midas设计示例验算说明
- 格式:pdf
- 大小:1.93 MB
- 文档页数:18
模型计算简要说明
1.模型参数选取
模板支架高度为4.7m,立杆横距为0.6m,纵距为0.9m,立杆竖向步距为1.2m,顶板模板支撑小梁采用10×10cm方木,间距20cm;主梁采用48*3.5钢管支撑,模板采用1.5cm竹胶板。
支架宽度范围为12m,高4.7m,为简化计算,纵向取9m分析。
本模型为考虑剪刀撑,属于偏安全验算。
计算荷载钢筋混凝土容重为26KN/m3,厚度为1m,考虑各种不利因素及结构安全系数,放大系数取1.4。
施加均布荷载: q=26×1×1.4=36.4 KN/m2
计算模型
模型荷载添加立面图
2、模型计算结果如下
(1)支架底部反力
从计算结果可以看出,最小反力为5.1KN,最大反力为19.8KN。
(2)支架应力
中间一排支架应力
应力计算结果
从应力云图上可以看出,支架最大压应力为44Mpa,拉应力仅为5.2 Mpa,小于钢管支架的容许压应力205 Mpa。
反力架验算(midas)目录一、设计总说明 (2)二、设计原则 (2)三、设计步骤 (3)四、结构设计 (3)4.1、主梁部分 (3)4.2、支撑部分 (3)4.3、预埋件部分 (4)五、反力架受力分析 (4)5.1、盾构始发时最大推力计算 (4)5.2、反力架荷载计算 (4)5.3、反力架材质强度验算 (5)5.4、ф600mm钢管支撑验算 (5)5.4.1、强度验算 (5)5.4.2、稳定性验算 (6)5.5、斜支撑底板强度验算 (7)六、结语 (7)反力架结构验算一、设计总说明(1)、该反力架为南昌市轨道交通1号线一期工程土建一标DZ012盾构机始发使用,本文验算使用于双港站至蛟桥站下行线盾构机始发(2)、反力架外作用荷载主要为盾构机始发掘进的总推力,根据进洞段的水文地质资料及洞口埋土深度结合上行线始发掘进经验、盾构机水土压力设为0.21MPA,不做推算。
(3)、参照《结构设计原理》、《结构力学》及其他施工标段成熟的设计经验,结合本标段现场实际情况进行反力架结构设计与验算。
(4)、对于螺栓连接、角焊缝连接处的设计,仅计算其最大受力弯矩和剪力值,而不做截面形式设计,可根据提供弯矩、剪力设计值来调整截面是否需要做加固处理。
(5)、力在钢结构中的传递不考虑焊缝的损失二、设计原则反力架的设计依据盾构机始发掘进反力支承需要,按照盾构机掘进反向力通过16组斤顶支承在隧道管片,隧道管片又支承在反力架的工作原理进行设计。
设计外形尺寸不得与盾构机各部件及隧道洞口空间相干扰,同时要求结构合理,强度、刚度满足使用要求,加工方便,且单件便于运输。
反力架支撑属于压杆,最佳受力状态便是尽量使截面在各个方向上的惯性矩相等,即(I y=I z),因此在此采用圆环形截面做支撑结构也是理想选择。
材料确定之后,接下来便要对支撑的结构进行合理的设计,总的设计原则便是让反力架整体变形达到最小。
三、设计步骤(1)、分析各杆件的类型,计算出各杆件的临界荷载。
目录1、编制依据 (1)2、工程概况 (1)3、栈桥结构设计 (1)3.1普通栈桥结构设计 (1)3.2通航孔栈桥设计 (2)3.3施工平台设计 (3)3、荷载计算说明 (5)4、普通栈桥验算 (6)4.1桥面槽钢验算 (6)4.2分配梁验算 (7)4.3贝雷梁验算 (8)4.4主横梁受力验算 (9)4.5钢护筒受力验算 (11)5、通航孔栈桥验算 (11)5.1桥面槽钢验算 (11)5.2分配梁验算 (11)5.3贝雷梁验算 (11)5.4主横梁受力验算 (13)5.5钢护筒受力验算 (14)5.6提升横梁验算 (15)6、施工平台验算 (16)6.1桥面槽钢验算 (17)6.2分配梁验算 (17)6.3贝雷梁验算 (18)6.4主横梁受力验算 (19)6.5钢护筒受力验算 (20)7、钢护筒入土深度验算 (20)栈桥理论验算书1、编制依据(1)《公路桥涵施工技术规范》(JTGT F50-2011);(2)《公路桥涵通用设计规范》(JTG D60-2015);(3)《路桥施工计算手册》(人民交通出版社);(4)《钢结构设计规范》(GB50017-2003);(5)《建筑桩基技术规范》(JGJ94-2014);(6)特大桥设计文件;(7)特大桥栈桥施工方案。
