微积分9_7斯托克斯公式
- 格式:ppt
- 大小:1.88 MB
- 文档页数:27
斯托克斯公式
斯托克斯公式(Stokes' formula)是一种用于计算物体在流体中的沉降速度的公式。
这个公式常用于计算圆柱形物体、球体或椭圆体在流体中的沉降速度。
斯托克斯公式的通常形式是:
v = gd^2(ρs - ρf)/18μ
其中:
v是物体的沉降速度(m/s);
g是重力加速度(9.8 m/s^2);
d是物体的直径(m);
ρs是物体的密度(kg/m^3);
ρf是流体的密度(kg/m^3);
μ是流体的粘度(Pa·s)。
注意:斯托克斯公式仅适用于流体的流动是静态的、流动是匀速的、流体的流动是无流速场的情况。
例如,如果有一个圆柱形物体直径为0.1 m,密度为800 kg/m^3,流体密度为1000 kg/m^3,粘度为0.001 Pa·s,则其沉降速度为约0.15 m/s。
斯托克斯公式stokes定律斯托克斯公式(Stokes定律)是描述流体运动的基本定律之一,它被广泛应用于流体力学和电磁学等领域。
斯托克斯公式是以英国物理学家乔治·斯托克斯(George Stokes)的名字命名的,他在19世纪中叶首次提出了这个公式。
斯托克斯公式是由麦克斯韦方程组推导而来的,它描述了流体中的速度场与涡旋场之间的关系。
根据斯托克斯公式,涡旋场的环流与速度场通过曲面的面积分之间存在线性关系。
换句话说,斯托克斯公式给出了速度场在曲面上的环量与曲面边界上的环量之间的关系。
斯托克斯公式的数学表达形式如下:∮C F·ds = ∬S (∇ × F)·dS其中,C是曲面S的边界曲线,F是速度场,ds是边界曲线上的微元弧长,S是曲面S的面积,∇ × F是速度场F的旋度,dS是曲面S上的面积元。
斯托克斯公式的应用非常广泛。
在流体力学中,斯托克斯公式被用来计算旋转流体中涡旋的强度和分布情况。
在电磁学中,斯托克斯公式被用来计算磁场沿闭合回路的环量,从而计算磁场的旋度。
此外,斯托克斯公式还被应用于固体力学、量子力学等领域。
对于流体力学中的应用,斯托克斯公式可以帮助我们理解涡旋的生成和演化过程。
涡旋是流体中的一种特殊流动形式,它具有旋转的性质。
通过斯托克斯公式,我们可以计算涡旋的强度,并进一步研究其对流体运动的影响。
斯托克斯公式的应用还可以帮助我们解决一些工程和科学问题。
例如,在空气动力学中,我们可以利用斯托克斯公式来计算飞机机翼周围的气流情况,从而优化机翼的设计。
在电磁学中,我们可以利用斯托克斯公式来计算闭合电路中的电磁感应强度,从而分析电磁场的分布情况。
斯托克斯公式是流体力学和电磁学等领域中非常重要的定律之一。
它描述了速度场与涡旋场之间的关系,可以帮助我们理解和分析涡旋的形成和演化过程。
斯托克斯公式的应用广泛,可以帮助我们解决一些工程和科学问题。
通过学习和应用斯托克斯公式,我们可以深入理解流体力学和电磁学等领域的原理和现象。
斯科托斯公式斯科托斯公式,又称斯托克斯定理,是向量分析中的重要定理之一。
该定理描述了一个闭合曲面上的向量场通过该曲面的流量与该向量场在曲面边界上的环路积分之间的关系。
斯科托斯公式的应用非常广泛,涉及到物理学、工程学、数学等多个领域。
斯科托斯公式的形式可以表示为:∮_S F·ds = ∬_S (∇×F)·dS其中,S为闭合曲面,F为定义在S上的向量场,ds为S上的面积元素,∇×F为F的旋度,dS为S的面积元素的法向量与面积的乘积。
公式左边表示F通过曲面S的流量,右边表示F的旋度在曲面S上的面积积分。
斯科托斯公式的推导可以通过对曲面进行离散化处理,将曲面划分为许多小面元,然后利用面积元素的定义,将积分转化为求和,再通过求极限得到积分的结果。
这个过程需要一些数学工具和推导,这里不再详述。
斯科托斯公式的应用非常广泛。
在物理学中,斯科托斯公式常常用于求解电场、磁场等问题。
例如,可以利用斯科托斯公式计算闭合回路上的电场强度,从而求解电流的大小。
在工程学中,斯科托斯公式可以用于计算流体力学中的流量、压力等问题。
在数学中,斯科托斯公式是向量分析中的基本定理之一,也是理解和推导其他定理的基础。
斯科托斯公式的应用需要注意一些条件。
首先,曲面必须是闭合的,即没有漏洞或孔。
其次,向量场F必须是光滑的,即在曲面和曲面边界上都有定义。
此外,曲面和向量场的方向需要符合右手定则。
斯科托斯公式的应用可以简化计算过程,提高求解效率。
通过将曲面上的积分转化为曲面边界上的环路积分,可以将原本复杂的积分计算简化为对曲面边界上的积分计算。
这使得斯科托斯公式成为解决一些复杂问题的有力工具。
斯科托斯公式是向量分析中的重要定理,描述了一个闭合曲面上的向量场通过该曲面的流量与该向量场在曲面边界上的环路积分之间的关系。
它的应用广泛,涉及到物理学、工程学、数学等多个领域。
斯科托斯公式的推导需要一些数学工具和推导,但它的应用可以简化计算过程,提高求解效率。
微积分下册知识点第一章 空间解析几何与向量代数 (一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a =,),,(z y x b b b b = ,则),,(z z y y x x b a b a b a b a ±±±=±,),,(z y x a a a a λλλλ=;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rzr y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角;(二) 数量积,向量积1、 数量积:θcos b a b a=⋅12a a a =⋅2⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯=大小:θsin b a ,方向:c b a,,符合右手规则10 =⨯a a 2b a //⇔0 =⨯b azy x zy x b b b a a a kj i b a=⨯运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面:yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:),(=y x F 表示母线平行于z轴,准线为⎪⎩⎪⎨⎧==0),(z y x F 的柱面 4、 二次曲面不考1) 椭圆锥面:22222z by a x =+ 2) 椭球面:1222222=++c z b y a x旋转椭球面:1222222=++cz a y a x3) 单叶双曲面:1222222=-+czb y a x4) 双叶双曲面:1222222=--cz b y a x5) 椭圆抛物面:z by a x =+22226) 双曲抛物面马鞍面:z b y a x =-22227) 椭圆柱面:12222=+b y a x 8) 双曲柱面:12222=-b y a x9) 抛物柱面:ay x =2(四) 空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===bt z t a y t a x sin cos3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程 1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos CB AC B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、 对称式点向式方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s =,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=pt z z nty y mt x x 0004、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,222222212121212121cos pn m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pCn B m A ==第二章 多元函数微分法及其应用 (一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集;2、 多元函数:),(y x f z =,图形:3、 极限:A y x f y x y x =→),(lim ),(),(00 4、 连续:),(),(lim 00),(),(00y x f y x f y x y x =→5、 偏导数:xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0000000 6、 方向导数:βαcos cos y fx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角; 7、 梯度:),(y x f z =,则j y x f i y x f y x gradf y x),(),(),(000000+=;8、 全微分:设),(y x f z =,则d d d z z z x y x y∂∂=+∂∂ (二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:2、 闭区域上连续函数的性质有界性定理,最大最小值定理,介值定理3、 微分法 1) 定义:u x2) 复合函数求导:链式法则 z若(,),(,),(,)z f u v u u x y v v x y ===,则v yz z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z vy u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 充分条件3) 隐函数求导:两边求偏导,然后解方程组 (三) 应用 1、 极值1) 无条件极值:求函数),(y x f z =的极值解方程组 ⎪⎩⎪⎨⎧==00yx f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值;② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定;2) 条件极值:求函数),(y x f z =在条件0),(=y x ϕ下的极值 令:),(),(),(y x y x f y x L λϕ+= ———Lagrange 函数解方程组 ⎪⎪⎩⎪⎪⎨⎧===0),(0y x L L y x ϕ2、 几何应用1) 曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M 对应参数为0t 处的切线方程为:)()()(00000t z z z t y y y t x x x '-='-='- 法平面方程为:))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:))(,,())(,,())(,,(0=-+-+-z z z y x F y y z y x F x x z y x F zyx法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第三章 重积分(一) 二重积分一般换元法不考1、 定义:∑⎰⎰=→∆=nk k k k Df y x f 1),(lim d ),(σηξσλ2、 性质:6条3、 几何意义:曲顶柱体的体积;4、 计算:1) 