抽象函数的解题方法与技巧
- 格式:doc
- 大小:1.79 MB
- 文档页数:18
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。
解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。
例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。
解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。
正确理解函数符号及其定义域的含义是求解此类问题的关键。
这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求x 的取值范围。
例2和例1形式上正相反。
二、求值问题例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。
解:取32==y x ,,得)3()2()6(f f f += 因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x 得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。
抽象函数解题思路所谓抽象函数是指没有给出解析式,只是给出一些特殊条件的函数问题,因为抽象,难以理解,因此它是高中数学函数局部的难点,但是这类问题对于开展抽象思维能力,进行数学思想方法的渗透,培养创新思想,提高数学素质,有着重要作用,所以也是重点考查内容。
下面就这类问题的解题思路举例说明如下,供同学们学习参考。
一、利用特殊模型的解题教材中给出了一些抽象函数的特殊模型,假设充分利用这些模型解题,既可掌握解决数学问题的规律、培养解题能力,又能体会从感性通过抽象概括上升为理性的认识规律。
1、用特殊模型直接解抽象函数客观题例1、函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)(y),且当x>0时,f (x)>1,那么当x<0时,f(x)的取值范围是。
解析:借助函数f(x)=a x〔a>1〕,那么0<f〔a〕<1评注:借助特殊函数直接解抽象函数客观题是常用的解题处理方法,可迅速得到正确答案。
2、借助特殊模型为解抽象函数解答题铺路例2、函数f〔x〕(x≠0)满足f(xy)=f(x)+f(y),〔1〕求证:f(1)=f(-1)=0;〔2〕求证:f(x)为偶函数;解析:因为定义域为(-∞,0)∪(o,+∞),所以由f (x)=logax (0<a<1〕, 理解题意显然不当,但是只要稍加变通,可以发现用f(x)=loga|x︳较为恰当。
〔证明过程学生自己解决〕评注:借助特殊函数模型铺路是解抽象函数解答题的常用处理方法,虽然不可用特殊模型代替求解,但可借助特殊模型理解题意,类比探索出解题思路,使抽象函数变的有章可循。
二、利用函数性质的解题函数的特征是通过各种各样的性质反映出来的,抽象函数也不例外,只要充分利用题设条件已说明的或通过挖掘出隐含的函数性质,就能顺利解决抽象型函数问题。
1、利用奇偶性、周期性解题例3、函数f〔x〕是R上的奇函数,且任意x,有f〔x+4〕=f〔x〕+f〔2〕,求f〔14〕解析:取x=-2,f〔2〕=f〔-2〕+f〔2〕∴f〔-2〕=0,∴f〔2〕=0,由条件知4是函数f〔x〕的一个周期,∴f〔14〕=f〔4 3+2〕=f〔2〕=0评注:要充分利用周期性,化未知为;运用整体思想,优化整体为局部,再由各局部的解决使整体问题得解。
抽象函数问题求解的常用方法
高中数学中,抽象函数的解题方法主要包括以下几个方面:
1.确定定义域和值域:抽象函数的定义域和值域是解题的基础,需要根据题目中给出的条件进行确定。
2.运用函数性质:抽象函数和一般的函数一样,具有诸如奇偶性、周期性、单调性等函数性质。
在解题过程中,可以根据这些性质进行分析和推导,从而得出结论。
3.运用复合函数的性质:抽象函数可能会出现复合函数的形式,运用复合函数的性质可以将抽象函数化简,从而更加方便进行分析和计算。
4.利用函数的图像特征:抽象函数的图像特征包括零点、极值、拐点等,在解题过程中可以结合图像特征进行分析,进一步确定函数的性质和变化趋势。
需要注意的是,抽象函数作为高中数学中的一个较为高级的知识点,需要学生掌握一定的数学基础和思维方法,例如函数图像的绘制、导数和微积分等知识。
因此,在学习抽象函数时,需要逐步扩充自己的数学知识面,并不断提高自己的数学思维能力和分析能力。