2、工程概况大桥第15~25#墩位于水域,需搭设水上栈桥、平台进行基础及下部构造施工,并通过钢便桥往长岐互通侧调运土石方。
栈桥总长度约430m,采用双车道设计,栈桥轴线线型同大桥轴线一致,栈桥中心线到桥轴线距离21.5m,栈桥边缘距桥梁桥梁右侧轮廓线距离为1.5m。
施工平台主要功能是为钢护筒下放、桩基础、立柱等施工提供工作平台,并作为设备、材料临时堆放场地。
栈桥平面布置如下:3、栈桥结构设计3.1普通栈桥结构设计基础:栈桥基础采用三根Ф630×8mm钢护筒,标准跨径9m,每8~10跨一联,具体分联根据实际情况设置,联与联连接处设置伸缩缝。
迈达斯构件有限元验算-概述说明以及解释1.引言1.1 概述本文主要介绍了迈达斯构件有限元验算的方法和步骤。
迈达斯构件是一种常用于建筑结构和工程项目中的槽钢或工字钢构件。
有限元方法是一种通过将结构分割为离散的有限元素来进行结构分析的数值计算方法,其能够较准确地预测结构的力学性能和固有特性。
有限元方法的基本思想是将结构划分为有限个离散元素,每个元素被看作一个子结构。
通过对每个元素应力与变形进行数学描述,并建立节点间的边界条件,可以得到整个结构的应力、变形和位移等信息。
这种方法能够在计算较大和复杂的结构时节省时间和资源,并且能够满足工程设计和安全要求。
在进行迈达斯构件的有限元验算时,需要首先对迈达斯构件进行建模和网格划分。
通过选择合适的网格参数和材料参数,可以得到较为准确的模型。
然后,根据结构的边界条件和加载条件,可以进行力学分析和动力分析,得到结构的应力、变形和振动等结果。
最后,通过与理论计算结果或实测数据进行对比,可以评估有限元模型的准确性和可靠性。
迈达斯构件有限元验算的具体方法包括弹性分析、稳定性分析、动力响应分析等。
通过这些分析,我们可以评估迈达斯构件在不同加载条件下的承载能力、稳定性和振动特性。
同时,我们也可以通过优化模型参数和设计方案来改善结构的性能和安全性。
在本文的后续部分,我们将详细介绍迈达斯构件的有限元方法以及相关的步骤和方法。
我们将分析有限元验算结果的准确性和可靠性,并讨论其优缺点。
最后,我们将展望未来的研究方向,以推动迈达斯构件有限元验算方法的进一步发展和应用。
1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构部分旨在说明本文的组织结构,使读者能够清晰地了解文章的内容安排。
本文主要包括引言、正文和结论三个部分。
引言部分旨在引出本文的研究背景和意义,通过对迈达斯构件有限元验算的重要性进行概述,为读者提供对文章主题的整体了解。
接着,介绍了本文的结构。
正文部分是本文的核心部分,将分为四个小节进行阐述。
设计常用图形结果在MIDAS中的输出MIDAS/Gen可以较全面地提供分析和设计的图形及文本结果,对于设计中常用的一些图形结果,用户可以通过本文介绍的方式进行查看和输出。
MIDAS/Gen中图名的标注方法:点击“显示”按钮,“视图”下勾选“说明”,点击按钮,可以选择字体及大小,在文本栏中输入图名,点击按钮“适用”即可。
1各层构件编号简图点击单元编号按钮,显示构件的编号。
(注:点击节点编号按钮显示节点编号。
)2各层构件截面尺寸显示简图菜单“视图/显示”,选择“特性”;或者点击“显示”按钮,“特性”下勾选“特征值名称”。
(注:建议用户在给截面命名的时候表示出截面的高宽特性。
)3各层配筋简图、柱轴压比程序可以提供各层梁、柱、剪力墙的配筋简图,用户可以查看所需的配筋面积,也可以让程序进行配筋设计,输出实际配筋的结果。
菜单“设计/钢筋混凝土构件配筋设计”下,进行钢筋混凝土梁、柱、剪力墙构件配筋设计后,在“设计/钢筋混凝土结构设计结果简图”中查看。
显示的单位可以在调整。
对于柱和剪力墙构件,程序在输出所需配筋面积的同时,输出柱的轴压比(图中括号内的数值)。
