故限制在最小范围,从而提高系统运行的可靠性,最大限度地保证向用户安全、连续供电。
东台宏仁35KV变电所一期为4300高纯度氮气项目供电,二期为4000液氧项目供电,4300项目为4000的备用设备。
基于此,本文就以东台宏仁35KV变电所继电保护作为研究的对象,对其进行研究。
一、设备概况东台宏仁变电所设两台35KV/10.5KV主变,1#主变为2000KV A,带1台10KV高压电机(960KW),一台10KV/0.4KV变压器(5#变),容量为630KV A。
2#主变为8000KV A,8000KV A变压器考虑有载调压SZ11M型,2000KV A为S11M 型。
二、继电保护配置(1)10kV线路保护为微机保护采用三段式电流保护,并设三相一次重合闸、及小电流接地选线。
(2)10kV联络线保护为微机保护采用光纤纵差与三段式方向电流保护,并设小电流接地选线。
(3)10kV母线停、送电时,需要在被停、送电母线上各保留一条出线,以防止出现谐振过电压;10kV母线不设专用母线保护,利用主变压器10 kV侧限时电流速断和过电流保护代替母线保护;用主变101开关向10kV母线充电时,主变相关保护应投入,时间定值根据调度指令进行临时更改。
三、主变压器保护(1)保护直接采样、跳闸,保护装置的光口数量应该符合直采直跳技术要求,保护与合并单元之间的通信采用9-2规约,采用GOOSE规约与智能终端进行通信。
35kv输电线路继电保护设计一、继电保护系统介绍继电保护系统是电力系统中必不可少的一种保护方式,其主要作用是对电力设备的异常电气状态进行检测,并对检测结果进行处理,判断是否需要执行保护操作。
继电保护系统包括主保护、备用保护和辅助保护三个部分,其中主保护是最重要的一部分,主要负责检测系统中出现的故障,在故障出现时能够及时地切断故障电路,以保证系统的安全可靠运行。
二、35kv输电线路特点35kv输电线路是电力系统中的一种电力输送方式,其主要特点包括输送距离较长、输电线路具有较高的电压和电流等。
35kv输电线路的保护设计需要考虑到以下几个方面的因素:•信号传输时间:由于35kv输电线路的长度较长,信号传输时间需要考虑,不能超过电路本身的保护时间。
•保护等级:35kv输电线路属于中压线路,保护等级要求较高,能够检测到多种故障类型并对其进行快速处理。
•大电流防护:由于35kv输电线路的电流比较大,保护设计的时候需要考虑到电流对继电保护元件的影响。
•兼容性:35kv输电线路需要兼容各类继电保护装置,以便于之后的维护操作。
三、35kv输电线路继电保护设计要点35kv输电线路的继电保护设计需要依据上述特点,具体要点包括:3.1 继电保护装置选型在设计35kv输电线路的继电保护装置时,需要考虑信号传输时间、保护等级和兼容性等方面因素。
选用符合要求的保护装置,以保证保护的准确性、灵敏度和可靠性。
3.2 装置接线方式装置的接线方式是保护系统中的重要环节,需要考虑到电流对继电保护元件的影响,以保证继电保护装置能够准确地检测异常的电气状态。
3.3 保护投入时间35kv输电线路的长度比较长,保护投入的时间需要考虑信号传输的时间、距离等因素,保护投入时间一般要小于电路保护时间。
3.4 设备故障检测35kv输电线路的保护设计需要考虑到多种故障类型的检测,包括短路、接地、相间故障等,继电保护装置能够快速准确地判读故障类型,并采取相应措施进行处理。
XXXXXXXXXXXXXXXXXXXX学院《35KV线路继电保护》课程设计姓名:系别:专业:班级:学号:指导老师:起止时间XXXX年X月XX日至XXXX年X月X摘要本次继电保护设计是35KV线路继电保护的配置及整定计算设计.本文首先介绍了此次设计要点,根据给定35KV线路网络的接线图及参数,进行短路电流进行整定计算,制定出反应其输电线路上相间短路、接地短路故障的继电保护配置方案。
通过对所配置的继电保护进行整定计算和校验,论证继电保护配置的正确性,并对部分输电线路继电保护回路进行了设计。