高考数学一轮复习抽象函数求解技巧我们把没有给出具体解析式的函数称为抽象函数,下文是抽象函数求解技巧,希望可以帮助到同学们。
函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。
抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。
此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。
因此备受命题者的青睐,在近几年的高考试题中不断地出现。
然而,由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。
下面通过例题来探讨这类问题的求解策略。
例:设y=蕊(x)是定义在区间[-1,1]上的函数,且满足条件:(i)f(-1)=f(1)=0;(ii)对任意的u,v[-1,1],都有f(u)-f(v)u-v。
(Ⅰ)证明:对任意的x[-1,1],都有x-11-x;(Ⅱ)证明:对任意的u,v[-1,1],都有f(u)-f(v)1。
解题:(Ⅰ)证明:由题设条件可知,当x[-1,1]时,有f(x)=f(x)-f(1)x-1=1-x,即x-11-x.(Ⅱ)证明:对任意的u,v[-1,1],当u-v1时,有f(u)-f(v)1当u-v1,uv0,不妨设u0,则v0且v-u1,其中v(0,1],u[-1,0)要想使已知条件起到作用,须在[-1,0)上取一点,使之与u 配合以利用已知条件,结合f(-1)=f(1)=0知,这个点可选-1。
同理,须在(0,1]上取点1,使之与v配合以利用已知条件。
所以,f(u)-f(v)f(u)-f(-1)+f(v)-f(1)u+1+v-1=1+u+1-v=2-(v-u )1综上可知,对任意的u,v[-1,1]都有f(u)-f(v)1.抽象函数求解技巧的全部内容及时这些,希望考生可以完全掌握。
抽象函数常见题型及解法抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2004年江苏高考卷22题,2004年浙江高考卷12题,2009年四川卷12题等。
学生在解决这类问题时,往往会感到无从下手,正确率低,本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数()12-x f 的定义域是[0,1],求()x f 的定义域。
解:()12-x f 的定义域是[0,1],是指10≤≤x ,所以()12-x f 中的12-x 满足1121≤-≤-x 从而函数()x f 的定义域是:[]11,-.评析:一般地,已知函数()()x g f 的定义域是A ,求()x f 的定义域问题,相当于已知()()x g f 中x 的取值范围为A ,据此求()x g 的值域问题。
例2. 已知函数)(x f 的定义域是[]11,-,求函数()⎥⎥⎦⎤⎢⎢⎣⎡-x log f 321的定义域。
解:)(x f 的定义域是[]11,-,意思是凡被f 作用的对象都在[]11,-中,由此可得()251213211311121≤≤⇒⎪⎭⎫ ⎝⎛≤-≤⎪⎭⎫ ⎝⎛⇒≤-≤--x x x log 所以函数()⎥⎥⎦⎤⎢⎢⎣⎡-x log f 321的定义域是⎥⎦⎤⎢⎣⎡251,. 评析:这类问题的一般形式是:已知函数)(x f 的定义域是A ,求函数()()x g f 的定义域。
正确理解函数符号及其定义域的含义是求解此类问题的关键。
这类问题实质上相当于已知()x g 的值域B ,且A B ⊆,据此求x 的取值范围。
例2和例1形式上正相反。
二、求值问题例3. 已知函数()x f 对于任意x,y 都有()()()y f x f xy f +=成立。
抽象函数解题方法函数是高中数学的核心内容,它对于学生掌握双基和发展能力具有十分重要的意义。
通常所说的函数,一般都具有解析式、图表等某种具体的表现形式,但是有一类函数只给出了函数所满足的一部分性质或运算法则,而没有明确的表现形式,这类函数我们通常称之为抽象函数。
抽象函数作为初等数学和近代数学的衔接点,既能体现数学的本质特征、近现代数学发展的威力,又能体现新课标对知识和技能考核的要求和高考的能力命意,必将受到人们的重视。
以下介绍几种解决抽象函数问题的方法,力求使抽象函数问题的解法有“章”可循。
一、赋值法赋值法的基本思路是:将所给函数的性质转化为条件等式,在条件等式中对变量赋予一些具体的值,构造出所需条件或发现某些性质,其中f(0)、f(1)是常常起桥梁作用的重要条件。
