两非门振荡器说明
- 格式:doc
- 大小:21.50 KB
- 文档页数:1
逻辑笔电路的工作原理(三款简单的逻辑笔电路原理图详解)逻辑笔是是采用不同颜色的指示灯为表示数字电平的高低的仪器·它是测量数字电路一种较简便的工具·使用逻辑笔可快速测量出数字电路中有故障的芯片·逻辑笔上一般有二三只信号指示灯,红灯一般表示高电平,绿灯一般表示低电平·黄灯表示所测信号为脉冲信号。
本文主要介绍了三款逻辑笔电路的工作原理,具体的跟随小编一起来了解一下。
逻辑笔电路的工作原理(一)廉价而可靠的逻辑笔电路工作原理数字电路中,有三种逻辑状态:“1”(高电平)、“0”(低电平)和“悬空”(高阻态),这就是通常说的三态逻辑。
逻辑笔就是通过发光二极管或数码管显示出被测点的逻辑状态,是数字电路制作、维修和测试不可缺少的工具。
电路原理如下图所示。
图中U1和U2是两个四——二与非门电路,即图1中的U1A~U1D、U2A~U2D。
电路主要由电源极性保护、测试探头、逻辑变换、脉冲展宽及逻辑显示五部分组成。
图中,保险丝F1和D5是电源极性保护电路,当电源接反时,F1熔断并切断电源以保护电路不被烧坏。
P1为测试探头,用于输入测试点的逻辑信号;U1A、U1B、U2A、T1、U1D、U1C等构成逻辑变换电路;U2A、U2B、C1、R6及U1C、U2C、C2、R7构成两个脉冲展宽电路;LED1为低电平显示,LED2是高电平显示。
当P1探得低电平时,即P1=0,那么经过以下逻辑变换后,由于U侣的4脚输入为高电平,此时U侣的6脚的输出就取决于U1B的5脚的输入,致使U侣的6脚输出逻辑暂不能确定。
同理,U1C的8脚输出逻辑也暂不能确定。
由于U2C的两个输入端通过电阻R7接地,所以U2C的输入逻辑为低电平,输出为高电平。
即U1B的5脚和U1C的10脚输入端逻辑状态是高电平。
同样,U2A-2的脚也为高电平输入。
因此,U1B-6=0、U1C-8=0,则继续上述逻辑变换为:U1B-6=0→U2A-1=0→。
(一)秒时钟信号的产生1.振荡器1) 晶体振荡器晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。
晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定。
数字钟的精度主要取决于时间标准信号的频率及其稳定度。
晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确因此,一般采用石英晶体振荡器经过分频得到这一信号。
2) 振荡电路如图2所示电路通过CMOS非门构成的输出为方波的数字式晶体振荡电路。
这个电路中,CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。
输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。
电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。
晶体XTAL的频率选为32768Hz。
该元件专为数字钟电路而设计,其频率较低,有利于减少分频器级数。
图2 晶体振荡电路框图2.分频器电路1) 分频器通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频.时间标准信号的频率很高,要得到秒脉冲,需要分频电路。
分频器实际上也就是计数器,为此电路输送一秒脉冲。
2) 分频器电路电路通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现.例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(),即实现该分频功能的计数器相当于15级2进制计数器. 这里用一个14级2进制计数器和一个1级2进制计数器。
本次设计是运用了CD4060分频器进行分频,分频电路可提供512HZ和1024HZ的频率,在经CD4027分频器进行一分频,为此电路输送一秒脉冲。
本设计中采用CD4060来构成14级分频电路。
7400、74H00、74L00、74LS00、74S00、74HC00、74C00、74F00、74ALS00四2输入与非门Y=\AB。
7401、74LS01、74HC01、74ALS01四2输入与非门(OC)Y=\AB。
7402、74L02、74LS02、74S02、74HC02、74C02、74ALS02、74F02四2输入或非门。
Y=/A+B。
7403、74L03、74LS03、74ALS03、74S03、74HC037404、74H04、74L04、74S04、74HC04、74C04、74F04、74ALS04六反相器Y=/A。