【关键词】短路电流整定计算输电线路继电保护目录摘要1第一章概述1.1 课程设计的目的1 1.2 课程设计的要求1 1。
3 课程设计的内容1 1。
4 设计步骤2第二章短路电流和电流保护的整定的计算2.1 设计的基本资料 3 2.2 短路电流的计算4 2.2。
1 电线路的阻抗计算4 2。
2.2AB三段式电流保护的整定值计算及灵敏度的校验5 2.2.3AD段三段式保护整定计算及灵敏度的校验6 2.3 三段式电流保护的交直流的展开图8 2。
4 单向接地故障零序电压保护9第三章继电器和互感器的选择3.1 继电器设备选择10 3。
2 互感器的变比10总结11参考文献12第一章概述1.1课程设计的目的:通过设计,是学生掌握和应用电力系统继电保护的设计、整定计算、资料整理查询和电气绘图等使用方法。
在此过程中培养学生对各门专业课程整体观念综合能力,通过较为完整的工程实践基本训练,为全面提高学生的综合素质及增强工作适应能力打下一定的基础.1.2课程设计的的要求:设计说明书在撰写时,文句要力求精炼简明,深入浅出,通顺易读。
计算过程的撰写要求:计算方法正确、参数取值合理,严格执行国家和行业现行的技术规范和标准;数据真实、可靠,公式选用合适,计算结果正确、可信,书写规范、工整。
对于图纸,要求按工程图标准绘制,图面要求排列整齐、布置合理、清洁美观。
35 kV 输电线路继电保护系统设计摘要:在现在的电网中,输电线路显得尤其重要,输电线路和电网系统的安全有着紧密的联系,一个出问题,另一个也就会出故障。
所以,如何快速而有准确的去解决问题,这便给输电线路的保护提了很高的一个要求。
本文35kV输电线路继电保护系统的设计主要是利用距离保护原理,还得加上微机保护装置,在许多的高压电网中设计的一套保护系统。
距离保护可以很好的对所设计的输电线路进行保护,它可以看出来线路中是不是有故障,或者说是可以鉴定它有没有在保护区之内,然后来观察动作的大小,距离保护克服了很大的影响,因为电流和电压保护的缺点由系统运行模式去决定,还有很好的保护性能。
关键词:继电保护;继电保护;距离一、绪论由于在露天环境下,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些故障。
在过去的很多时间里,因为要杜绝这类不安全事故(短路故障)的发生,但同时还得保证输电线路得保持运行状态,那么就有必要对线路进行检测,保护和修缮。
在高压输电线路保护的现实运用中,常常会发生故障,这就影响了继电保护装置的积极功能,在工作过程中,可能运行的设备就会特别多,保障电气设备的安全运行才可以提高输配电的服务质量水平。
对于35kV输电线路的运行而言,加强继电保护的应用是重中之重,而当高电压电力系统出现故障时,如果有继电保护的话,就会对它发出报警信号,从这一点就看出来了电气系统继电保护的必要性[1]。
二、输电线路故障分析与保护配置在外边的环境里,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些突发性的意外。
(一)、引起故障的原因1. 雷击故障当输电线路正常工作的时候,突然来一声爆雷,很有可能会发生故障,而它可以分为好几种类型,导线和金属可能会对横担构件放电,而且第一片绝缘子也可能会对导线放电,复合绝缘子之间会相互放电等等很多类型,而且雷击状况的出现会让低零值绝缘子钢帽发生爆裂,可能会导致发生断电[2]。
双侧电源35KV输电线路继电保护的配置及整定计算1. 引言本文档旨在介绍双侧电源35KV输电线路继电保护的配置和整定计算。
我们将讨论继电保护的意义和功能,并提供配置和整定计算的步骤和考虑因素。
2. 继电保护的意义和功能继电保护在电力系统中起着重要的作用,它能够及时发现系统中的故障和异常情况,并采取相应的保护措施,以确保系统的稳定运行和设备的安全。
双侧电源35KV输电线路继电保护的主要功能包括:- 过载保护:监测线路负荷情况,防止线路过载导致设备损坏或系统崩溃。