例1设函数f(x)的定义域为(0,+∞),且对于任意正实数x,y都有f(xy)=f(x)+f(y)恒成立。
若已知f(2)=1,试求:(1)f(1/2)的值;(2)f(2 - n)的值,其中n为正整数。
思路:合理赋值,化抽象为具体,发现递推规律。
解:(1)令x=y=1,则f(1)=f(1)+f(1)∴f(1)=0再令x=2,y=1/2,则f(1)=f(2)+f(1/2)∴f(1/2)= -f(2)= -1(2)由于f(2 - 2)=f(1/2)+f(1/2)= -2,f(2 - 3)= f(1/2)+f(1/2)+f(1/2)= -3,依此类推就有f(2 - n)= -n,其中n为正整数。
二、利用函数单调性解抽象函数不等式,要设法将它转化成显性的不等式求解.这需要具备两个条件:一是要把不等式化为f(□)>f(△)的形式,二是要判断函数的单调性。
再根据函数的单调性,将抽象函数不等式的符号"f"去掉,得到具体的不等式求解.例2 若f(x)是定义在(0,+∞)上的减函数,且对一切a,b∈(0,+∞),都有f(a/b)=f(a)-f(b),且f(4)=1,试解不等式f(x+6)-f(1/x)>2.思路:逆用函数单调性,将不等式中的函数关系转化为自变量之间的关系.解:因为f(a/b)=f(a)-f(b),且f(4)=1,所以f(x+6)-f(1/x)>2则f(x+6)-f(1/x)>2f(4)则有f(x 2+6x)-f(4)>f(4)故f[(x 2+6x)/4]>f(4).由于f(x)是(0,+∞)上的减函数,因此由1/x>0x+6>0(x 2+6x)/4<4同时成立解得0<x<2,故原不等式的解集是(0,2).三、利用函数的对称性例3 设函数y=f(x)对一切实数x都满足f(x+3)=f(3-x)且方程f(x)=0恰好有6个不同的实根,这6个根的和为()A.18B.12C.9D.0解:由命题1知,y=f(x)的图象关于x=3对称,故6个根的和为18,故选A。
抽象函数的常见解法抽象函数的常见解法2019年3月抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数. 这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。
因此,这类问题在高中数学的各类考试中经常出现。
下面谈谈这类问题常见的几种解法:一、赋值法先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点, 从而使问题得以解决。
这类问题经常出现, 要认真理解其解题的要领和方法。
例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y 恒成立,且f(1) = 1,求f(x)的解析式。
分析:当令y=1时, 可得f(x+1)=f(x)+x +1, 这相似于数列中的递推关系, 再利用相应的递推关系可求出函数的解析式。
解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1,∴ f(1) = 1f(2)= f(1) +2f(3) = f(2) +3…f(n) = f(n-1) +nn(n+1)各式相加得:f(n) = 1+2+3+…+n = 2∴ f(x) = x(x+1) 2例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x ∈R,y ∈R, 且f(0)≠0,求证:f(x)是偶函数。
分析: 当令 x=y=0时, 可得f(0)=1,再利用题中条件变形求解。
证明:令x = y = 0∴ f(0) +f(0) = 2f 2 (0)∵ f(0) ≠ 0, ∴ f(0) = 1令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y)∴ f(-y) = f(y), ∵ y∈R,∴ f(x)是偶函数例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0恒有f(xy) = f(x) + f(y)1求证:当x > 0时, f( ) = -f(x) x1分析:当令x=y=1时, 可得f(1)=0,再灵活运用f(1)=f(x· )可求得。
(完整)抽象函数几类问题的解题方法与技巧编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)抽象函数几类问题的解题方法与技巧)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)抽象函数几类问题的解题方法与技巧的全部内容。
