钢便桥计算书(midas Civil 2019建模)
- 格式:docx
- 大小:37.69 KB
- 文档页数:4
MIDAS钢箱梁计算书1.1B07~F03 D07~H03 50.5+65+50.5m(桥宽10m)钢箱梁1.1.1计算参数及参考规范(1)标准设计荷载:城-A级;桥梁安全等级为一级,结构重要性系数1.1;(2)主要材料钢箱梁采用Q345D 钢材,桥面板采用C40混凝土。
(3)参考规范《公路钢结构桥梁设计规范》报批稿,《公路钢筋混凝土及预应力混凝土桥涵设计规范》。
1.1.2主要计算内容结构纵向整体应力,即主梁体系,采用三维有限元建模分析,采用梁格模型,计算主梁顶、底板最不利应力。
1.1.3纵向整体计算1.1.3.1.1计算模型纵向整体计算采用三维有限元建模分析,采用梁格法模型进行模拟。
参照《公路钢结构桥梁设计规范》报批稿进行钢梁有效分布宽度的计算。
根据桥面布置,汽车按最不利情况进行影响线加载。
温度考虑整体升降温20度和梯度温度。
永久支承按简支支承条件进行约束。
全桥共划分为241个单元,162个节点。
结构计算几何模型如下图:计算几何模型1.1.3.1.2计算荷载(1)一期恒载主梁顶、底和腹板采用实际板厚,钢材重力密度78.5kN/m 3,单元重力密度考虑各种加劲肋和焊缝实际重量提高1.24倍;混凝土桥面板重力密度25kN/m 3。
沥青混凝土重力密度24kN/m 3。
(2)二期恒载1.1.3.1.3计算参数(1)钢材材料特性如下表:结构钢材性能表应用结构钢箱加劲梁材质Q345D 力学性能弹性模量E(MPa) 210000 剪切模量G(MPa)81000 泊松比γ0.3 轴向容许应力[σ] (MPa)200 弯曲容许应力[σw] (MPa)210 容许剪应力[τ] (MPa) 120 屈服应力[σs] (MPa) 345 热膨胀系数(℃)0.000012(2)梯度温差:参照混凝土规范规定:升温取T1=14°C,T2=5.5°C,负温度效应按照一半考虑。
(3)基础变位:主墩沉降2cm,边墩沉降1cm。
钢便桥结构受力计算书一、计算依据:1、钢便桥设计图2、《公路桥涵钢结构及木结构设计规范》二、概述钢便桥设计4M一跨,采用D500mm钢管支撑,纵向I40a工字钢,横向I20a工字钢联结,上铺钢板。
根据施工要求,该桥需承载16T吊车,计算时,根据吊车本身重量及承吊重量,荷载按250KN考虑,施工人员和小型施工机具荷载3.0KN/M2考虑施工,根据吊车轮轴及轮距以及《公路工程技术标准》中公路---I级汽车荷载标准值,按最不利受力考虑:纵向I40a工字钢承受集中荷载65KN,受力位置在每跨工字钢1/2处;横向I20a工字钢间距45cm,按每2根工字钢承受集中荷载65KN,受力位置在每跨工字钢1/2处。
三、计算参数取值说明:1、I40a工字钢:Ix=21700cm4 d=10.5mm 断面面积:86.112cm2Wx=1090cm3 Sx=636.42、I20a工字钢:Ix=2370cm4 d=7.0mm 断面面积:35.58cm2Wx=237cm3 Sx=137.8四、I20a工字钢受力计算1、弯曲强度Mmax=q*L/4=32.5*4/4=32.5KN.Mσmax=Mmax/ Wx=32.5*1000000/(237*1000)=137.13Mpa<[σw]=145Mpa满足要求2、剪切强度Qmax= q*L/2=32.5*4/2=65KNτmax= Qmax*Sx=65*1000*137.8*1000/(2370*10000*7)=53.99 Mpa<[τw]=85Mpa满足要求3、挠度计算f c=PL3/(48EI)=32.5*4*4*4*10^9*10^3/(48*200*10^3*2370*10^4)=9.1mm<[f]=L/400=10mm 满足要求五、I40a工字钢受力计算1、弯曲强度Mmax=q*L/4=65*4/4=65KN.Mσmax=Mmax/ Wx=65*1000000/(1090*1000)=59.63Mpa<[σw]=145Mpa满足要求2、剪切强度Qmax= q*L/2=65*4/2=130KNτmax= Qmax*Sx=130*1000*636.4*1000/(21700*10000*10.5)=36.31 Mpa <[τw]=85Mpa满足要求3、挠度计算f c=PL3/(48EI)=65*4*4*4*10^9*10^3/(48*200*10^3*21700*10^4)=2mm<[f]=L/400=10mm 满足要求六、D500钢管1、立杆受力验算两层工字钢自重:18KN钢板自重:5.7KN重车集中荷载:130KN则计算荷载:18+5.7+130=153.7KN按每跨四根D500钢管共同承受83.7KN 荷载,则每跟钢管承受竖向荷载为: N=153.7/4=38.43KN<[N 容]=261.01KN 满足要求 22)(l EI P cr μπ= =3.14*200*1000*37405.87*10^4/(2*15*1000)^2=261009.85N=261.01KN其中μ取2,l 取15M 。
目录1。
工程概况 (1)2.参考规范及计算参数 (3)2。
1.主要规范标准 (3)2。
2.计算荷载取值 (3)2。
3.主要材料及力学参数 (4)2。
4.贝雷梁性能指标 (5)3。
.................................................................................................................................. 上部结构计算6 3。
1.桥面板计算 (6)3。
2.16b槽钢分布梁计算 (6)3.3。
贝雷梁内力计算 (7)4。
............................................................................................................... 杆系模型应力计算结果114.1.计算模型 (11)4。
2.计算荷载取值 (12)4.3。
贝雷梁计算结果 (13)4。
4.墩顶工字横梁计算结果 (21)4.5。
钢立柱墩计算结果 (24)5.下部结构验算 (26)6.稳定性验算 (28)7。
.................................................................................................................................................... 结论281.工程概况根据现状道路控制条件,李家花园隧道拓宽改造工程钢便桥跨径布置为6m+9m+24m (27m)+12m。
桥面宽度每跨等宽,第一跨为12.629m,第二跨15.4m,第三跨20.4m(23.4m),第四跨28。
673m。
第三跨20.4m宽度跨径为24m,另外3m范围跨径27m。
钢便桥上部结构选用贝雷梁,27m跨径选用单排单层加强型贝雷梁,布置间距为0。
钢栈桥承重梁计算书一、设计荷载:考虑到车辆制动力、冲击力、砼输送泵重力等影响,为偏安全考虑,同时为简化计算,荷载按集中荷载单车60t,另外根据《公路工程设计标准》,对于非公路桥梁,取人群荷载0.1t/m2。
二、第一跨25米承重梁计算1、采用材料:上弦杆为32b槽钢、18槽钢;竖杆、斜杆为75*75*8角钢,下弦杆为125*125*10角钢,桥面铺设钢板及木方,自重1t/m。
第一跨共4榀钢桁架,每榀桁架受力为1/4荷载。
2、B截面受力计算:(1)取跨中B截面,当荷载作用于跨中位置时,为最不利受力组合。