- 短路保护:监测线路短路故障,并迅速切除故障区域,以防止电弧扩散和设备受损。
- 接地保护:检测线路接地故障,并及时采取措施,以避免电气安全事故的发生。
3. 配置步骤和考虑因素双侧电源35KV输电线路继电保护的配置和整定计算需要遵循以下步骤:3.1 确定保护设备类型根据线路的特点和需求,选择适合的保护设备类型,常用的包括距离保护、差动保护和方向保护等。
需要考虑线路长度、故障类型和容许功率损失等因素。
3.2 建立保护模型通过采集线路参数和拓扑信息,建立双侧电源35KV输电线路的保护模型。
这将为后续的配置和整定计算提供基础。
3.3 配置保护参数根据保护设备的特性和线路的需求,配置保护参数,如整流器系数、跳闸时间延迟和灵敏度等。
确保保护设备能够准确地检测和切除故障区域。
3.4 整定计算根据线路的负荷和故障情景,进行保护参数的整定计算。
这包括定时参数、灵敏度参数和标定参数等的确定,以保证保护设备的准确度和可靠性。
4. 结论通过本文档的介绍,我们了解了双侧电源35KV输电线路继电保护的配置和整定计算的步骤和考虑因素。
正确配置和整定继电保护参数,能够提高电力系统的安全性和可靠性,并及时响应故障情况,减少系统停电时间和设备损坏。
35kV输电线路继电保护设计35kV输电线路的继电保护设计是为了保护输电线路的安全运行,防止发生故障和事故,并及时准确地切除故障区段,保障电网的稳定运行。
以下是35kV输电线路继电保护设计的详细内容:1. 故障类型判断:根据输电线路的特点和工作条件,确定需要检测和判断的故障类型,包括短路故障、接地故障、过电压故障等。
2. 故障检测:通过安装合适的故障检测装置,如电流互感器、电压互感器等,实时监测线路的电流和电压,并将检测结果传输给继电保护装置。
3. 故障定位:根据故障检测结果,继电保护装置可以通过测量电流和电压的相位差等方法,准确地确定故障发生的位置,以便进行及时的切除。
4. 故障切除:一旦发生故障,继电保护装置会根据预设的保护动作条件,及时切除故障区段的电源,防止故障扩大,并通知操作人员进行处理。
5. 通信功能:继电保护装置通常具备通信功能,可以与其他继电保护装置、监控系统等进行联动,实现信息的传输和共享,提高故障处理的效率和准确性。
6. 数据记录和分析:继电保护装置可以记录和存储线路的运行数据,包括电流、电压、故障记录等,以便进行事后分析和故障诊断,为线路的运行和维护提供参考。
7. 人机界面:继电保护装置通常具备人机界面,可以显示线路的运行状态、故障信息等,方便操作人员进行监控和操作。
8. 可靠性设计:继电保护装置需要具备高可靠性,能够在恶劣的环境条件下正常工作,并具备自检、自校准等功能,保证其正常运行和准确性。
9. 保护策略选择:根据线路的特点和运行要求,选择合适的保护策略,包括差动保护、距离保护、过电流保护、接地保护等,以提供全面的保护。
10. 标准和规范:继电保护设计需要遵循相关的标准和规范,如国家电网公司的技术规范、国家电力公司的规程等,以确保设计的合理性和可行性。
以上是35kV输电线路继电保护设计的详细内容,设计过程中需要综合考虑线路的特点、工作条件、保护要求等因素,确保设计的可靠性和适用性。
35KV输电线路继电保护设计作者:鄢凯指导教师:陕春玲教学单位:三峡大学葛洲坝集团电力有限责任公司摘要:35KV输电线路继电保护主要是阶段式电流保护,即第Ⅰ段为电流速断保护,第Ⅱ段为限时电流速断保护,第Ⅲ段为过电流保护。
它以第Ⅰ段和第Ⅱ段作为主保护,以第Ⅲ段作为辅助保护。
当第Ⅰ、Ⅱ段灵敏系数不够时,可采用电流、电压联锁速段保护。
第Ⅰ段保护动作时间短,速动性好,但其动作电流较大,不能保护线路全长,保护范围最小;第Ⅱ段保护有较短的动作时限,而且能保护线路全长,却不能作为相邻元件的后备保护;第Ⅲ段保护的动作电流较前两段小,保护范围大,既能保护本线路的全长又能作为相邻线路的后备保护,灵敏性最好,但其动作时限较长,速动性差。