一、求解析式的一般方法1、换元法例1:已知f(x+1)=x 2—2x 求f(x )解:令t=x+1则x=t —1 f(t)=(t-1)2—2(t —1)=t 2—4t —3∴f(x)=x 2-4x —3换元法是解决抽象函数问题的基本方法,换元法包括显性换元法和隐性换元法。
2、方程组法例2:若函数f(x )满足f(x)+2f (x 1)=3x ,求f (x) 解:令x=x 1则f (x 1)+2f (x )= x3 f(x)+2f(x 1)=3x =>f(x)= x2-x 2f (x )+f(x 1)=x3 ∴f(x)= x2—x 例3 。
例43、待定系数法例5:如果f[f(x)]=2x-1则一次函数f(x)=______解:f(x)是一次函数∴不妨设f(x)=ax+b(a≠0)则f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b又已知f[f(x)]=2x-1例6:已知f(x)是多项式函数,解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c (a≠0)代入比较系数得过且过:a=1,b= -2,c= —1,f(x)=x2—2x—1.如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题.二、判断奇偶性的一般方法在奇偶性的求解中,常用方法是赋值法,赋值法中常见的赋值有—1、0、1。
解题宝典抽象函数问题对同学们的抽象思维能力和分析能力有较高的要求.抽象函数问题中往往不会给出具体的函数解析式,要求我们根据已知条件求函数的单调区间、最值、定义域,解函数不等式.下面结合实例,谈一谈解答抽象函数问题的几种途径.一、利用函数的单调性对于一些有关抽象函数的值域、单调区间、函数不等式、单调性问题,通常需根据函数单调性的定义判断出函数的单调性,进一步利用函数的单调性解题.在利用函数的单调性解题时,往往要先根据题意确定函数的定义域,判断抽象函数的单调性和单调区间,再根据函数的单调性建立关系式.例1.函数f()x是定义在R上的奇函数,且满足以下两个条件:①对任意x、y∈R,都有f()x+y=f()x+f()y;②当x>0时,f()x<0,且f()1=-2.则函数f()x在区间[]-3,3上的值域为_____.解:设x1,x2∈[]-3,3,且x1>x2,则f()x1-f()x2=f()x1+f()-x2=f()x1-x2<0,所以f()x1<f()x2,则函数f()x在区间[]-3,3上是减函数,所以f()x max=f()-3=-f()3=-f()1+2=-f()1-f()1+1=-3f()1=6,f()x min=f()3=-f()-3=-6,即函数f()x在区间[]-3,3上的值域为[]-6,6.我们根据函数单调性的定义,先令x1,x2∈[]-3,3,x1>x2;然后将f()x1-f()x2,判断出差式的符号,即可判断出函数的单调性;再根据函数在[]-3,3上的单调性确定函数的最值点,即可解题.对于闭区间上的函数最值问题,通常要重点关注区间端点值,由函数的单调性可知函数的最值往往在区间端点处取得.例2.已知函数f()x对于任意正数a,b都有f()ab=f()a⋅f()b,且f()0=1,当x>1时,f()x>1,若f()x⋅f()5-x>1,求x的取值范围.解:令x1,x2∈()0,+∞,x1<x2,则f()x2f()x1=f()x2x1⋅x1f()x1=f()x2x1f()x1f()x1=f()x2x1,因为x2x1>1,所以f()x2f()x1=f()x2x1>1,f()x2>f()x1,可知函数f()x在()0,+∞上单调递增,因为f()ab=f()a f()b,所以不等式f()x f()5-x>1等价于f()x()5-x>f()0,可得x()5-x>0,解得0<x<5,故x的取值范围为()0,5.首先将f()x1、f()x2作商,即可根据函数单调性的定义判断出抽象函数在()0,+∞上的单调性;然后利用函数的单调性去掉f()x()5-x>f()0中函数符号“f”,将不等式转化为常规不等式,即可通过解不等式求得问题的答案.解函数不等式,通常要将不等式中的自变量转化到同一单调区间内,才能根据函数的单调性将问题转化为常规不等式问题.二、换元对于含有复杂式子、复合函数的抽象函数问题,往39往要采用换元法求解.即将复杂的式子、复合函数中的某一部分式子用一个新元替换,即可将函数简化,根据函数的性质、定义域求得问题的答案.