高考数学抽象函数解题方法归纳
- 格式:docx
- 大小:9.51 KB
- 文档页数:3
抽象函数题的解法及技巧随着高考改革的不但深入,对基本初等函数中的抽象函数部分考查又有所提高,其题型包括抽象函数的定义域值域问题,抽象函数的单调性和奇偶性问题,求解析式及对称性问题,现就结合着近几年高考出现的体型对抽象函数部分题的解法及技巧总结如下,供备考同学们参考使用。
类型一:求抽象函数的定义域。
例题1.(2013高考大纲版数学(理))已知函数f(x )的定义域为(-1,0),则函数f (2x-1)的定义域为 (A)(-1,1) (B)(-1,21) (C)(-1,0) (D)(21,1) 解析:因为原函数的定义域为(﹣1,0),所以﹣1<2x ﹣1<0,解得﹣1<x <.所以则函数f (2x ﹣1)的定义域为(-1,21).故选B . 变式1:已知f (2x-1)定义域是[]2,1,则函数)(x f 的定义域为 答案:[1,3]变式2:已知已知f(2x-1)定义域是[]2,1,则函数)12(+x f 的定义域为 答案:[0,1] 解题技巧:抽象函数是没有解析式的函数,解决此类问题的方法是抓住这种类型题的本质,像例题1这种题型的本质是解不等式,变式1题型的本质就是求函数的值域,变式2这种题型的本质就是解不等式和求值域的结合。
解决这类问题的技巧搞清本质抓住两个小括号的范围要对应起来,是解决的技巧所在。
类型二:抽象函数的求值问题:例2.对任意实数x,y ,均满足f(2x +y)=2[f 2)(x ]+f(y)且f (1)≠0,则f2014)=_______. 解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:令x=1,y=n ,得f (n+1)=f (n )+22)]1([f , 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 令x=y=0,得:f(0)=0,∴f(1)=21,即f (n+1)-f (n )=21,f (n )=2n,所以,f(2014)=22014=1007. 解题技巧:抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
抽象函数抽象函数解题方法一般形式为y=f(x)且无法用数字和字母表示出来的函数,一般出现在题目中,或许有定义域、值域等。
补充:1抽象函数常常与周期函数结合,如:f(x)=-f(x+2)f(x)=f(x+4)2解抽象函数题,通常要用赋值法,而且高考数学中,常常要先求F(0)F(1)抽象函数的经典题目!!!我们把没有给出具体解析式的函数称为抽象函数。
由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2002年上海高考卷1 2题,2004年江苏高考卷22题,2004年浙江高考卷12题等。
学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法谈一点粗浅的看法。
一.特殊值法:在处理选择题时有意想不到的效果。
例1 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x <0时,, f (x)>0,则函数f (x)在[a,b]上( )A 有最小值f (a) B有最大值f (b) C有最小值f (b) D有最大值f ( b)分析:许多抽象函数是由特殊函数抽象背景而得到的,如正比例函数f (x)= kx (k≠0),, , ,可抽象为f (x + y) = f (x) +f (y),与此类似的还有特殊函数抽象函数f (x)= x f (xy) =f (x) f (y)f (x)=f (x+y)= f (x) f (y)f (x)=f (xy) = f (x)+f (y)f (x)= tanx f(x+y)=此题作为选择题可采用特殊值函数f (x)= kx(k≠0)∵当x <0时f (x) > 0即kx > 0。
.∴k < 0,可得f (x)在[a,b]上单调递减,从而在[a,b]上有最小值f(b)。
二.赋值法.根据所要证明的或求解的问题使自变量取某些特殊值,从而来解决问题。
高考抽象函数技巧全总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x .解:设1x u x =+,则1u x u=-∴2()2111u u f u uu-=+=--∴2()1x f x x-=-2.凑合法:在已知(())()f g x h x =即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx+=+,求()f x解:∵22111()()(1)(f x x x x xxx+=+-+=11|||1||x xx =+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数解题思路所谓抽象函数是指没有给出解析式,只是给出一些特殊条件的函数问题,因为抽象,难以理解,因此它是高中数学函数局部的难点,但是这类问题对于开展抽象思维能力,进行数学思想方法的渗透,培养创新思想,提高数学素质,有着重要作用,所以也是重点考查内容。
下面就这类问题的解题思路举例说明如下,供同学们学习参考。
一、利用特殊模型的解题教材中给出了一些抽象函数的特殊模型,假设充分利用这些模型解题,既可掌握解决数学问题的规律、培养解题能力,又能体会从感性通过抽象概括上升为理性的认识规律。