使用Ⅰ段、Ⅱ段、Ⅲ段组成的阶段式电流保护的主要优点是简单、可靠,并且在一般情况下能够满足快速切除故障的要求。
阶段式电流保护,在灵敏系数能满足要求时,用于35KV中性点非直接接地电网的线路上,作为相间短路的保护。
在35KV线路继电保护的设计中,还用到了单相接地保护,一般采用无选择性的绝缘监视信号装置。
关键词:35KV线路阶段式电流保护单相接地保护整定计算原理接线图评价及应用前言电力系统继电保护技术,是随电力系统的发展而发展起来的一门专业技术。
电力系统的发展,使发电设备容量和供电范围不断扩大,电压等级不断提高,电力系统的网络也越来越复杂。
这对于保证电力系统安全、可靠、稳定运动必不可少的继电保护技术,便提出了越来越高的要求,从而也就有了电力系统继电保护原理和装置从简单到复杂的发展过程。
再次我们所介绍的继电保护原理及装置主要用于35KV输电线路中。
35KV电力系统属中性点非直接接地系统,其中性点或经消弧线圈接地或不接地;对于相间短路和单相接地,由于接地电流小,三相电压仍能保持平衡,对用户没有很大的影响。
因此,单相接地保护一般动作于信号,但单相接地对人身和设备的安全产生危害时,就应动作于断路器跳闸,故均应装设相应的继电保护装置,一般由具有阶梯时限特性的多段式保护构成。
毕业设计(论文)题目35KV输电线路继电保护设计学生姓名张向辉学号20093096 51专业发电厂及电力系统班级20093096指导教师陕春玲评阅教师完成日期二零一一年十一月十一日目录摘要………………………………………………………………………………前言………………………………………………………………………………1.继电保护概论…………………………………………………………………1.1继电保护的作用……………………………………………………………1.2电保护的基本原理和保护装置的组成……………………………………1.3对电力系统继电保护的基本要求…………………………………………1.4 继电保护技术的发展简史…………………………………………………2.35KV线路故障分析…………………………………………………………2.1常见故障原因分析…………………………………………………………2.2 35KV线路继电保护的配置……………………………………………4.电网相间短路的电流保护……………………………………………………4.1瞬时电流速断保护……………………………………………………………………4.2限时电流速断电流保护………………………………………………………4.3定时限过电流保护……………………………………………………………4.4电流三段保护小结……………………………………………………………5.输电线路三段式电流保护的构成及动作过程……………………………5.1零序电流保护…………………………………………………………………6.中性点非直接接地电网中的接地保护……………………………………6.1、中性点不接地系统单相接地时的电流和电压6.2中性点不接地电网的保护……………………………………………………6.3绝缘监视装置…………………………………………………………………6.4零序电流保护………………………………………………………………6.5零序功率方向保护……………………………………………………………7.电流三段保护小结结论………………………………………………………………………………致谢………………………………………………………………………………参考文献……………………………………………………………………………35KV线路继电保护设计1.2继电保护的基本原理和保护装置的组成1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理)运行参数:I、U、Z∠φ反应 I↑→过电流保护反应 U↓→低电压保护反应 Z↓→低阻抗保护(距离保护)1.2.2 反应电气元件内部故障与外部故障(及正常运行)时两端所测电流相位和功率方向的差别而构成的原理(双端测量原理,也称差动式原理)以A-B线路为例:规定电流正方向:电流从母线流向线路规定电压正方向:母线指向线路利用以上差别,可构成差动原理保护。