直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,21()()(,)d d d (,)d bx ax Df x y x y x f x y y φφ=⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,21()()(,)d d d (,)d dy cy Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰2) 极坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=βθαθρρθρθρ)()(),(21D21()()(,)d d (cos ,sin )d Df x y x y d f βρθαρθθρθρθρρ=⎰⎰⎰⎰(二) 三重积分 1、 定义: ∑⎰⎰⎰=→Ω∆=nk k k k kv f v z y x f 1),,(limd ),,(ζηξλ2、 性质:3、 计算:1) 直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z zz y x f y x v z y x f ),(),(21d ),,(d d d ),,(-------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bayx z y x f z v z y x f d d ),,(d d ),,(-------------“先二后一”2) 柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3) 球面坐标⎪⎪⎩⎪⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x 2(,,)d (sin cos ,sin sin ,cos )sin d d d f x y z v f r r r rr φθφθφφφθΩΩ=⎰⎰⎰⎰⎰⎰(三) 应用 曲面D y x y x f zS ∈=),(,),(:的面积:y x yz x z A Dd d )()(122⎰⎰∂∂+∂∂+=第五章 曲线积分与曲面积分 (一) 对弧长的曲线积分 1、 定义:1(,)d lim (,)ni i i Li f x y s f s λξη→==⋅∆∑⎰2、 性质: 1[(,)(,)]d (,)d (,)d .LLLf x y x y s f x y sg x y s αβαβ+=+⎰⎰⎰ 212(,)d (,)d (,)d .LL L f x y s f x y s f x y s =+⎰⎰⎰).(21L L L +=3在L上,若),(),(y x g y x f ≤,则(,)d (,)d .LLf x y sg x y s ≤⎰⎰4l s L=⎰d l 为曲线弧 L 的长度3、 计算:设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),(),(βαψϕ≤≤⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(,)d [(),( ,()Lf x y s f t t t βαφψαβ=<⎰⎰(二) 对坐标的曲线积分1、 定义:设 L 为xoy 面内从 A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在 L 上有界,定义∑⎰=→∆=nk k k k Lx P x y x P 1),(lim d ),(ηξλ,∑⎰=→∆=nk k k kLy Q y y x Q 1),(lim d ),(ηξλ.向量形式:⎰⎰+=⋅LLy y x Q x y x P r F d ),(d ),(d2、 性质:用-L 表示L 的反向弧 , 则⎰⎰⋅-=⋅-LL r y x F r y x F d ),(d ),( 3、 计算: 设),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续,L 的参数方程为):(),(),(βαψϕ→⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(,)d (,)d {[(),()]()[(),()LP x y x Q x y y P t t t Q t t βαφψφφψ'+=+⎰⎰4、 两类曲线积分之间的关系:设平面有向曲线弧为⎪⎩⎪⎨⎧==)()( t y t x L ψϕ:,L 上点),(y x 处的切向量的方向角为:βα,,)()()(cos 22t t t ψϕϕα'+''=,)()()(cos 22t t t ψϕψβ'+''=, 则d d (cos cos )d LLP x Q y P Q s αβ+=+⎰⎰.(三) 格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数, 则有⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂LD y Q x P y x y P x Q d d d d2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,则y Px Q ∂∂=∂∂ ⇔曲线积分 d d LP x Q y +⎰在G 内与路径无关 ⇔曲线积分d d 0LP x Q y +=⎰⇔ y y x Q x y x P d ),(d ),(+在G 内为某一个函数),(y x u 的全微分 (四) 对面积的曲面积分1、 定义:设∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,定义 i i i i