新型无机材料
- 格式:docx
- 大小:118.91 KB
- 文档页数:4
新型无机非金属材料制备工艺引言新型无机非金属材料是一类在材料科学领域中具有重要应用潜力的材料。
与传统的金属材料相比,无机非金属材料具有更高的硬度、更好的耐腐蚀性能、更低的导热系数和更好的绝缘性能。
因此,新型无机非金属材料在航空航天、电子器件、能源存储等领域得到广泛应用。
本文将介绍一种常见的新型无机非金属材料制备工艺,包括原材料准备、混合、成型和烧结等步骤。
同时,还将讨论一些常见的材料制备问题和改进措施,以提高制备效率和材料性能。
原材料准备新型无机非金属材料的制备过程通常需要使用一些原材料,如粉末、化学品等。
在开始制备工艺之前,需要对原材料进行准备。
首先,需要选择适当的原材料。
根据材料的要求和性能需求,确定所需原材料的种类、纯度和颗粒大小。
然后,对原材料进行粉碎。
一般情况下,原材料需要经过粉碎设备进行粉碎处理,以获得所需的颗粒大小。
粉碎过程中需要注意避免杂质的混入,以确保最终材料的纯度和性能。
最后,对原材料进行筛选和干燥。
通过筛选可以去除不需要的颗粒大小,确保原材料的一致性;通过干燥可以去除原材料中的水分,防止在后续的制备过程中出现问题。
混合混合是制备新型无机非金属材料过程中的关键步骤之一。
通过混合,可以将不同的原材料均匀地混合在一起,以形成均一的混合物,为后续的成型和烧结过程做好准备。
混合过程需要根据具体材料的特性来选择适当的混合设备。
常见的混合设备包括球磨机、搅拌机等。
在混合过程中,需要控制混合时间和混合速度,以确保混合得到充分和均匀。
此外,还可以根据需要添加一些助剂,如增湿剂、黏合剂等,以提高混合效果和成型性能。
成型成型是将混合后的材料加工成所需形状和尺寸的过程。
常见的成型方法包括压制、注射成型、喷涂等。
压制是一种常见的成型方法,适用于制备块状和板状材料。
在压制过程中,将混合好的材料放入模具中,然后施加足够的压力使材料在模具中形成所需形状。
压制过程中需要根据具体材料的性质和成型要求来选择适当的压力和温度。
专业论文学校:天水师范学院班级:2012级应化1班姓名:汪治华学号:20122060155几种新型无机材料简介材料是人类生存和发展的物质基础,也是一切工程技术的基础。
现代科学技术的发展对材料的性能不断提出新的更高的要求。
材料科学是当前科学研究的前沿领域之一。
以材料科学中的化学问题为研究对象的材料化学成为无机化学的重要学科之一。
材料主要包括金属材料、无机非金属材料、复合材料和高分子材料等各类化学物质。
这里简单介绍几种新型无机材料。
●氮化硅陶瓷材料氮化硅(Si3N4)陶瓷是一种高温结构陶瓷材料,属于无机非金属材料。
在Si3N4中,硅原子和氮原子以共价键结合,使Si3N4具有熔点高、硬度大、机械强度高、热膨胀系数低、导热性好、化学性质稳定、绝缘性能好等特点。
它在1200℃的工作温度下可以维持强度不降低。
氮化硅可用于制作高温轴承、制造无冷却式陶瓷发动机汽车、燃气轮机的燃烧室和机械密封环等,广泛应用于现代高科技领域。
工业上普遍采用高硅与纯氮在较高温度下非氧化气氛中反应制取Si3N4:3Si+2N2 Si3N4采用化学气相沉积法也可以得到纯度较高的Si3N4:3SiCl4 +2N2 +6H2 Si3N4 +12HCl除Si3N4外,高温结构陶瓷还有SiC,ZrO2,Al2O3等。
●砷化镓半导体材料砷化镓(GaAs)是一种多用途的高技术材料。
除了硅之外,GaAs已成为最重要的半导体材料。
砷化镓是亮灰色晶体,具有金属光泽,质硬而脆。
GaAs的晶体结构与单质硅和金刚石相似。
它在常温下比较稳定,不与空气中的氧气和水作用,也不与HCl,H2SO4等反应。