1、用特殊模型直接解抽象函数客观题例1、函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)(y),且当x>0时,f (x)>1,那么当x<0时,f(x)的取值范围是。
解析:借助函数f(x)=a x〔a>1〕,那么0<f〔a〕<1评注:借助特殊函数直接解抽象函数客观题是常用的解题处理方法,可迅速得到正确答案。
2、借助特殊模型为解抽象函数解答题铺路例2、函数f〔x〕(x≠0)满足f(xy)=f(x)+f(y),〔1〕求证:f(1)=f(-1)=0;〔2〕求证:f(x)为偶函数;解析:因为定义域为(-∞,0)∪(o,+∞),所以由f (x)=logax (0<a<1〕, 理解题意显然不当,但是只要稍加变通,可以发现用f(x)=loga|x︳较为恰当。
〔证明过程学生自己解决〕评注:借助特殊函数模型铺路是解抽象函数解答题的常用处理方法,虽然不可用特殊模型代替求解,但可借助特殊模型理解题意,类比探索出解题思路,使抽象函数变的有章可循。
二、利用函数性质的解题函数的特征是通过各种各样的性质反映出来的,抽象函数也不例外,只要充分利用题设条件已说明的或通过挖掘出隐含的函数性质,就能顺利解决抽象型函数问题。
1、利用奇偶性、周期性解题例3、函数f〔x〕是R上的奇函数,且任意x,有f〔x+4〕=f〔x〕+f〔2〕,求f〔14〕解析:取x=-2,f〔2〕=f〔-2〕+f〔2〕∴f〔-2〕=0,∴f〔2〕=0,由条件知4是函数f〔x〕的一个周期,∴f〔14〕=f〔4 3+2〕=f〔2〕=0评注:要充分利用周期性,化未知为;运用整体思想,优化整体为局部,再由各局部的解决使整体问题得解。
重难点第6讲 抽象函数及其性质8大题型——每天30分钟7天掌握抽象函数及其性质8大题型问题【命题趋势】抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。
抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。
第1天 认真研究满分技巧及思考热点题型【满分技巧】一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f . 三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式. 四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
抽象函数问题求解的常用方法
高中数学中,抽象函数的解题方法主要包括以下几个方面:
1.确定定义域和值域:抽象函数的定义域和值域是解题的基础,需要根据题目中给出的条件进行确定。
2.运用函数性质:抽象函数和一般的函数一样,具有诸如奇偶性、周期性、单调性等函数性质。
在解题过程中,可以根据这些性质进行分析和推导,从而得出结论。
3.运用复合函数的性质:抽象函数可能会出现复合函数的形式,运用复合函数的性质可以将抽象函数化简,从而更加方便进行分析和计算。
4.利用函数的图像特征:抽象函数的图像特征包括零点、极值、拐点等,在解题过程中可以结合图像特征进行分析,进一步确定函数的性质和变化趋势。
需要注意的是,抽象函数作为高中数学中的一个较为高级的知识点,需要学生掌握一定的数学基础和思维方法,例如函数图像的绘制、导数和微积分等知识。
因此,在学习抽象函数时,需要逐步扩充自己的数学知识面,并不断提高自己的数学思维能力和分析能力。
高考抽象函数技巧全总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高考数学抽象函数的6大快速解题技巧1.换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2)故f(x)=-x 2+3x+1 (0≤u ≤2)2.方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。
例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x1)x (f 2)x1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥⨯-≥∆得由例3.f(x).1),x 0(x ,x 1)x1x (f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x1x (f )x (f ≠≠+=-+且 ,x1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x-11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x1x 2)x (f )x -11f( ,x 111)x111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。
例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1.4.赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x -a)(或f(x -2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a -b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a -b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a -b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a -x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。