ni S f S z y x f ∆=∑⎰⎰=→∑),,(lim d ),,(10ζηξλ 2、 计算:———“一投二换三代入”),(:y x z z =∑,xy D y x ∈),(,则x z y x z y x z y x f S z y x f y x D yx ,(),(1)],(,,[d ),,(22++=⎰⎰⎰⎰∑(五) 对坐标的曲面积分1、 预备知识:曲面的侧,曲面在平面上的投影,流量2、 定义:设∑为有向光滑曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 是定义在∑上的有界函数,定义1(,,)d d lim (,,)()ni i i i xy i R x y z x y R S λξηζ∑→==∆∑⎰⎰同理,1(,,)d d lim (,,)()ni i i i yz i P x y z y z P S λξηζ∑→==∆∑⎰⎰1(,,)d d lim (,,)()ni i i i zx i Q x y z z x R S λξηζ∑→==∆∑⎰⎰3、 性质: 121∑+∑=∑,则12d d d d d d d d d d d d d d d d d d P y z Q z x R x yP y z Q z x R x y P y z Q z x R x y ∑∑∑++=+++++⎰⎰⎰⎰⎰⎰2-∑表示与∑取相反侧的有向曲面 , 则d d d d R x y R x y -∑∑=-⎰⎰⎰⎰4、 计算:——“一投二代三定号”),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy D 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则(,,)d d [,,(,)]d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰,∑为上侧取“ + ”, ∑为下侧取“ - ”. 5、 两类曲面积分之间的关系:()R Q P y x R x z Q z y P dcos cos cos d d d d d d ⎰⎰⎰⎰∑∑++=++γβα其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角;(六) 高斯公式1、 高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,,P Q R 在Ω上有连续的一阶偏导数,则有⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂yx R x z Q z y P z y x z R y Q x P d d d d d d d d d或()⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂S R Q P z y x z R y Q x P d cos cos cos d d d γβα(七) 斯托克斯公式1、 斯托克斯公式:设光滑曲面 ∑ 的边界 Γ是分段光滑曲线, ∑ 的侧与 Γ 的正向符合右手法则,),,(),,,(),,,(z y x R z y x Q z y x P 在包含∑ 在内的一个空间域内具有连续一阶偏导数,则有⎰⎰⎰Γ∑++=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z R y Q x P y x y P x Q x z x R z P z y z Q y R d d d d d d d d d为便于记忆, 斯托克斯公式还可写作:⎰⎰⎰Γ∑++=∂∂∂∂∂∂z R y Q x P RQ P zy x y x x z z y d d d d d d d d d 第六章 常微分方程1、微分方程的基本概念含未知函数的导数或微分的方程称为微分方程; 未知函数是一元函数的微分方程,称为常微分方程;未知函数是多元函数的微分方程,称为偏微分方程;微分方程中未知函数的导数的最高阶数,称为微分方程的阶.能使微分方程成为恒等式的函数,称为微分方程的解. 如果微分方程的解中含任意常数,且独立的即不可合并而使个数减少的任意常数的个数与微分方程的阶数相同,这样的解为微分方程的通解. 不包含任意常数的解为微分方程特解.2、典型的一阶微分方程可分离变量的微分方程: 对于第1种形式,运用积分方法即可求得变量可分离方程的通解:)()(d )(d )(y g x h dxdyx x f y y g ==或2、 齐次微分方程:代入微分方程即可;3、 一阶线性微分方程型如称为一阶线性微分方程; 其对应的齐次线性微分方程的解为利用常数变异法可得到非齐次的线性微分方程的通解4、 伯努利方程: 于是U 的通解为:5、 全微分方程:7、可降阶的高阶常微分方程 12型的微分方程),(6.4.2 )1()(-=n n y x f y 3型的微分方程),(6.4.3 y y f y '='' 8、线性微分方程解的结构 1函数组的线性无关和线性相关 2线性微分方程的性质和解的结构叠加原理:二个齐次的特解的线性组合仍是其特解;二个线性无关齐次的特解的线性组合是其通解 3刘维尔公式4二阶非齐线性微分方程解的结构特解的求解过程主要是通过常数变异法,求解联立方程的解:⎰⎰=xx f y y g d )(d )( )( )( yxx x y y ψϕ='='或者 ,)( 可将其化为可分离方程中,令在齐次方程xy u x y y =='ϕ , xu y x y u ==,则令,u dx du x dx dy +=.)()1(的方程形如c by ax f y ++=',y b a u '+=').(u f bau =-'原方程可化为)()(x q y x p y =+' d )(。