4 梁弹性挠度菜单“结果/位移”,MIDAS 提供的是梁端节点的变形图(绝对位移)。
(注:可使用菜单“结果/梁单元细部分析”查看任意梁单元任意位置的变形、内力、应力;或者需要对梁单元进行划分,显示梁中部的位移。
)5 各荷载工况下构件标准内力简图菜单“结果/内力”下,选择需要查看的构件类型,“荷载工况/荷载组合”里可选择各种荷载工况或荷载组合,查看各种构件在不同工况下的内力值和内力图。
下图显示的是恒载作用下的框架弯矩图。
6梁截面设计内力包络图除了选取某一榀框架,查看其内力图之外,MIDAS还提供平面显示的功能,特别是对于梁单元,该功能适用范围较广。
使用菜单“结果/内力/构件内力图”,在“荷载工况/荷载组合”里选择包络组合,可以查看各层梁截面设计内力包络图。
(注:也可以查看其它工况下梁的内力图。
中南大学2010年1月1。
概要 (1)2. 设置操作环境 (2)3. 定义材料和截面 (3)4. 建立结构模型 (7)5。
非预应力钢筋输入 (10)6。
输入荷载 (30)7. 定义施工阶段 (42)8。
输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)1. 概要本桥为80+2*112+2*81+41六跨混凝土预应力连续梁桥。
图1。
分析模型桥梁概况及一般截面桥梁形式:六跨混凝土悬臂梁桥梁长度:L = 80+112+112+80+80+41m施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑1000天收缩徐变.预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1。
5e—006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数:程序计算混凝土收缩变形率: 程序计算2。
北京迈达斯技术有限公司2007年5月MIDAS/Civil2006 RC设计验算说明一、程序给出的验算结果 (1)二、RC设计使用方法简介 (1)三、RC验算结果与规范条文对应关系 (4)1. 梁-施工阶段正截面法向应力验算:(规范7.2.4) (4)2. 梁-受拉钢筋的拉应力验算(规范7.2.4) (4)3. 梁-使用阶段裂缝宽度验算(规范6.4.3和规范6.4.4) (5)4. 梁-施工阶段中性轴处主拉应力验算(规范7.2.5) (6)5. 梁-纵向钢筋用量估算 (6)6. 梁-普通箍筋用量估算 (7)7. 梁-使用阶段正截面抗弯验算(规范5.2.1~5.2.5) (7)8. 梁-使用阶段斜截面抗剪验算(规范5.2.7) (8)9. 梁-使用阶段抗扭验算(规范5.5.1~5.5.5) (8)10. 柱-使用阶段裂缝宽度验算(规范6.4.1~6.4.5) (9)11. 柱-纵向钢筋用量估算 (10)12. 柱-使用阶段正截面轴心抗压承载力验算(规范5.3.1) (10)13. 柱-使用阶段正截面偏心抗压承载力验算(规范5.3.3~5.3.11) (11)14. 柱-使用阶段正截面轴心抗拉承载力验算(规范5.4.1) (12)15. 柱-使用阶段正截面偏心抗拉承载力验算(规范5.4.2) (12)四、RC设计验算时错误信息说明 (14)五、RC设计其他相关说明 (15)MIDAS/Civil2006 RC设计验算说明一、程序给出的验算结果程序根据构件类型不同,分别执行RC梁设计和RC柱设计,并给出如下15项验算结果。
1)梁-施工阶段正截面法向应力验算2)梁-受拉钢筋的拉应力验算3)梁-使用阶段裂缝宽度验算4)梁-施工阶段中性轴处主拉应力验算5)梁-纵向钢筋用量估算6)梁-普通箍筋用量估算7)梁-使用阶段正截面抗弯验算8)梁-使用阶段斜截面抗剪验算9)梁-使用阶段抗扭验算10)柱-使用阶段裂缝宽度验算11)柱-纵向钢筋用量估算12)柱-使用阶段正截面轴心抗压承载力验算13)柱-使用阶段正截面偏心抗压承载力验算14)柱-使用阶段正截面轴心抗拉承载力验算15)柱-使用阶段正截面偏心抗拉承载力验算其中验算结果项5)、6)、11)不是规范要求验算的内容。