(7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b -x),则函数y=f(x)的图像关于直线2a b x +=对称;2、若函数y=f(x)满足f(x)=f(2a -x)或f(x+a)=f(a -x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b -x)=c ,则y=f(x)的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a -x,2b -y)=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b -x)的图像关于直线2b a x -=对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。
高三抽象函数总结抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。
由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。
抽象函数常见题型讲解:一、定义域问题:解决抽象函数的定义域问题——明确定义、等价转换。
例一.若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域。
提示:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x的范围等同。
变式训练1:已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域。
变式训练2:已知函数)(x f 的定义域是]2,1[-,求函数)]3([log 21x f -的定义域。
二、求值问题 例二、已知定义域为的函数f(x),同时满足下列条件:①1)2(=f ,51)6(=f ;②)()()(y f x f y x f +=⋅,求f(3),f(9)的值。
注:通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。
变式训练3:已知R x f 是定义在)(上的函数,且R x f ∈=对任意的,1)1(都有下列两式成立:)6(,1)()(.1)()1(;5)()5(g x x f x g x f x f x f x f 则若-+=+≤++≥+的值为变式训练4:设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f _____变式训练5:已知)(),(x g x f 都是定义在R 上的函数,对任意y x ,满足)()()()()(y f x g y g x f y x f ⋅-⋅=- ,且0)1()2(≠=-f f ,则)1()1(-+g g =_________三、值域问题:例三、设函数f(x)定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。
抽象函数解题方法
函数是高中数学的核心内容,它对于学生掌握双基和发展能力具有十分重要的意义。
通常所说的函数,一般都具有解析式、图表等某种具体的表现形式,但是有一类函数只给出了函数所满足的一部分性质或运算法则,而没有明确的表现形式,这类函数我们通常称之为抽象函数。
抽象函数作为初等数学和近代数学的衔接点,既能体现数学的本质特征、近现代数学发展的威力,又能体现新课标对知识和技能考核的要求和高考的能力命意,必将受到人们的重视。
以下介绍几种解决抽象函数问题的方法,力求使抽象函数问题的解法有“章”可循。
一、赋值法
赋值法的基本思路是:将所给函数的性质转化为条件等式,在条件等式中对变量赋予一些具体的值,构造出所需条件或发现某些性质,其中f(0)、f(1)是常常起桥梁作用的重要条件。
例1设函数f(x)的定义域为(0,+∞),且对于任意正实数x,y都有
f(xy)=f(x)+f(y)恒成立。
若已知f(2)=1,
试求:(1)f(1/2)的值;
(2)f(2 - n)的值,其中n为正整数。
思路:合理赋值,化抽象为具体,发现递推规律。
解:(1)令x=y=1,则f(1)=f(1)+f(1)∴f(1)=0
再令x=2,y=1/2,则f(1)=f(2)+f(1/2)∴f(1/2)= -f(2)= -1
(2)由于f(2 - 2)=f(1/2)+f(1/2)= -2,
f(2 - 3)= f(1/2)+f(1/2)+f(1/2)= -3,
依此类推就有f(2 - n)= -n,其中n为正整数。
二、利用函数单调性
解抽象函数不等式,要设法将它转化成显性的不等式求解.这需要具备两个条件:一是要把不等式化为f(□)>f(△)的形式,二是要判断函数的单调性。
再根据函数的单调性,将抽象函数不等式的符号"f"去掉,得到具体的不等式求解.
例2 若f(x)是定义在(0,+∞)上的减函数,且对一切a,b∈(0,+∞),
都有f(a/b)=f(a)-f(b),且f(4)=1,试解不等式f(x+6)-f(1/x)>2.