如:纵联差动保护;方向高频保护;相差高频保护等。
1.2.3保护装置的组成部分┌──┐┌──┐┌──┐输入─→│测量│─→│逻辑│─→│执行│─→输出信号└──┘└──┘└──┘信号↑└整定值1.3对电力系统继电保护的基本要求1.3.1选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
d3点短路:6动作:有选择性; 5动作:无选择性如果6拒动,5再动作:有选择性(5作为6的远后备保护)d1点短路:1、2动作:有选择性; 3、4动作:无选择性后备保护(本元件主保护拒动时):(1)由前一级保护作为后备叫远后备.(2)由本元件的另一套保护作为后备叫近后备.1.3.2速动性继电保护的速动性是指继电保护装置应以尽可能快的速度切除故障设备。
故障后,为防止并列运行的系统失步,减少用户在电压降低情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。
(快速保护:几个工频周期,微机保护:30ms以下)故障切除总时间等于保护装置和断路器动作时间之和。
一般快速保护的动作时间为0.06-0.12s,最快的可达0.02-0.04s;一般断路器动作时间为0.06-0.15s,最快的有0.02-0.06s。
目前常用的无时限整套保护的动作时间表带方向或不带方向的电流电压速断保护装置0.06-0.1s各型距离保护装置0.1-1.25s高频保护装置0.04-0.15s线路横差或纵差保护装置0.06-0.1s元件纵差保护装置0.06-0.1s1.3.3灵敏性继电保护的灵敏性是指保护装置对于其应保护的范围内发生故障的反应能力。
(保护不该动作情况与应该动作情况所测电气量相差越大→灵敏度↑)。
一般用灵敏系数Klm来衡量灵敏度。
1.3.4可靠性继电保护的可靠性是指保护装置在电力系统正常运行时不误动;再规定的保护范围内发生故障时,应可靠动作;而在不属于该保护动作的其他任何情况下,应可靠的不动作。
(主保护对动作快速性要求相对较高;后备保护对灵敏性要求相对较高。
)3、35KV线路继电保护的配置相间短路保护采用两相两继电流保护,它是一种阶段式电流保护。
以第Ⅰ段、第Ⅱ段电流速断保护作为主保护,以第Ⅲ段过电流保护作为后备保护。
2、单相接地故障的保护方式之一:4.电网相间短路的电流保护在电网中35kv及以下的较低电压的网络中主要采用三段式电流保护,最主要的优点就是简单、可靠,并且在一般情况下也能够满足快速切除故障的要求。
三段式过流保护包括:1、瞬时电流速断保护(简称电流速断保护或电流ⅰ段)2、限时电流速断保护(电流ⅱ段)3、过电流保护(电流ⅲ段)。
电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护,它们的不同是保护范围不同。
三段的区别主要在于起动电流的选择原则不同。
其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。
1、瞬时电流速断保护:保护范围小于被保护线路的全长一般设定为被保护线路的全长的85%2、限时电流速断保护:保护范围是被保护线路的全长或下一回线路的15%3、过电流保护:保护范围为被保护线路的全长至下一回线路的全长4.1瞬时电流速断保护输电线路发生短路时,电流突然增大,电压降低。
利用电流突然增大使保护动作而构成的保护装置,称为电流保护。
通常输电线路电流保护采用阶段式电流保护,采用三套电流保护共同构成三段式电流保护。
可以根据具体的情况,只采用速断加过流保护或限时速断加过流保护,也可以三段同时采用。
4.1.1 瞬时电流速断保护的工作原理瞬时电流速断保护又称Ⅰ段电流保护,它是反应电流增大而能瞬时动作切除故障的电流保护。