例3.已知函数y =f ()2x 的定义域为[]-1,1,求函数y =f ()x +3的定义域.解:由函数y =f ()2x 的定义域为[]-1,1,可知-1≤x ≤1,∴-2≤2x ≤2,设t =2x ,∴y =f ()t 的定义域为[]-2,2,令t =x +3,可得-2≤x +3≤2,解得-5≤x ≤-1,∴函数y =f ()x +3的定义域为[]-5,-1.函数y =f ()2x 、y =f ()x +3均为复合函数,而y =f ()2x 中的2x ,y =f ()x +3中的x +3均与y =f ()x 中的x 的意义相同,于是令t =x +3,并将t 替换2x ,通过等量代换,求得函数y =f ()x +3的定义域.三、数形结合数形结合法是解答函数问题的重要思想方法.在解答抽象函数问题时,我们可以先根据已知条件确定抽象函数的周期性、单调性、奇偶性、对称性;然后画出相应的函数图象,以明确函数图象的变化趋势,尤其要关注函数的最高点、最低点、单调区间、对称轴、对称中心、周期;再建立新的关系式,即可求得问题的答案.例4.已知f ()x 在R 上是奇函数,在区间[]0,2上单调递增,且f ()x -4=-f ()x .若方程f ()x =m ()m >0在区间[]-8,8上有四个不相等的根x 1、x 2、x 3、x 4,求x 1+x 2+x 3+x 4的值.图1解:∵f ()x 在R 上是奇函数且满足f ()x -4=-f ()x ,∴f ()x -4=f ()-x ,f ()4-x =f ()x ,∴函数的对称轴为直线x =±2,且f ()0=0,∵f ()x -4=-f ()x ,∴f ()x -8=f ()x ,∴函数的周期为8,∵函数f ()x 在区间[]0,2上单调递增,∴函数f ()x 在区间[]-2,2上单调递增,令x 1<x 2<x 3<x 4,根据图象的对称性可知x 1+x 2=-12,x 3+x 4=4,∴x 1+x 2+x 3+x 4=-12+4=-8.解答本题,需先根据已知条件确定函数的对称轴、周期以及单调性;然后画出f ()x 的大致图象,即可通过研究图象的变化情况,确定f ()x 与函数y =m 在区间[]-8,8上的4个交点的位置;再结合图象的对称性,求出x 1+x 2+x 3+x 4的值.例5.设函数f ()x 满足f ()2+x =f ()2-x ,f ()x 在[)2,+∞上是减函数,若f ()3x -1>f ()x +3,则x 的取值范围是_________.解:由题意知f ()x 的图象关于直线x =2对称,∵f ()x 在[)2,+∞上是减函数,∴f ()x 在()-∞,2上是增函数,其图象如图2所示.图2∵f ()3x -1>f ()x +3,可知点()3x -1,0到点()2,0的距离比点()x +3,0到点()2,0的距离小,∴||()3x -1-2<||()x +3-2,将不等式两边的式子平方并化简得:2x 2-5x -2<0,解得:12<x <2,∴x 的取值范围为()12,2.首先根据已知关系式确定函数的对称轴x =2和函数的单调性,即可画出函数的图象;然后结合图象,比较出点()3x -1,0和点()x +3,0到点()2,0的距离的大小关系,进而得到新不等式,通过解不等式得到x 的取值范围.解答抽象函数的问题方法很多,同学们只需根据已知条件和解题需求,进行赋值、换元、画图,灵活运用函数的性质,选择合适的方法,即可快速获得问题的答案.(作者单位:安徽省临泉第一中学)解题宝典40。
抽象函数问题常见题型及解法江苏省赣榆县海头高级中学 222111 胡继缙抽象函数是指仅给出函数的某些性质,而不给出函数解析式的函数,解题时可以根据已有的性质,如:周期性、奇偶性、单调性、图象对称性等,采用灵活的方法,如:换元法、赋值法、等价转化法、构造方程(组)或不等式(组)等方法。
本文就这类题型及解法作一简单介绍。