7405、74H05、74LS05、74S05、74HC05、74F05、74ALS05六反相器(OC)Y=/A。
7406、74LS06六反相缓冲器/驱动器(OC、高压输出)Y=/A;是7405高耐压输出型,耐压30V。
7407、74LS07、74HC07六缓冲器/驱动器(OC、高压输出)Y=A; 30V耐高压输出。
7408、74LS08、74F08、74ALS08、74S08、74HC08、74C08四2输入与门Y=AB。
7409、74LS09、74F09、74ALS09、74S09、74HC09四2输入与门(OC)Y=AB。
7410、74H10、74L10、74LS10、74ALS10、74S10、74HC10、74C1074H11、74LS11、74S11、74F11、74ALS11、74HC11三3输入与门Y=ABC。
7412、74LS12、74ALS12三3输入与非门(OC)Y=\ABC。
7413、74LS13双4输入与非门Y=\ABCD。
7414、74LS14、74HC14、74C1474H15、74LS15、74ALS15、74S15三3输入与门(OC)Y=ABC。
7416、74LS16六反相缓冲器/驱动器Y=/A;7417、74LS17六缓冲器/驱动器(OC、高压输出)Y=A;15V耐压输出。
CD4069逻辑功能及引脚如图2a所示,其中非门F1、F2和外接电阻R2、R3、电容C4构成多谐振荡器,产生约3Hz的脉冲方波,供给CD4017作计数脉冲和CD40174作移位脉冲。
R3、C4为振荡定时元件,调节这两个元件可改变振荡信号频率,从而控制彩灯色彩的流动速度,以呈现各种不同的视觉效果。
另外,CD4069的非门3还用作CD40174复位信号的倒相器。
CD4069为CMOS数字集成电路,是一种高输入阻抗器件,容易受外界干扰造成逻辑混乱或出现感应静电而击穿场效应管的栅极。
虽然器件内部输入端设置了保护电路,但它们吸收瞬变能量有限,过大的瞬变信号和过高的静电电压将使保护电路失去作用,因此,CD4069中未使用的非门F4、F5、F6的输入端{9}、{11}、{13}脚均接到Vss接地端,以作保护。
CD4069多谐振荡器输出端{4}脚送出的脉冲串,一路直接送入CD4017的计数脉冲输入端{14}脚。
CD4017为十进制计数/时序分配器,用于产生CD4066模拟开关切换的控制信号。
其引脚功能如图2b所示。
Cr为复位端,当Cr端输入高电平时、计数器置零态。
CD4017具有自动启动功能,即在电路进入无效状态时,在计数脉冲作用下,最多经过两个时钟周期就能回到正常循环圈中,因此本控制器的CD4017未设置加电复位电路。
Co为进位输出端,当计数满10个时钟脉冲时输出一个正脉冲。
CD4017有CL和EN两个计数输入端,CL端为脉冲上升沿触发端,若计数脉冲从CL端输入,则EN端应接低电平;EN端为脉冲下降沿触发端,若计数脉冲从EN端输入,则CL端应接高电平,否则禁止输入计数脉冲。
取自CD4069的计数脉冲从其CL端{14}脚输入,故EN端{13}脚接地。
Y0~Y9为计数器的十个输出端,输出端送出的脉冲方波通过隔离二极管VD3~VD12连接成两路控制信号,加到模拟开关CD4066。
当第一个计数脉冲到来时,CD4017内电路翻转,{3}脚Y0呈高电平,经二极管VD5加到CD4066{12}脚。
当今时代,数字电路已广泛地应用于各个领域。
本报将在“电路与制作”栏里,刊登系列文章介绍数字电路的基本知识和应用实例。
在介绍基本知识时,我们将以集成数字电路为主,该电路又分TTL和CMOS两种类型,这里又以CMOS集成数字电路为主,因它功耗低、工作电压范围宽、扇出能力强和售价低等,很适合电子爱好者选用。
介绍应用时,以实用为主,特别介绍一些家电产品和娱乐产品中的数字电路。
这样可使刚入门的电子爱好者尽快学会和使用数字电路。
一、基本逻辑电路1.数字电路的特点在电子设备中,通常把电路分为模拟电路和数字电路两类,前者涉及模拟信号,即连续变化的物理量,例如在24小时内某室内温度的变化量;后者涉及数字信号,即断续变化的物理量,如图1所示。
当把图1的开关K快速通、断时,在电阻R上就产生一连串的脉冲(电压),这就是数字信号。
人们把用来传输、控制或变换数字信号的电子电路称为数字电路。
数字电路工作时通常只有两种状态:高电位(又称高电平)或低电位(又称低电平)。
通常把高电位用代码“1”表示,称为逻辑“1”;低电位用代码“0”表示,称为逻辑“0”(按正逻辑定义的)。
注意:有关产品手册中常用“H”代表“1”、“L”代表“0”。
实际的数字电路中,到底要求多高或多低的电位才能表示“1”或“0”,这要由具体的数字电路来定。