=(P+ql)÷2=11t支座反力P反由∑Y=0得S2=(P+ql-P)÷√2/2=(15t+0.275t/m×12.5m-11t)÷√2/2 反≈10.52t由∑M B=0,×12.5m+ql2/2=0S1×1.6m+√2/2×S2×1.6m-P反可得S1=65t由∑X=0可得 S3=72.4t(2)斜杆应力计算已知条件: A=2*11.503cm2回转半径r=3.57cm计算长度L=2.26m细长比λ=L/r=63.3查表得φ=0.871应力σ=N/A·φ=535Kg/cm2<[σ]=1700Kg/cm2满足受力要求(3)下弦杆应力计算已知条件:A=2*24.373cm2回转半径r=3.98cm计算长度L=1.6m细长比λ=L/r=40.2查表得φ=0.937应力σ=N/A·φ=1585Kg/cm2<[σ]=1700Kg/cm2满足受力要求(4)上弦杆应力计算(2[ 18 )已知条件:Wx=2*152.2cm3A=2*29.29cm2成都市路桥工程股份有限公司绵阳会客厅一号桥项目经理部 第 3 页 共 8 页回转半径r=7.24cm计算长度L=1.6ma 、压杆应力细长比λ=L/r=22.1查表得φ=0.977应力σ1=N/A ·φ=65t/2*29.29cm2·0.977=1128.6Kg/cm 2b 、集中荷载弯曲应力M=PL/4=3.75t*1.6m/4=1.5t ·mσ2=M/W=1.5t ·m/2*152.2cm 3=492.8 Kg/cm 2压弯组合应力σ=σ1+σ2=1128.6+492.8=1621.4 Kg/cm 2<[σ]=1700Kg/cm 2满足受力要求3、 A 截面受力计算Mmax=P 反*1.6235m+q*1.6235m 2/2=16.17 t ·m截面应力σ=Mmax/W=16.17*105/509.012*2=1588.4 Kg/cm 2<[σ]=1700Kg/cm 2 满足受力要求4、 支座截面验算(取河堤支座位置)支座最大剪力Qmax=P+ql/2=60t+1.1t/m ×25m/2=73.75tτmax=Q ·∑Sx/Ix ·δ=73.75t ·2420cm 3/64454.4cm 4·8cm=346kg/cm 2<[τ]=1000kg/cm 2满足要求式中∑Sx=302.5cm 3×2×4=2420cm 3Ix=8056.8cm 4×8=64454.4cm 4δ=8×1cm=8cm二、12米标准跨承重梁受力计算1、跨中截面验算(1)采用材料:H600型钢;截面模数Wx=4020cm3;截面面积A=192.5cm2;惯性矩Ix=cm4;弹性模量E=2.1×106kg/cm2;(2)受力荷载图:为偏安全考虑,按4根承重梁承受主要荷载计算,即不考虑人行道外侧两根钢梁。
施工用临时钢桥计算书
一、计算条件
1)设计断面:
横断面图
纵断面图
2)计算荷载:
永久荷载:钢桥上部结构自重
作用荷载:人群荷载——5Kpa
汽车荷载——总重100t挂车(车自重+载重100t以内),共四轴,轴重均为250kN。
挂车荷载图式
分项系数:永久荷载1.2 汽车荷载1.4 汽车荷载冲击系数1.3 二、建立计算模型
计算简图:
三、结构内力计算
承载能力极限状态持久组合采用下列公式计算:
1)桩力计算结果
最大桩力为:640.2kN
2)桩顶横梁2*I40c
桩顶横梁弯矩为:105.5kN.m
3)桥面横向分配梁I32c
桥面横向分配梁弯矩为:39.64kN.m 4)桥面纵向分配梁I16
桥面纵向分配梁弯矩为:6.54kN.m
四、承载能力计算
1) 桥面结构承载能力计算:
2)桩基承载能力计算:
本桥没有准确的钻探资料,仅参考“设计图15号桥墩”处地质图作初步分析,该处地质情况简图如下:
仅有地基土容许承载力,采用钢管桩缺少桩的极限侧阻力标准值和桩的极限端阻力标准值,无法进行准确的桩基承载力验算。
由上看
地质主要为风化岩层,假定其预制桩侧摩阻力为80kpa,端阻力为4000kpa,则桩基入土13米时其单桩垂直极限承载力设计值:Qd={2Π*(0.63/2)*13*80+Π*(0.63/2)2*4000*0.8}/1.5
=2037kN
桩基入土8米时,则为Qd =1509.32kN,单桩垂直承载力均能满足要求,因桩顶高程尚不明确,故桩基入土长度的确定还要考虑桩的自身稳定问题一并综合确定。
第1章钢便桥计算书1.1受力模型及材料参数钢栈桥验算采用有限元法,选取便桥的标准跨径作为计算模型,利用midas Civil 2019计算程序建模进行验算。
