专家系统概述
- 格式:ppt
- 大小:162.00 KB
- 文档页数:55
专家系统的概述专家系统呢,整体来看是一种很有趣也很有用的计算机程序系统。
我给你讲讲我理解的这个系统的框架哈。
大致分这几个主要部分吧。
首先得有知识库,这个知识库就像是专家的大脑存储的知识,它里面包含了特定领域大量的事实和规则。
比如说,要是一个医疗专家系统,那知识库里头就有很多疾病的症状、病因、诊断方法和治疗方案这些内容。
然后就是推理机了,这可是核心内容之一。
它就像是一个思维的引擎,能根据知识库中的知识对输入的问题进行推理。
举个例子,如果是上面说的医疗专家系统,你输入一系列身体不舒服的症状,像头痛、发热、咳嗽,推理机就从知识库中找与之匹配的疾病知识,通过分析推理得出可能的疾病诊断。
还有用户接口也很重要,这个部分主要是让用户能方便地和专家系统交互的通道。
用户可以把自己的问题通过这个接口输入进去,得到系统给的答案。
就像是咱们去医院前台挂号之后,然后跟医生叙述病情这个互动过程,用户接口就是这个桥梁。
除了这几个,还有数据库负责存储中间结果和相关数据,知识获取机构负责更新和扩充知识库。
比如说随着医学研究不断有新的疾病或者治疗方法被发现,知识获取机构就把这些新内容添加到知识库当中。
不过在我理解这个专家系统的过程中,也遇到过困惑。
比如说这个推理机的工作逻辑有时候是很复杂的,很难一下子完全清楚到底是怎样在那么多的知识里准确判断和推理的。
领悟的话,就是后来明白了这些部分之间相互依赖相互配合,少了哪个部分这个专家系统都不能很好地工作。
主要脉络就是这样的知识进入知识库,推理机利用知识库应对用户输入,交互过程中的各种数据存储在数据库,新知识不断更新知识库,然后这些流程都通过用户接口一个环节拉通,这就是专家系统大概的情况啦。
人工智能的专家系统技术导言:人工智能(Artificial Intelligence,AI)是一门研究如何使计算机可以像人一样智能地执行任务的学科。
专家系统是其中一种应用广泛的人工智能技术,它模仿人类专家的知识和推理能力,通过计算机实现对复杂问题的解决和决策。
一、专家系统的概述专家系统是一种基于知识的计算机系统,能够模拟人类专家的决策过程,对特定领域的问题进行分析和解决。
它主要由知识库、推理机和用户界面组成。
专家系统的知识库是存储各种领域专家知识的地方,包括事实、规则、经验、案例等。
知识库使用特定的语言表示和存储知识,使得专家系统能够在特定领域中模拟专家的决策过程。
推理机是专家系统的核心,它通过使用专家系统的知识库和推理规则对问题进行推理和决策。
推理机根据用户输入的问题和已有的知识,进行搜索和匹配,产生一系列推理结果。
推理机还可以根据问题的特点,使用不同的推理方式,如正向推理、反向推理、混合推理等。
用户界面是专家系统与用户之间的桥梁,用户通过界面与专家系统交互,输入问题和获取答案。
用户界面可以是命令行界面、图形界面或自然语言界面等,使得用户能够方便地使用专家系统。
二、专家系统的组成1. 知识获取知识获取是专家系统开发的第一步,它通过采访领域专家、查阅文献、观察现场等方式,收集专家知识并转化为计算机可识别的形式。
知识获取的关键是提取和表示知识,需要选择适当的表示方法和知识表示语言。
2. 知识表示知识表示是将采集到的知识以适当的形式表示和存储,使得计算机可以理解和使用这些知识。
常用的知识表示方法有规则表示、语义网络表示、框架表示等。
规则表示是最常用的方法,将知识表示为一系列条件-动作规则,通过匹配规则,实现对问题的推理和决策。
3. 知识推理知识推理是专家系统的核心功能,它利用知识库和推理规则对问题进行推理和决策。
专家系统的推理机通常采用基于规则的推理方法,通过匹配规则和问题,产生推理结果。
推理过程可以是正向推理、反向推理或混合推理,根据问题的特点,选择合适的推理方式。
专家系统理论概述专家系统的基本概念专家系统是人工智能应用研究的一个重要领域。
它实现了人工智能从理论研究走向实际应用,从一般思维方法探讨转入专门知识运用的重大突破。
自20世纪70年代专家系统的开发获得成功以来,目前已被成功的运用到科学技术、工业、农业、军事、医疗、教育等众多领域,并已产生了巨大的社会效益和经济效益。
目前,对什么是专家系统还没有一个严格公认的形式化定义。
作为一种一般的解释,可以认为专家系统是一种具有大量专门知识与经验的智能程序系统,它能运用领域专家多年积累的经验和专门知识,模拟领域专家的思维过程,解决该领域中需要专家才能解决的复杂问题。
从上述解释可以看出,专家系统包括以下三个方面的含义:(1) 专家系统是一种程序系统,但又具有智能,因此它不同于一般的程序系统,而是一种能运用专家知识和经验进行推理的启发式程序系统。
(2) 专家系统的智能来源于领域专家的知识、经验及解决问题的诀窍。
为此,专家系统内部必须包含有大量专家水平的领域知识与经验,并且能够在运行过程中不断的增长新知识和修改原有知识。
(3) 专家系统所要解决的问题一般是那些本来应该由领域专家才能解决的问题。
专家系统的分类通常,专家系统都是针对某一应用领域而建立的。
不同应用领域的专家系统,其功能、设计方法及实现技术也各不同。
为了明确各类专家系统的特点及其所需要的技术和系统组织方法,本小节讨论专家系统的分类问题。
对专家系统的类型,可以有多种不同的划分方法。
例如,可以按求解问题的性质分类,也可以按求解问题的要求分类,还可以按系统的体系结构分类等。
按求解问题的性质分类如下:海叶斯-罗斯(F.Heyes-roth)等人按照求解问题的性质,将专家系统分为以下10种类型。
(1) 解释型专家系统解释型专家系统的任务是通过对已知信息和数据的分析与解释,确定它们的含义。
其主要特点有:第一,系统处理的数据量很大,而且往往是不准确的、错误的或不完全的;第二,系统能够从不完全的信息中得出解释,并能对数据做出某些假设;第三,系统的推理过程可能很复杂和很长,因而要求系统具有对自身推理过程做出解释的能力。