一、求函数解析式求解此类问题,通常利用换元法或利用函数的周期性,构造方程组.例1 已知对非零实数x ,恒有x xf x f 3)1(2)(=-,求)(x f . 解 由题意得,用x 1代换x ,可得xx f x f 3)(2)1(=- 于是有⎪⎪⎩⎪⎪⎨⎧=-=-x x f xf x x f x f 3)(2)1(3)1(2)( 将)(x f 视作为未知数,解之得xx x f 2)(--=. 例2 已知函数)(x f 是偶函数,)(x g 是奇函数,且满足11)()(-=+x x g x f , 求)(x f 、)(x g 的解析式.解 由题意得,用x -代换x ,得11)()(--=-+-x x g x f ∵)(x f 是偶函数,)(x g 是奇函数 于是有⎪⎪⎩⎪⎪⎨⎧+-=--=+11)()(11)()(x x g x f x x g x f将)(x f 视作为未知数,解之得11)(2-=x x f ,1)(2-=x x x g . 二、求函数定义域例3 已知函数)23(+x f 的定义域为(-2,1),求函数)3()(2+-x f x f 的定 义域.求解此类问题,通常利用换元法.解 令23+=x t ,由)1,2(-∈x ,可得54<<-t∴函数)(x f 的定义域为(-4,5)又由⎩⎨⎧<+<-<<-534542x x , 得25<<-x∴函数)3()(2+-x f x f 的定义域为)2,5(-.三、求函数值求解此类问题,通常利用函数的周期性,将自变量的值化归到给定的区间上.例4 设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时, x x f =)(,则)5.7(f 等于( ).(A )0.5 (B )-0.5 (C )1.5 (D )-1.5解 由 )()2(x f x f -=+,可得)()4(x f x f =+∴函数)(x f 是周期函数,且函数最小正周期4=T结合函数是奇函数,则)5.0()5.0()85.0()5.7(f f f f -=-=+-= 又∵10≤≤x 时,x x f =)(∴5.0)5.0(=f , ∴5.0)5.7(-=f , 故选(B ).四、求函数最值问题求解此类问题,通常要确定函数在给定的区间上的单调性,利用单调性求最值.例5 设函数)(x f 为奇函数,对任意R y x ∈,,都有)()()(y f x f y x f +=+,且0>x 时,0)(<x f ,2)1(-=f ,求)(x f 在[-3,3]的最大值和最小值.解 设3321≤<≤-x x ,则012>-x x∵)(x f 为奇函数,且当0>x 时,0)(<x f∴0)()()()()(121212<-=-+=-x x f x f x f x f x f∴)()(12x f x f <,∴)(x f 在[-3,3]上是减函数故6)]1()1()1([)]2()1([)3()3(max =++-=+-=-=-=f f f f f f f y 6)3()3(min -=--==f f y .五、求解函数不等式求解此类不等式,通常利用函数的单调性将抽象的函数不等式等价的转化成一般的不等式(组),有时也可借助数形结合的方法.例 6 若)(x f 是定义在),0(+∞上的增函数,且对一切0>x ,满足)()()(y f x f yx f -=.)1(求)1(f 的值. )2(若,1)6(=f 解不等式2)1()3(<-+af a f . 解 )1(令x y =,则0)()()()1(=-==x f x f xx f f . )2(∵对一切0>x ,满足)()()(y f x f yx f -=,且1)6(=f ∴2)1()3(<-+af a f )6(2)()3(f a f a f <++⇔ )6()63()()6()6()3(af a f a f f f a f <+⇔-<-+⇔ 2173300663+-<<⇔⎪⎩⎪⎨⎧><+⇔a a a a . 例7 若)(x f 是奇函数,且在),0(+∞内是增函数,又0)3(=-f ,则不等式 0)(<⋅x f x 的解集是 .解 根据题意,可以作出函数)(x f 的大致图象,如图1. ∵)(x f 是奇函数,且在),0(+∞内是增函数 ∴)3(0)3(f f -==-,∴0)3(=f∴0)(<⋅x f x 03300)(00)(0<<-<<⇔⎩⎨⎧><⎩⎨⎧<>⇔x x x f x x f x 或或 ∴不等式0)(<⋅x f x 的解集为),(),(3003⋃-.。
求抽象函数表达式常见五种方法1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211x f x x =++,求()f x .2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x .5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x参考答案:例1:解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1x f x x -=- 例2:解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)例3.