1.1.1跨径9m单排3根桩钢便桥结构模型图1.1-2 跨径9m单排3根桩便桥结构模型桥型1:栈桥上部结构为贝雷梁结构,下部结构为钢管桩加型钢承重梁结构。
栈桥基础及桥墩全部采用φ630mm厚10mm的螺旋焊接钢管桩,钢管桩按单排3根桩桩布置。
横联及斜撑采用[20a槽钢,钢管桩顶设双拼I45a工字钢帽梁。
桩顶横梁上架设贝雷梁,采用单层3组每组2片总计6片贝雷架结构,每组贝雷架采用定制支撑架连接,相邻贝雷架组采用∠75×8角钢连接,间距为90+125+90+125+90cm形成主纵梁,贝雷梁上设按30㎝间距布置I25a工字钢分配横梁与桥面10mm厚钢板经焊接固定成型的6m宽模块。
1.1.2材料参数铺装钢板厚度10mm,材料Q235钢。
分配横梁参数:材料Q235钢,截面I25a,长度6m。
主梁参数:采用321型贝雷片,材料为16Mn钢。
贝雷梁支撑架参数:材料Q235,材料为∠63×4角钢。
贝雷梁组间斜撑参数:材料Q235,材料为∠75×8角钢。
桩顶横梁参数:材料Q235钢,截面2×I45a,长度6m。
钢管桩参数:材料Q235钢,管型截面(外径630mm,厚度10mm)长度为13.4m。
根据《钢结构设计标准》GB50017-2017,钢材强度设计值可查表得:型钢材质均为Q235钢,其抗弯设计强度a 215][MP =σ,抗剪设计强度[]a 125MP =τ。
贝雷片材质为16Mn 钢,其容许弯应力[]a 273MP =σ,容许剪应力[]a 156MP =τ。
根据《公路钢结构桥梁设计规范》JTG D64-2015,挠度计算可查表得:2.边界条件钢管桩的底部固结;桩顶横梁和钢管桩采用弹性连接(刚性); 桩顶横梁和贝雷片弹性连接(刚性); 贝雷片和分配横梁采用弹性连接(刚性)。
本计算内容为针对沭阳县新沂河大桥拓宽改造工程钢便桥上、下部结构验算。
二、验算依据1、《沭阳县新沂河大桥拓宽改造工程施工图》;2、《沭阳县新沂河大桥拓宽改造工程钢便桥设计图》;3、《装配式公路钢桥使用手册》;4、《公路钢结构桥梁设计规范》JTGD64-2015;5、《钢结构设计规范》GBJ50017-2003;6、《路桥施工计算手册》;7、《公路桥涵地基与基础设计规范》JTG D63-2007;8、《沭阳县新沂河大桥拓宽改造工程便道便桥工程专项施工方案》。
三、结构形式及验算荷载3.1、结构形式北侧钢便桥总长60m,南侧钢便桥总长210m,上部均为6排单层多跨贝雷梁简支结构,跨径不大于9m;下部为桩接盖梁形式,盖梁采用45A双拼工字钢,桩基采用单排2根采用529*8mm钢管桩。
见下图:立面形式横断面形式钢便桥通行车辆总重600KN,重车车辆外形尺寸为7×2.5m,桥宽6m,按要求布置一个车道。
横向布载形式车辆荷载尺寸四、结构体系受力验算4.1、桥面板桥面板采用6×2m定型钢桥面板,计算略。
4.2、 25a#工字钢横梁(Q235)横梁搁置于6排贝雷梁上,间距1.5m。
其中:工字钢上荷载标准值为1.18KN/m;25a#工字钢自重标准值0.38KN/m。
计算截面抗弯惯性矩I、截面抗弯模量分别为:I =50200000mm4;W =402000mm3。
(1)计算简图:(2) 强度验算:抗弯强度σ=Mx/Wnx=46580000/402000 =115.9Mpa<[f]=190Mpa;满足要求!抗剪强度τ=VSx/Ixtw=167362×232400/(50200000×8)=96.8Mpa<ft =110Mpa;满足要求!(2) 挠度验算:f=M.L2/10 E.I=35.8*1.32/10*2.1*5020*10-3=0.57mm<L/400=3.3mm,则挠度满足要求。