思路:逆用函数单调性,将不等式中的函数关系转化为自变量之间的关系.
解:因为f(a/b)=f(a)-f(b),且f(4)=1,所以f(x+6)-f(1/x)>2则f(x+6)-f(1/x)>2f(4)则有f(x 2+6x)-f(4)>f(4)故f[(x 2+6x)/4]>f(4).由于f(x)是(0,+∞)上的减函数,因此由1/x>0x+6>0(x 2+6x)/4<4同时成立解得0<x<2,故原不等式的解集是(0,2).
三、利用函数的对称性
例3 设函数y=f(x)对一切实数x都满足f(x+3)=f(3-x)且方程f(x)=0恰好有
6个不同的实根,这6个根的和为()
A.18
B.12
C.9
D.0
解:由命题1知,y=f(x)的图象关于x=3对称,故6个根的和为18,故选A。
四、利用函数的周期性
关于函数的周期性,首先要弄清楚三种符号形式:
(1)若f(x+a)=f(x+b)恒成立,则函数为周期函数,周期为T=| b-a |,
(2)若f(a+x)=f(b-x)恒成立,则函数的图象关于直线x=(a+b)/2对称。
(3)若定义在R上的函数y=f(x)的图象关于两直线x=a和x=b(a>b)对称,则函数y=f(x)以2(a-b)为周期.特别的,若定义在R上的偶函数的图象关于直线x=a(a≠0)对称,则y=f(x)以2|a|为周期。
(4)若定义在R上的函数y=f(x),值域是函数g(x)的定义域的子集,且满足
f(x+a)=g[f(x)],g(x)=g-1(x),则f(x)以2a为周期。
以上这四个结论可以快速认识函数具有周期性还是轴对称性,并且对这两者之间的转换要能够熟练运用。
例4 设f(x)是定义在R的偶函数,其图象关于直线x=1对称,证明f(x)是周期函数。
分析:此题解决的关键是将函数的对称语言转换轴对称方程,进一步和函数的周期性联系上。
由题设条件f(x)开始,依据周期函数的定义,只需推出f(x)=f(x+T)即可。
证明:因为y=f(x)图象关于直线x=1对称,所以f(-x)=f[2-(-x)]=f(2+x)
因为是偶函数,所以f(x)=f(-x)=f(2+x)故是周期函数,并且周期T=2。
五、寻找抽象函数的原型法
在抽象函数问题中.我们可以通过一些具体的模型.以具体函数代替抽象函数通过具体函数模型的有关性质和研究方法去推测抽象函数的性质或解题思路就能实现思维上的突破,尤其是高中阶段,对一些问题适当的形式化,抽象化,可以迅速的解决问题。
以下是几类常用的抽象函数的模型要熟悉并能运用。
1、 f( x)+f(y)= f(xy)模型是对数函数
2、f(x+y)=f(x) f(y),模型是指数函数
3、 f(x) f(y)= f(xy),模型是幂函数
4、f(x+y)=f(x) +f(y),模型是y=kx
5、f(x) +f(y)=f(x+y)+b,模型是y=kx+b
6、f(x+y)=[f(x) f(y)]/[f(x) +f(y)],模型是y=c/x
7、f(x+y)=[f(x) +f(y)]/[1-f(x) f(y)],模型是y=tanx
8、f(x+y)+f(x-y)=2f(x) f(y),模型是y=cosx等等。
例6 若对任意实数x和常数a,都有f(x+a)=[1+ f( x)]/[1-f( x)]成立,判断
f( x)是不是周期函数,为什么?
思路:观察联想,寻找原型,猜想论证。
解:观察抽象函数关系式,立即联想到tan(x+π/4)=(1+tanx)/(1-tanx)
的形式极为相似,因此可以把tanx看作 f( x)的原型。
我们知道tanx的周期是π,而a=π/4,猜想4a是f( x)的一个周期。
于是 f( x+4a)=-1/ f( x+2a)= f( x),故 f( x)是周期函数,且4a是f( x)的一个周期。