预应力空心板桥midas计算示例本算例参照《混凝土简支梁桥》易见国第一个算例进行midas建模。
设计资料:如图一、材料材料有C40,预应力钢筋1*7钢绞线,直径12.7m。
二、截面采用cad导入,将autocad文件另存为dxf文件。
在工具中选择截面特性计算器,得到***.sec文件。
在通过设计截面导入midas当中。
验算扭转最小厚度:腹板厚度三、建立节点考虑对于预应力简支梁,跨中、1/4截面特性十分重要,采用16份划分截面。
空心板板长12.96m,计算跨径为12.60,根据计算跨径计算得到12.60/16=0.7875m。
采用扩展单元如图。
交叉分割仅适用于线单元。
如果选择交叉分割且现有节点在生成的线单元上,则在现有节点处分割单元。
如果选择交叉分割且生成的线单元与现有单元相交,则在交点处自动生成节点并分割单元。
复制单元将全部单元复制19份。
桥面板横向由20个空心板组成。
预应力空心板的横向连接横向连接需要设定单元,四、边界条件将横连的连接设定为铰接。
五、荷载1.选择荷载规范:china。
2.对于单梁体系,采用车道单元布载。
对于具有横隔梁的桥梁采用横向联系梁布载。
3.车道荷载的偏心,当车道作用于梁单元是可能不是正好作用在节点位置的中心上,而是节点中心偏心一段距离(如图)。
因此,在基准单元(梁单元)+号为沿行车方向的右侧,-号为行车方向的左侧。
图中(从右向左)车道作用在第5节点的右0.125m。
第9节点的右0.375,同样,左侧车道作用在第5节点的右0.125m。
第9节点的右0.375。
12.537.537.512.515874车道布载图如下图所示。
移动荷载工况,组合移动荷载。
桥面系自重(二期恒载)人行道板12kN/m铺装是0.1*15.23=34.5 kN/m平均每块板分担(12*2+34.5)/20=2.935 kN/m铰缝重(87.5+1*62)*10-4*24=0.359 kN/m每块空心板每米分担总量2.935+0.359=3.284 kN/m。
潇湘路连续梁门洞调整后支架计算书1概述原《潇湘路(32+48+32)m连续梁施工方案》中,门洞条形基础中心间距为7.5米,现根据征迁人员反映,为满足门洞内机动车辆通行需求,需将条形基础中心间距调整至8.5米。
现对门洞结构体系进行计算,调整后门洞横断面如图1-1所示。
图1-1调整后门洞横断面图门洞纵断面不作改变如图1-2所示。
图1-2门洞总断面图门洞从上至下依次是:I40工字钢、双拼I40工字钢、Ф426*6钢管(内部灌C20素混凝土),各结构构件纵向布置均与原方案相同。
2主要材料力学性能(1)钢材为Q235钢,其主要力学性能取值如下:抗拉、抗压、抗弯强度:[ =125MpaQ235:[σ]=215Mpa, ](2)混凝土采用C35混凝土,其主要力学性能取值如下:弹性模量:E=3.15×104N/mm2。
抗压强度设计值:抗拉强度设计值:(3)承台主筋采用HRB400级螺纹钢筋,其主要力学性能如下:抗拉强度设计值:。
(4)箍筋采用HPB300级钢筋,其主要力学性能如下:抗拉强度设计值:3门洞结构计算3.1midas整体建模及荷载施加Midas整体模型如图3.1-1所示。
图3.1-1MIDAS整体模型图midas荷载加载横断面图如图3.1-2所示。
3.1-2荷载加载横断面图荷载加载纵断面如图3.1-3所示。
图3.1-3荷载加载纵断面图3.2整体受力分析整体模型受力分析如图5.2-1~5.2-3所示。
图5.2-1门洞整体位移等值线图5.2-2门洞整体组合应力云图图5.2-3门洞整体剪应力云图由模型分析可得,模型最大位移D=3.2mm<[l/600]=14.1mm,组大组合应力σ=144.2Mpa<[σ]=215Mpa,最大剪应力σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满足要求。
3.3细部构件分析3.3.1I40工字钢计算I40工字钢位移等值线如图3.3-1所示。