^`钢便桥受力计算书 (1)1.1概述 (1)1.2计算范围 (1)1.3主要计算荷载 (1)1.4便桥主要控制计算工况 (1)1.5计算过程(手算) (1)§1.5.1活载计算 (2)§1.5.2桥面板计算 (2)§1.5.3 I12.6工字梁纵梁计算 (2)§1.5.4 I25a工字梁横梁计算 (3)§1.5.5 贝雷主梁计算 (5)§1.5.6 2根I32b桩顶横梁计算 (6)6电算复核 (7)钢便桥受力计算书1.1概述根据本便桥施工荷载要求,参照《公路桥涵设计通用规范》(JTGD60-2004)及《港口工程荷载规范》(JTJ254一98)。
由于本便桥使用时间较短,受自然条件影响较小,所以直接计算工作状态下荷载,风、雨等影响条件忽略。
便桥承受的荷载为自重、车辆荷载。
1.2计算范围计算范围为便桥的基础及上部结构承载能力,主要包括:桥面板→I12.6工字梁纵梁→I25a工字梁横梁→顺桥向贝雷梁→横桥向I32b工字钢→钢管桩。
1.3主要计算荷载恒载:结构自重;活载:9立方混凝土罐车荷载;冲击系数:汽车(1.1)荷载组合:1、恒载+汽车荷载1.4便桥主要控制计算工况①跨径为12m钢便桥在活载工况下的整体刚度、强度和稳定性;1.5计算过程(手算)本便桥主要供混凝土罐车、各种小型农用车走行,因而本便桥荷载按9立方米混凝土罐车荷载分别检算。
本便桥恒载主要为型钢桥面系、贝雷梁及墩顶横梁等结构自重。
并按以下安全系数进行荷载组合:恒载1.2,活载1.3。
根据《公路桥涵钢结构及木结构设计规范》规定:临时结构容许应力可提高 1.3(组合Ⅰ)、1.4(组合Ⅱ~Ⅴ)。
本便桥弯曲容许应力取MPa 2031454.1=⨯,容许剪应力取MPa 119854.1=⨯。
§1.5.1活载计算活载控制设计为9m3砼运输车(按车与载总重35t 计),参考国内混凝土运输车生产厂家资料及规范汽车-20级荷载布置,单辆砼运输车荷载为3个集中荷载70kN 、140kN 和140kN ,轮距为4.0m 、1.4m ,计入冲击系数1.1后,其集中荷载为77kN 、154kN 和154kN 。
工字钢临时便桥桥计算书1、编制依据及规范标准1.1、编制依据(1)、现行施工设计标准(2)、现行钢结构设计标准(3)、现行施工安全技术标准1.2、规范标准(1)、公路桥涵设计通用规范(JTGD60-2004)(2)、公路桥涵地基与基础设计规范(JTJ024-85)(3)、公路桥涵钢结构及木结构设计规范(JTJ 025-86)2、主要技术标准及设计说明2.1、主要技术标准桥面宽度:5.0m设计荷载:公路—Ⅰ级汽车荷载桥跨布置:1×10m2.2、设计说明2.2.1、桥面板栈桥桥面板材料为A3钢板,钢板厚度为15mm,钢板焊接在中心间距400mm 的I14工字钢纵梁上。
桥面板上设置间距600mm的Φ12钢筋防滑条。
2.2.2、工字钢纵梁桥面板下设置I14工字钢纵梁,工字钢纵梁中心间距400mm,顺桥向设置。
I14工字钢纵梁搁置在中心间距1200mm的I20a工字钢横梁上。
I14纵梁与桥面板及横梁均焊接牢固。
2.2.3、工字钢横梁I14工字钢纵梁下设置中心间距1200mm的I20a工字钢横梁,横桥向设置。
I20a横梁与主梁焊接牢固。
2.2.4、主梁栈桥采用8根I63c工字钢作为主梁,8根I63c主梁中心间距600mm。
主梁与I20a横梁焊接牢固。
2.2.5、基础墩、台基础采用C30混凝土扩大基础,基础进入河床冲刷线以下1.5米,基础底进入持力层。
基础高度2.0米2.2.6.桥墩、桥台桥墩桥台采用C30混凝土桥台,桥台前墙1:0.35,背墙直立。
台帽采用钢筋混凝土结构在主梁位置预埋δ=20mm的钢板,防止压碎桥台混凝土,台帽宽1米。
桥墩墩顶宽2米在顺桥向两侧采用1:0.35背坡。
2.2.7、附属结构便桥栏杆立柱采用Φ48×1000mm钢管焊接在I20a横梁上,钢管立柱间距1500mm,露出桥面板高1.2米,立柱间采用Φ20钢筋连接。
便桥桥头两侧设置两道警示灯,以便夜间起到警示作用。
3、主要工程数量表-14、荷载计算4.1、活载计算本栈桥主要供混凝土罐车、各种机械设备运输,本桥荷载按每孔公路—Ⅰ级汽车荷载检算,则活载为:公路—Ⅰ级汽车荷载:实际600KN4.2、荷载组合另考虑冰雪等偶然荷载作用,故按以下安全系数进行荷载组合:恒载1.2,活载1.3。