砷化镓是一种本征半导体,其禁带宽度比硅大,工作温度比硅高(50~250)℃,引入惨杂元素的GaAs可用于制作大功率电子元器件。
GaAs中电子运动速度快,传递信息块,GaAs可用于制造速度更快、功能更强的计算机。
GaAs中的被激发的电子回到基态是以光的形式释放能量,它具有将电能转换为光能的性能,可作为发光二极管的发光组分,也可以制成二极管激光器,用于在光纤光缆中传递红外光。
专题二:新型无机材料概述无机非金属材料概述⏹无机非金属材料的定义除金属材料和高分子材料外的材料,或者除金属外的无机材料都称为无机非金属材料。
⏹无机非金属材料的分类按材料结构状态可分为1、非晶态材料:玻璃、非晶薄膜2、晶态材料:单晶(硅晶)、多晶(陶瓷、水泥)3、混合态材料:液晶、微晶玻璃按材料发展历程分:1、传统无机非金属材料:主要指含硅物质为原料经加热制成的硅酸盐材料:水泥、玻璃、陶瓷、耐火材料2、新型无机非金属材料:主要指新近发展或正在发展的具有优异性能和特殊功能,对科学技术尤其是对高技术的发展和产业具有决定意义的的无机非金属材料精细陶瓷、新型玻璃、能源材料、智能材料、人工晶体传统无机非金属材料:水泥1、主要性质:水化性、水硬性抗硫酸盐性、膨胀性、耐高温性2、原料条件:石灰石、黏土、辅助原料(包括石膏)3、设备装置:水泥回转窑(干法或湿法)立窑(普通和机械)4、反应条件:高温5、水泥成分:硅酸三钙、硅酸二钙、铝酸三钙、游离氧化钙3CaO·SiO2、2CaO·SiO2、3CaO·Al2O36、常见水泥制品:水泥砂浆、混凝土、钢筋混凝土⏹水泥的分类☐硅酸盐水泥,即国外通称的波特兰水泥☐铝酸盐水泥☐硫铝酸盐水泥☐铁铝酸盐水泥☐氟铝酸盐水泥☐以火山灰或潜在水硬性材料及其他活性材料为主要组分的水泥⏹水泥技术性质☐细度☐凝结时间☐安定性☐强度☐碱含量☐水化热水泥生产工艺:两磨一烧熟料水泥冷却加石膏磨细磨烧磨水泥水泥制品水泥电阻普通玻璃1、定义:一种较为透明的固体物质,在熔融时形成连续网络结 构,冷却过程中粘度逐渐增大并硬化而不结晶的硅酸盐类非金属材料2、原料条件:纯碱、石灰石和石英3、设备装置:高温玻璃熔炉4、主要成分:CaO · Na 2 O ·6SiO 25、常见玻璃:窗用玻璃、玻璃器皿、建筑幕墙玻璃、特种建筑玻璃(节能、自洁净、抗菌环保等)6、普通玻璃的生产流程:原料混合→高温融制→快速冷却→后加工加工(退火、镀膜等)⏹普通玻璃的分类☐引上法平板玻璃(分有槽/无槽两种)☐平拉法平板玻璃☐浮法玻璃⏹玻璃通性☐各向同性:均质玻璃在各个方向的性质如折射率、硬度、弹性模量、热膨胀系数等性能相同☐介稳性:当熔体冷却成玻璃体时,它能在较低温度下保留高温时的结构而不变化☐可逆渐变性:熔融态向玻璃态转化是可逆和渐变的☐连续性:熔融态向玻璃态转变时物理化学性质随温度变化是连续的传统陶瓷1、定义:指所有以粘土等无机非金属矿物为原料的工业产品,是陶器和瓷器的总称2、原料条件:粘土(高岭石、叶蜡石、蒙脱土等)3、设备装置:高温窑4、常见传统陶瓷:陶瓷器皿、建筑陶瓷、卫生洁具、工艺陶器5、传统陶瓷的生产流程:配料→原料混合→成型→干燥→烧制→冷却→陶瓷制品釉料制备及施釉⏹传统陶瓷的分类☐日用陶瓷☐艺术陶瓷☐建筑卫生陶瓷⏹传统陶瓷共性☐耐腐蚀☐易碎,抗压强度大,而抗拉、抗弯、抗冲击强度较小☐耐高温☐表面特性⏹耐火材料⏹定义:是由多种不同化学成分及不同结构矿物组成的非均质体,由较高熔点的化合物组成⏹功能:抵抗高温,满足高温使用条件⏹组成:颗粒相及基质相⏹分类☐按化学特性、化学成分分类,分为硅铝系耐火制品、碱性耐火制品、含锆耐火制品、含碳耐火制品☐按制造工艺和烧制方法分类,分为定形耐火材料、不定形耐火材料、隔热耐火材料和特殊耐火材料等☐也可分为非氧化物系和氧化物系匣钵推板三明治棚板铸管、套管新型无机非金属材料:⏹新型玻璃:⏹人工晶体:⏹新型陶瓷:专题报告⏹纳米材料:专题报告⏹多孔材料:⏹无机(光学)纤维:⏹薄膜(涂层)材料:专题报告⏹生物材料:自学⏹半导体材料:自学⏹新能源材料:自学新型玻璃材料⏹新型玻璃是指除平板玻璃和日用器皿玻璃以外的,采用精确、高纯或新型原料,采用新工艺在特殊条件下或严格控制形成过程制得的具有特殊功能或特殊用途的玻璃⏹新型玻璃的特点1、成分:(硅、硼、磷、锗、铅)酸盐、卤族、硫族等2、形状:板状、薄膜、纤维3、玻璃态:单一玻璃态、乳浊玻璃、微晶玻璃、泡沫玻璃4、功能:光、电、磁、声、生物等5、制备工艺:坩埚、池窑、电加热、真空熔炼等⏹新型玻璃材料的分类光学纤维、激光玻璃、红外玻璃1. 光学玻璃材料:SiO22. 电磁玻璃材料:液晶显示器用导电玻璃、磁性玻璃3. 热学玻璃材料:抗热震性、耐热、导热、透明微晶玻璃4. 力学及机械玻璃材料:云母切削微晶玻璃、氧氮玻璃等5. 生物化学玻璃材料:生物微晶玻璃、自清洁玻璃、多孔玻璃⏹新型玻璃材料的制备常规方法:原料混合→高温融制→成型→冷却→热处理(退火或核化晶化)→后精加工(镀膜)新方法:溶胶-凝胶法、气相沉积法、高速冷却法等新型玻璃材料(光导纤维)处于高温下的光导纤维光缆新型玻璃材料(微晶玻璃)微晶玻璃轴承计算机硬盘基板天文望远镜镜坯LCD面板微晶玻璃装饰板电器配套面板人工晶体材料⏹人工晶体定义是指采用人工合成技术及方法制备的晶体。
新型无机功能材料研究与发展随着科学技术的不断进步,无机材料领域一直都是科学家们关注的重点之一。
在过去的数十年里,无机材料已经取得了一系列的重要进展。
而在当今世界中,随着国际化和不断发展的经济需求,新型无机材料的研究和发展已成为全球高科技竞争的焦点。
随着人们对于功能材料应用的需求不断增加,新型无机功能材料的研究和发展成为了无机材料领域的趋势。
在新型无机功能材料的研究和发展过程中,学界和产业界都做出了大量的投入。
这些新型无机功能材料具有很多特殊的性质,例如优异的力学性能、磁性、电学性能等等。
因此,这些材料在许多领域都有着广泛的应用,如传感器、光电子、光电器件、储能器件、催化剂、生物材料等等。
从研究的角度来看,无机材料中的新型无机功能材料更像是一项跨学科的研究。
该领域中的研究人员涉及到材料学、化学、物理、电子学等多个领域。
这有助于在材料的性质和化学组成之间建立关联。
新型无机功能材料的研究和发展是一个复杂的过程。
首先,需要研究人员对材料进行设计和制备,以确保所需性能的实现。
其次,材料的性能和特性也是需要精细的测试和分析的。
这样才能确保材料是符合其预期应用的。
最后,研究人员还需要进行长期的实际应用试验,以确定这些材料的可靠性和实际的应用效果。
在新型无机功能材料中,纳米材料也是备受研究人员关注的一个重要领域。
通过纳米结构的设计和制备,这些材料的独特性能可以被进一步提高。
在过去的几年中,纳米技术的不断发展,使得现在已经可以制备出纳米级别的无机功能材料。
这些新型纳米无机材料在生物医学、电化学和光学领域均有着广泛的应用。
当然,新型无机功能材料的研究和发展需要不断进行创新。
这就需要研究人员不断地深入探究材料的特性和性能。
另外,也需要制定更完善的研究计划和科研支持政策,以确保新型无机功能材料的研究和发展可以得到长期的发展。
总而言之,新型无机功能材料的研究和发展对于现代科技的进步有着至关重要的作用。
不断改进和研究无机材料的新特性,可以为人类的生产和生活带来更多的福祉。
功能陶瓷研究进展与发展趋势
【摘要】功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。
功能陶瓷材料种类繁多,用途广泛,主要包括铁电、压电、介电、热释电、半导体、电光和磁性等功能各异的新型陶瓷材料。