图形符号:I>当系统电源电势一定,线路上任一点发生短路故障时,短路电流的大小与短路点至电源之间的电抗(忽略电阻)及短路类型有关,三相短路和两相短路时,流过保护安装地点的短路电流可用下式表示2-12-2式中——系统等电源相电势;——系统等效电源到保护安装处之间的电抗;——线路千米长度的正序电抗;——短路点至保护安装处距离。
由式(2.1-1)、式(2.1-2)可见,当系统运行方式一定时,和是常数,流过保护安装处的短路电流,是短路点至保护安装处距离的函数。
短路点距离电源越远(越大),短路电流值越小。
4.1.2原理接线图2.1——1 瞬时电流速断保护原理接线图瞬时电流速断保护单相原理接线,如图(2.1—1)所示,它是由电流继电器KA(测量元件)、中间继电器KM、信号继电器KS组成。
正常运行时,流过线路的电流是负荷电流,其值小于其动作电流,保护不动作。
当在被保护线路的速断保护范围内发生短路故障时,短路电流大于保护的动作值,KA常开触电闭合,启动中间继电器KM,KM触电闭合,启动信号继电器KS,并通过断路器的常开辅助触电,接到跳闸线圈YT构成通路,断路器跳闸切除故障线路。
因电流继电器的触电容量比较小,若直接接通跳闸回路,会被破坏,而KM的触点容量较大,可直接接通跳闸回路。
另外,考虑当线路上装有管型避雷器时,当雷击线路使避雷器放电时,而避雷器放电的时间约为0.01s,相当于线路发生顺势短路,避雷器放电完毕,线路即恢复正常工作。
在这个过程中,瞬时电流速断保护不应误动作,因此可利用带延时0.06~0.08s中间继电器来增大保护装置固有动作时间,以防止管型避雷器放电引起瞬时电流速断保护的误动作。
信号继电器继电器KS的作用以指示保护动作,以便运行人员处理和分析故障。
4.1.3瞬时电流速断保护的整定计算在继电保护装置的整定计算中,一般考虑两种极端的运行方式,即最大运行方式和最小运行方式。
流过保护安装处的短路电流最大时的运行方式称为系统最大运行方式,此时系统阻抗为最小;反之,当流过保护安装处的短路电流最小的运行方式称为系统最小运行方式,此时系统阻抗为最大。
图2.2—1中曲线表示最大运行方式下三相短路电流随的变化曲线,曲线表示最小运行方式下两相短路电流随的变化曲线。
设保护1、2分别为线路曲线和的瞬时电流速断保护。
在线路AB瞬时电流速断保护区内发生故障时,保护1应瞬时动作;在线路BC瞬时保护的保护区内发生故障时,保护2应瞬时动作。
K2为保证选择性,对保护1而言,本线路末端短路时应瞬时动作切除故障;在相邻线路首端点短路时,不应动作,而应由保护2动作跳开断路器切除故障但由于被保护线路末端短路与相邻线路出口处短路的短路电流几乎相等,保护1无法区别被保护线路末端短路故障和点的短路故障。
因此,瞬时电流速断保护1的动作电流应按大于本线路末端短路时流过保护安装处的最大短路电流来整定,即(2—3)式中—保护1无时限电流速断保护的动作电流,又称一次动作电流;—可靠系数,考虑到继电器的整定误差、短路电流计算误差和非周期分量的影响等而引入的大于1的系数,一般取1.2~1.3。
—被保护线路末端末端B母线上三相短路时保护安装测量到的最大短路电流,一般取次暂态短路电流周期分量的有效值。
瞬时电流速断保护按式(2.2—1)确定整定值时,保证了在相邻线路上发生短路故障保护1不会误动作。
当然这样选择保护动作电流之后,瞬时电流速断保护必然不能保护线路全长。
同时从图(2.2—1)还可以看出,瞬时电流速断保护范围随系统运行方式和短路类型而变。
在最大运行方式下三相短路时,保护范围最大为;在最小运行方式下两相短路时,保护范围最小为。
对于短线路,由于线路首末端短路时,短路电流数值相差不大,在最小运行方式下保护范围可能为零。
瞬时电流速断保护的选择性是依靠保护整定值保证的瞬时电流速断保护的灵敏系数,是用其最小保护范围来衡量的,规程规定,最小保护范围不应小于线路全长的。