钢便桥计算书(midas Civil 2019建模)
1.1 受力模型及材料参数
钢栈桥的验算采用有限元法,选取便桥的标准跨径作为计算模型,并利用midas Civil 2019计算程序建模进行验算。
1.1.1 跨径9m单排3根桩钢便桥结构模型
图1.1-2为跨径为9m的单排3根桩便桥结构模型。
栈桥
上部结构为贝雷梁结构,下部结构为钢管桩加型钢承重梁结构。
栈桥基础及桥墩全部采用φ630mm厚10mm的螺旋焊接钢管桩,钢管桩按单排3根桩桩布置。
横联及斜撑采用[20a槽钢,钢管桩顶设双拼I45a工字钢帽梁。
桩顶横梁上架设贝雷梁,
采用单层3组每组2片总计6片贝雷架结构,每组贝雷架采用
定制支撑架连接,相邻贝雷架组采用∠75×8角钢连接,间距
为90+125+90+125+90cm形成主纵梁,贝雷梁上设按30㎝间
距布置I25a工字钢分配横梁与桥面10mm厚钢板经焊接固定
成型的6m宽模块。
1.1.2 材料参数
铺装钢板厚度为10mm,材料为Q235钢。
分配横梁参数:材料为Q235钢,截面为I25a,长度为
6m。
主梁参数:采用321型贝雷片,材料为16Mn钢。
贝雷梁支撑架参数:材料为Q235,材料为∠63×4角钢。
贝雷梁组间斜撑参数:材料为Q235,材料为∠75×8角钢。
桩顶横梁参数:材料为Q235钢,截面为2×I45a,长度为
6m。
钢管桩参数:材料为Q235钢,管型截面为外径630mm,厚度为10mm,长度为13.4m。
根据《钢结构设计标准》GB-2017,钢材强度设计值可查表得:型钢材质均为Q235钢,其
抗弯设计强度为215MPa,抗剪设计强度为125MPa。
贝雷片
材质为16Mn钢,其容许弯应力为273MPa,容许剪应力为
156MPa。
根据《公路钢结构桥梁设计规范》JTG D64-2015,
挠度计算可查表得:
2.边界条件
钢管桩的底部固结;
桩顶横梁和钢管桩采用弹性连接(刚性);
桩顶横梁和贝雷片弹性连接(刚性);
贝雷片和分配横梁采用弹性连接(刚性)。
3.荷载计算参数
自重G:自重系数取-1;
移动荷载P1:公路I级,相当于55吨车辆重,基频冲击
系数1.3;
静载P2:履带吊70t(轮距3.5m);
项目内河沟流速缓慢且变化平缓,动水压力不做考虑。
对以下三个工况进行计算:
表1.1-1为栈桥工况表,包括工况1、工况2和工况3.其中,工况1为公路I级正载移动荷载。
根据图1.2-3-3,工况3下便桥Q235钢构件受最大组合应
力为73.335MPa,小于215MPa的设计强度,因此满足要求。
同样地,根据图1.2-3-4,Q235钢构件最大剪应力为
14.553MPa,小于125MPa的设计强度,也满足要求。
根据图1.2-3-5,工况3下贝雷梁受最大组合应力为180.208MPa,小
于273MPa的容许弯应力,满足要求。
最后,根据图 1.2-3-5,贝雷梁最大剪应力为80.434MPa,小于156MPa的容许剪应力,也满足要求。
根据图1.2-3-6,工况3下钢管桩最大反力为KN,即24.662t。
钢管桩的稳定性需要进行计算。
首先,计算钢管截面的特性,得到截面面积为mm2,回转半径为219.232mm。
钢管桩最高为13.4m,计算其长细比为73.347.根据《钢结构设计标准》(GB-2017)中第7.2.1条,螺旋管截面为b类截面,查询附录D.0.2轴心受压构件的稳定系数为0.732.计算轴向应力为12.662MPa,小于157.38MPa的稳定系数乘215MPa 的设计强度,因此钢管桩稳定性满足要求。
综上所述,根据工况1和工况2的计算结果,最大位移分别为3.903mm和3.889mm。
根据工况3的计算结果,Q235钢弯和Q235钢剪受到的最大应力分别为73.335MPa和
14.553MPa,贝雷梁弯和贝雷梁剪受到的最大应力分别为180.208MPa和80.434MPa,钢管桩最大支反力为24.662t。
根据设计强度和容许应力的要求,所有构件的应力都满足要求,钢管桩的稳定性也满足要求。
因此,该便桥的设计是合理的。