解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 例4.解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数及应用13种常考题型总结题型1抽象函数的定义域问题题型2抽象函数的值域问题题型3求抽象函数的值题型4求抽象函数的解析式题型5抽象函数的奇偶性问题题型6抽象函数的单调性问题题型7抽象函数周期性问题题型8抽象函数的对称性问题题型9解抽象不等式题型10抽象函数比较大小题型11抽象函数的最值问题题型12抽象函数的零点问题题型13双函数混合型1.抽象函数概念:我们把没有给出具体解析式的函数称为抽象函数,题目中往往只给出函数的特殊条件或特征.2.抽象函数定义域的确定所谓抽象函数是指用()f x 表示的函数,而没有具体解析式的函数类型,求抽象函数的定义域问题,关键是注意对应法则。
在同一对应法则的作用下,不论接受法则的对象是什么字母或代数式,其制约条件是一致的,都在同一取值范围内。
抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.注:求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.3.“赋值法”求抽象函数的值赋值法就是根据题目的具体情况,合理、巧妙地对某些元素赋予确定的特殊值(0,1,-1等),从而使问题获得简捷有效的解决。
注:(1)第一层次赋值:常常令字母取0,-1,1等.(2)第二层次赋值:若题中有条件0f x =t (),则再令字母取0x .(3)第三层次赋值:拆分赋值,根据抽象式子运算,把赋值数拆成某两个值对应的和与积(较多)或者差与商(较少).4.“赋值法”求抽象函数的解析式赋值法求抽象函数的解析式,首先要对题设中的有关参数进行赋值,再得到函数解析式的某种递推关系,最后求得函数的解析式。
5.“赋值法”探究抽象函数的奇偶性判断抽象函数的奇偶性的关键是得到()f x 与()f x -的关系,解题时要对有关变量进行赋值,使其最后只保留()f x 与()f x -的关系。
第 1 页 共 18 页 抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧
Problem-solving methods and skills of abstract functions Xue Jie
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract:: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords: abstract function; property; evaluation; analytic method; problem solving skills;
1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。
2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x的取值范围。所以对抽象函数xf,xgf而言,其定义域均指的是x的取值范围。对于xgf和xhf,其中xg和xh的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数xgf和xhf,它们的值域是相同的。 第 2 页 共 18 页
(3)函数三性:即奇偶性,对称性,周期性。利用函数三性可根据部分函数的图像描绘出整个定义域上的函数图像,进而从函数的图像上更直观的研究函数。 奇偶性:函数xf的定义域D关于原点对称,若满足xfxf,Dx,则称xf
是奇函数;若满足xfxf,Dx,则称xf是偶函数。如果奇函数的定义域包含原点,那么一定有00f。 对称性:函数的对称性分轴对称和中心对称。若函数xf关于点ba,对称,则有bxafxaf2。若函数xf关于直线ax对称,则有xafxaf。
周期性:若函数xf,定义域为D,满足xfTxf,0TDx,,那么就说该函数是周期函数,T为函数的一个周期。 函数三性之间的联系: ① 函数xf是奇函数等价于函数xf关于原点对称;函数xf是偶函数等价于函数xf关于y轴对称。
② 如果函数xf具有两种形式的对称性,那么函数xf就一定是周期函数;如果函数xf是周期函数,且具有一种对称性,那么函数xf就一定具有另一种相应的对称性。