例如一些TTL 数字电路的输出电压等于或小于0.2V,均可认为是逻辑“0”,等于或者大于3V,均可认为是逻辑“1”(即电路技术指标)。
CMOS数字电路的逻辑“0”或“1”的电位值是与工作电压有关的。
讨论数字电路问题时,也常用代码“0”和“1”表示某些器件工作时的两种状态,例如开关断开代表“0”状态、接通代表“1”状态。
2.三种基本逻辑电路数字电路中的基本电路是与门、或门和非门(反相器)。
与门和或门电路的基本形式有两个或两个以上的输入端、一个输出端。
因输入和输出可以各自为“0”或“1”状态,具有判定的功能,所以把它们称为基本逻辑电路。
典型的CMOS与非门电路使用的电路CMOS与非门电路的概述CMOS(亦称为互补金属氧化物半导体)与非门电路是数字逻辑电路中常见的两种基本门电路。
CMOS与非门电路由CMOS技术实现,利用p型和n型金属氧化物半导体场效应晶体管(PMOS和NMOS)的组合来实现逻辑运算,并达到低功耗、高速度和抗干扰的效果。
本文将着重介绍典型的CMOS与非门电路的不同用途及其工作原理。
二级标题1:CMOS与非门电路的基本结构CMOS与非门电路是由一组PMOS和一组NMOS晶体管组成的。
PMOS晶体管是由p型半导体材料制成的,带有P型掺杂区域,而NMOS晶体管则是由n型半导体材料制成的,带有N型掺杂区域。
两组晶体管之间的交叉连接称为CMOS与非门电路。
二级标题2:CMOS与非门电路的用途CMOS与非门电路广泛应用于数字逻辑电路以及集成电路中,其用途丰富多样。
三级标题1:逻辑门电路CMOS与非门电路可以实现各种逻辑门电路,如与门、或门、非门、与非门、或非门。
通过合理的组合和连接,可以实现更复杂的逻辑功能,例如多位加法器和计数器等。
三级标题2:存储器 CMOS与非门电路还可以构建存储器单元,例如静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)。
这些存储器单元可以用于存储和获取数据,并在计算机系统中起到关键作用。
三级标题3:时钟和振荡器电路CMOS与非门电路还可以被用来构建时钟和振荡器电路。
时钟电路用于同步数字系统中各个部件的操作,而振荡器电路则用于产生特定频率的信号,例如计时器和脉冲发生器。
三级标题4:数据选择和复用CMOS与非门电路还可以实现数据选择和复用功能。
通过控制CMOS与非门电路的输入和输出,可以选择不同的数据源以及将多个输入信号复用到一个输出端口。
二级标题3:CMOS与非门电路的工作原理CMOS与非门电路的工作原理基于PMOS和NMOS晶体管的导通和截止。
当输入信号施加于CMOS与非门电路的端口时,其中的晶体管会根据输入信号的电平进行导通或截止。
12V供电的电子节能灯本设计采用12V蓄电池供电,可点亮节能灯,在无市电或停电的场合非常实用。
一、电路工作原理电路原理如图26所示。
图26 12V供电电子节能灯电路原理图图中IC是CMOS反相器,其内部非门1、2与R1和C1组成频率为15KHz的方波发生器。
经IC内部非门3缓冲后,送入内部非门4、5和6,三个非门的输入、输出端并联一起推动逆变管VT工作,以增大激励电流。
经VT放大后的方波电压通过T和C4等元件组成的谐振升压电路后,可达到350V左右的空载电压,并形成近似正弦波的电流,可点燃5~18W的节能灯。
二、元器件选择集成电路IC选用CMOS反相器CD4049,容易起振,且振幅大。
VT选用BDT63C型达林顿三极管,也可使用类似型号或用复合管代替,要求耐压500V、最大集电极电流5A、截止频率10MHz以上。
谐振变压器T采用6.5×6 EI型铁氧体磁芯,初级用Φ0.67高强度漆包线绕22匝,次级用Φ0.17高强度漆包线绕300匝。
电阻R可选用普通1/8或1/4W碳膜电阻器。
电容C1、C2和C5选用瓷介电容或涤纶电容;C3选用普通铝电解电容器;C4选用聚丙烯电容,要求耐压为250V以上。
电路采用12V供电,可使用蓄电池,如摩托车电瓶来供电。
三、制作与调试方法制作时可自制印刷电路板,也可使用万能印刷电路板,电路板尺寸大概在58mm×35mm,电路安装完成后,要对T和C4进行认真调节,不断调节变压器T的磁芯空气隙和C4容量,C4调节范围在2200pF~6800pF,一般节能灯功率越大,变压器T的磁芯空气隙也要调大。
经过调节,直至使节能灯得到最佳亮度。
另外,应注意通断电路时应控制电源正极,而不要控制负极,否则易使VT击穿。
采用555时基电路的过电压、过电流保护电路本电路是一个通过555时基电路来对负载进行过电压、过电流的保护功能。
一、电路工作原理电路原理如图44所示。
压管VS正极的电位增加,导致稳压管击穿,使得三极管VT2导通,555时基电路将处于置位状态,同样使得三极管VT3截止,达到了过压保护的作用。