图3.3-1I40工字钢整体位移等值线I40工字钢位组合应力如图3.3-2所示。
北京迈达斯技术有限公司2007年5月MIDAS/Civil2006 RC设计验算说明一、程序给出的验算结果 (1)二、RC设计使用方法简介 (1)三、RC验算结果与规范条文对应关系 (4)1. 梁-施工阶段正截面法向应力验算:(规范7.2.4) (4)2. 梁-受拉钢筋的拉应力验算(规范7.2.4) (4)3. 梁-使用阶段裂缝宽度验算(规范6.4.3和规范6.4.4) (5)4. 梁-施工阶段中性轴处主拉应力验算(规范7.2.5) (6)5. 梁-纵向钢筋用量估算 (6)6. 梁-普通箍筋用量估算 (7)7. 梁-使用阶段正截面抗弯验算(规范5.2.1~5.2.5) (7)8. 梁-使用阶段斜截面抗剪验算(规范5.2.7) (8)9. 梁-使用阶段抗扭验算(规范5.5.1~5.5.5) (8)10. 柱-使用阶段裂缝宽度验算(规范6.4.1~6.4.5) (9)11. 柱-纵向钢筋用量估算 (10)12. 柱-使用阶段正截面轴心抗压承载力验算(规范5.3.1) (10)13. 柱-使用阶段正截面偏心抗压承载力验算(规范5.3.3~5.3.11) (11)14. 柱-使用阶段正截面轴心抗拉承载力验算(规范5.4.1) (12)15. 柱-使用阶段正截面偏心抗拉承载力验算(规范5.4.2) (12)四、RC设计验算时错误信息说明 (14)五、RC设计其他相关说明 (15)MIDAS/Civil2006 RC设计验算说明一、程序给出的验算结果程序根据构件类型不同,分别执行RC梁设计和RC柱设计,并给出如下15项验算结果。
1)梁-施工阶段正截面法向应力验算2)梁-受拉钢筋的拉应力验算3)梁-使用阶段裂缝宽度验算4)梁-施工阶段中性轴处主拉应力验算5)梁-纵向钢筋用量估算6)梁-普通箍筋用量估算7)梁-使用阶段正截面抗弯验算8)梁-使用阶段斜截面抗剪验算9)梁-使用阶段抗扭验算10)柱-使用阶段裂缝宽度验算11)柱-纵向钢筋用量估算12)柱-使用阶段正截面轴心抗压承载力验算13)柱-使用阶段正截面偏心抗压承载力验算14)柱-使用阶段正截面轴心抗拉承载力验算15)柱-使用阶段正截面偏心抗拉承载力验算其中验算结果项5)、6)、11)不是规范要求验算的内容。
midas施工阶段法向应力验算你们看,就像我们搭积木一样。
当我们搭一个超级大的积木城堡的时候,每一块积木都要承受一定的力量,对不对?在盖真正的大房子或者大桥的时候,也是这个道理。
那些建筑材料就像我们的积木,它们在施工的每个阶段都会受到不同的力。
比如说,我们要建一座大桥。
在刚开始打桥墩基础的时候,就像我们给积木城堡打地基一样。
这个时候,下面的泥土啊、石头啊,就会给桥墩一个向上顶的力,而桥墩自己的重量又会向下压,这一上一下的力就会让桥墩里面产生一种力量,这个力量就是应力。
那这个midas呢,就像是一个特别聪明的小助手。
它能帮助工程师们算出在施工的每个阶段,建筑的各个部分受到的法向应力是不是在安全的范围里。
法向应力是什么呢?咱们可以想象成是一种直直地压在东西上或者拉东西的力量。
再举个例子吧,就像我们拉一根橡皮筋。
我们拉的时候,橡皮筋就会有一种想要缩回去的力,这个力就是一种应力。
如果我们拉得太用力了,橡皮筋就会断掉。
在建筑里也是这样,如果法向应力太大了,建筑材料就可能会坏掉,那房子或者桥就不安全了。
工程师们在建造一座高楼大厦的时候,从挖地基开始,到一层一层地盖楼,每一步都要让midas这个小助手去检查法向应力。
就像我们在搭积木城堡的时候,每搭一层,都要看看下面的积木是不是还能承受得住上面的重量。
比如说有一次,有一个地方要建一个很大的摩天轮。
在施工的时候,工程师们就用midas来验算法向应力。
他们发现,当摩天轮的支架搭到一半的时候,如果按照原来的设计,有一些支架部分的法向应力太大了,就好像我们搭积木的时候,有几块积木被压得快要碎掉了一样。
于是,工程师们就赶紧修改了设计,把支架做得更粗一点或者改变了一些结构,这样法向应力就变小了,摩天轮就能安全地建起来啦。