③ 一般结论: i 若cxfaxf(c为常数),则xf是周期函数,且a2是它的一个周期。
ii 若kxfaxf(常数0k),则xf是周期函数,且a2是它的一个周期。 iii 若xfaxfaxf2,则xf是周期函数,且a6是它的一个周期。 iv 若xf的图像关于两条直线ax,bxab对称,则xf是周期函数,且ab2
是它的一个周期。 v 若xf的图像关于点0,aA和0,bBab对称,则xf是周期函数,且ab2是它的一个周期。 vi 若xf的图像关于两条直线ax及点0,bBab对称,则xf是周期函数,且ab4是它的一个周期。 第 3 页 共 18 页
(4)单调性:函数xf的定义域为D,对于任意的1x,Dx2,当1x2x时,都有 ①21xfxf,那么就说xf在此区间上是增函数;
②21xfxf,那么就说xf在此区间上是减函数。
对抽象函数,由于解析式未知,所以要证明其单调性,一般只能考虑定义法。在关于抽象函数不等式问题的解决中,单调性起到重要的作用。
3. 涉及抽象函数的问题类型 3.1 求抽象函数的定义域: (1)已知xgf的定义域,求xhf的定义域; (2)求若干个函数进行四则运算后所得到的新函数的定义域。 3.2 求抽象函数的值域: (1)已知函数xf的值域,求xfg的值域; (2)已知函数xfg的值域,求xf的值域; (3)已知函数xf满足的某些关系式或条件,求xf的值域。 3.3 求抽象函数的函数值: (1)已知函数xf满足的某些关系式或条件,根据已知条件可以求得xf的周期,求函数在某一特定点的函数值; (2)已知函数xf满足的某些关系式或条件,根据已知条件求不出xf的周期,求函数在某一特定点的函数值。 3.4 求抽象函数的解析式: (1)已知表达式xhxgf,求xf的解析式; (2)已知xf的某些性质或满足某些条件,求xf的解析式。 3.5 与函数单调性,周期性,奇偶性相关的问题: (1)判断函数的单调性,周期性,奇偶性; (2)解不等式问题; (3)函数存在性问题。 第 4 页 共 18 页
4. 解决抽象函数问题的方法技巧 4.1 定义域 (1)已知xgf的定义域,求xhf的定义域。 该类问题需明确两点:一是明确函数定义域的定义(指自变量x的取值范围);二是明确在同一对应法则f下,xg和xh的取值范围是一样的。
例1.若函数(21)fx的定义域为31,2,则函数2(log)fx的定义域为 分析:如前所述,函数2(log)fx和函数(21)fx的定义域都是指x的取值范围,而非x2log和12x的取值范围。并且12x和x2log的取值范围是一样的。因而可根据
(21)fx中x的取值范围是31,2,求解出12x的取值范围,即x2log的取值范围,再从中解出x的取值范围,即所求定义域。 解:由(21)fx的定义域为31,2,可知x31,2, 4121x
,故4log12x,解得4221x ,
2(log)fx的定义域为42,21.
(2)求若干个函数进行四则运算后所得到的新函数的定义域。 该类问题的解决依然首先要明确函数的定义域是使得函数有意义的自变量的取值范围,所以求得新函数的定义域要在使得组合前每个函数有意义的基础上,还保证组合后的新函数也有意义,也就是取各个函数定义域的交集。但有一点需要注意,若该运算是商的形式,还要保证处于分母位置的函数不为0。
例2.若xf的定义域为35,,则()()(25)xfxfx的定义域为 第 5 页 共 18 页
解:由已知,xf的定义域为35,, 根据例1的求法可求得:xf的定义域为3,5, 52xf的定义域为15,1,
从而()()(25)xfxfx的定义域为3,515,1,即为3,1。
例3.函数xxxf1,xxxg12,xxh3,求下列函数的定义域: ① xgxf; ②xhxf; ③ xghxhf. 分析:第①、②问的两个新函数整理后都不再含分式,所以其定义域会误认为分别是实数集和非负实数集,其实不然。这里需要注意,虽然在组合成新函数时,原函数的分母被抵消或约掉,但是仍然要保证每个原函数都有意义,故在求新函数的定义域时,必须先分别求出每个函数的定义域,再做交集。而第③问中的新函数在前面所述的基础上还要再注意一点,分母不能为0,所以还要要求xgh不为0。 解:由已知,xf定义域是0xxA;xg定义域是0xxB;xh定义域是0xxC. 所以 ① xgxf的定义域是BA=0xx;
② xhxf的定义域是BA=0xx;
③ xxxhf3
1
3,xxxgh132,
xhf的定义域是0xxM,xgh的定义域是10xxxN或,
令0132xxxgh,得1x,令1xxP xgh
xhf的定义域是PNM0xx.