它是电子信息、集成电路、移动通信、能源技术和国防军工等现代高新技术领域的重要基础材料。
随着现代新技术的发展,功能陶瓷及其应用正向着高可靠、微型化、薄膜化、精细化、多功能、智能化、集成化、高性能、高功能和复合结构方向发展。
关键词:功能陶瓷材料;研究进展;趋势
利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料称为功能陶瓷。
功能陶瓷种类繁多,用途各异。
例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料。
功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前己发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。
近十年来,在人类社会对能源、计算机、信息、激光和空间等现代技术的迫切需求的牵引下,随着微电子技术、光电子技术、计算技术等高新技术的发展以及高纯超微粉体、厚膜和薄膜等制备工艺的进一步完善,功能陶瓷在新材料探索、现有材料潜在功能的开发和材料、器件一体化以及应用等方面都取得了突出的进展,成为材料科学和工程中最活跃的研究领域之一,也成为现代微电子技术、光电技术、计算技术、激光技术等许多高技术领域的重要基础材料。
当前功能陶瓷发展的趋势可以归纳为以下几个特点:复合化,多功能化,低维化,智能化和设计、材料、工艺一体化。
单一材料的特性和功能往往难以满足新技术对材料综合性能的要求,材料复合化技术可以通过加和效应与藕合乘积效应开发出原材料并不存在的新的功能效应,或获得远高于单一材料的综合功能效应。
最近提出的梯度功能材料也可看作一类特殊的复合材料。
功能性与结构性结合的材料,或者具有多种良好功能性的材料,为提高产品的性能和可靠性,促使产品向薄、轻、小发展提供了基础。
当材料的特征尺寸小到纳米级,由于量子效应和表面效应十分显著,可能产生独特的电、磁、光、热等物理和化学特性,功能陶瓷进入纳米技术领域是研究的热点之一,如铁电薄膜和超细粉体的制备等。
智能材料是功能陶瓷发展的更高阶段,它是人类社会的需求和现代科学技术发展的必然结果。
一、研究现状
1、导电陶瓷
导电陶瓷具有良好的导电性能,而且能耐高温,是磁流体发电装置中集电极的关键材料。
半导体陶瓷指采用陶瓷工艺成型的多晶陶瓷材料。
与单晶半导体不同的是,半导体陶瓷存在大量晶界,晶粒的半导体化是在烧结工艺过程中完成的,因此具有丰富的材料微结构状态和多样的工艺条件,特别适用于作为敏感材料。
除半导体晶界层陶瓷电容器外,目前已使用的敏感材料,主要有热敏材料、电压敏材料、光敏材料、气敏材料、湿敏材料等。
如PTC(positive temperature coefficient的缩写)材料在国内无论是基础理论研究还是工业生产规模都有长足进步,其应用范围已渗透到航天、航空、航海、无线通讯、有线通讯、电子工业和民用电器等各个领域。
而铬酸镧(La-CrO3)是一种钙钛矿型(ABO3)复合氧化物,具有很高的熔点(2490℃),它在掺杂Ca、Sr和Mg 等二价碱土金属后具有很多特殊的性质。
在高温发热材料、固体氧化物燃料电池连接材料、催化剂、NTC热敏电阻等方面都得到广泛的应用,是一种很有前途的功能陶瓷材料。
高温超导陶瓷指相对金属而言具有较高超导温度的功能陶瓷材料。
从20世纪80年代对超导陶瓷的研究有重大突破以来,对高温超导陶瓷材料的研究及应用就倍受关注。
目前高温超导材料的应用正朝着大电流应用、电子学应用、抗磁性等方面发展。
2、压电陶瓷
压电陶瓷的晶体结构上没有对称中心,因而具有压电效应,即具有机械能与电能之间的转换和逆转换的功能。
压电陶瓷材料具有成本低、换能效率高、加工成型方便等优点,常用于制作压电器材、滤波器、谐振器和变压器等。
常用的压电元件:传感器、气体点火器、报警器、音响设备、医疗诊断设备及通讯等。
通常的压电材料是PZT,新型的压电陶瓷材料主要有高灵敏、高稳定压电陶瓷材料,电致伸缩陶瓷材料、热释电陶瓷材料等。
压电陶瓷作为电、力、热、光敏感材料,在超声换能、传感器、无损检测和通讯技术等领域已获得了广泛的应用。
3、纳米功能陶瓷
纳米功能陶瓷是指通过有效的分散、复合而使异质相纳米颗粒均匀、弥散地保留于陶瓷基质结构中而得到的复合材料,当其具有某种特殊功能时便称之为纳米功能陶瓷。
纳米功能陶瓷的性能是和其特殊的微观结构相对应的,它的性能不仅取决于纳米材料本身的特性,还取决于纳米材料的物质结构和显微结构。
4、光催化功能陶瓷
先制备钛酸溶胶和掺入Fe3+的钛酸溶胶,用溶胶-凝胶法分别将它们负载于炻器管和矩形蜂窝陶体上,再用程序升温法煅烧得到纳米TiO2光催化功能陶瓷。
经扫描电镜(SEM)测定炻器载体上负载的光催化膜厚度为300~400nm,TiO2的粒径为15~20nm。
将光催化炻器管用于模拟苯酚废水和某地表水的处理试验,在紫外光强一定、流速为40ml/min条件下的结果表明无论掺Fe3+与否的TiO2光催化炻器管都有净化效果。
其中以掺Fe3+最好,苯酚去除率为70.3%,灭菌率亦能达到99.5%。
将光催化蜂窝陶瓷体用于净化空气试验时,在紫外光强、循环风量一定的条件下,其净化效果也是以掺Fe3+的TiO2最好。
5、陶瓷泡沫
陶瓷泡沫(Ceramic Foam)含有大量的亚结构一胞单元,具有比表面积大、热导率低、耐热性能优异等特性,这些性质引起学者们极大地关注。
根据其结构组成特点,可将其分为开孔泡沫和闭孔泡沫。
由固体棱柱组成的具有三维网络结构的泡沫体,称为开孔泡沫体,如图1(a)所示。
由棱柱和壁面组成的具有空腔结构的泡沫体,称为闭孔泡沫体,如图1(b)所示。
(a)开孔陶瓷泡沫(b)闭孔陶瓷泡沫
图1
陶瓷泡沫材料的发展始于20世纪70年代,Schwartzwalder运用有机泡沫浸渍法制备了高孔隙率陶瓷,并将其过滤熔融金属,大大提高了产品质量。
陶瓷泡沫产品极大的商业价值引起了科技界的重视,各国陆续开展相关的研究工作。
我国在陶瓷泡沫力一面的研究工作始于20世纪80年代初,据报道,哈尔滨工业大学于1982年研制出用于铝合金过滤的陶瓷泡沫过滤器。
此后,南昌航空工业学院、上海机械制造工艺研究所等单位先后开展了相关工作。
近年来,陶瓷泡沫材料的应用又扩展到航空、电子应用、热能管理等领域,展现出良好的应用前景。
二、功能陶瓷发展的趋势
当前功能陶瓷发展的趋势可以归纳为以下几个特点:复合化,多功能化,低维化,
智能化和设计、材料、工艺一体化。
单一材料的特性和功能往往难以满足新技术对材料综合性能的要求,材料复合化技术可以通过加和效应与耦合乘积效应开发出原材料并不存在的新的功能效应,或获得远高于单一材料的综合功能效应。
最近提出的梯度功能材料也可看作一类特殊的复合材料。
功能性与结构性结合的材料,或者具有多种良好功能性的材料,为提高产品的性能和可靠性,促使产品向薄、轻、小发展等方面提供了基础。
当材料的特征尺寸小到纳米级,由于量子效应和表面效应十分显著,可能产生独特的电、磁、光、热等物理和化学特性,功能陶瓷进入纳米技术领域是研究的热点之一,如铁电薄膜和超细粉体的制备等。
智能材料是功能陶瓷发展的更高阶段,它是人类社会的需求和现代科学技术发展的必然结果。
参考文献
【1】_功能陶瓷材料的制备与研究进展探讨.pdf
【2】_功能陶瓷材料研究进展综述.pdf
【3】_功能陶瓷研究进展与发展趋势.pdf
【4】一种新型多功能陶瓷泡沫材料的研究进展.pdf
【5】_新型功能陶瓷材料的分类与应用.pdf。