七年级数学培优练习汇总
- 格式:docx
- 大小:27.20 KB
- 文档页数:15
七年级上册数学培优一、有理数。
1. 知识点梳理。
- 有理数的定义:整数和分数统称为有理数。
包括正整数、0、负整数、正分数、负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:绝对值相等,符号相反的两个数互为相反数。
例如,2和 - 2是相反数,0的相反数是0。
- 绝对值:一个数在数轴上所对应点到原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 典型例题。
- 例1:已知a = - 3,求a的相反数和绝对值。
- 解:a=-3,a的相反数是-a=-(-3) = 3,a的绝对值| a|=| - 3| = 3。
- 例2:在数轴上表示-2,1.5,0,并比较它们的大小。
- 解:先画出数轴,标注原点、正方向和单位长度。
在数轴上找到对应的点,从左到右的顺序为-2<0<1.5。
3. 培优练习。
- 练习1:若| x| = 5,求x的值。
- 练习2:比较-(3)/(4)和-(4)/(5)的大小。
二、整式的加减。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,3x,-5,a都是单项式。
- 多项式:几个单项式的和叫做多项式。
例如,2x + 3y是多项式。
- 整式:单项式和多项式统称为整式。
- 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
例如,3x^2y和-5x^2y是同类项。
- 合并同类项:把同类项合并成一项叫做合并同类项,合并同类项时,系数相加,字母和字母的指数不变。
2. 典型例题。
- 例1:化简3x^2 - 2x+5x^2 - 4x。
- 解:首先找出同类项,3x^2和5x^2是同类项,-2x和-4x是同类项。
- 合并同类项得(3x^2 + 5x^2)+(-2x - 4x)=8x^2 - 6x。
- 例2:已知A = 2x^2 - 3x+1,B=-x^2 + 2x - 3,求A - B。
- 解:A - B=(2x^2 - 3x + 1)-(-x^2+2x - 3)- 去括号得2x^2 - 3x + 1+x^2 - 2x + 3- 合并同类项得(2x^2+x^2)+(-3x - 2x)+(1 + 3)=3x^2 - 5x+4。
初中数学练习册七年级(上)人教版目录:第一章有理数1.1 有理数的概念1.2 有理数的运算1.3 近似数与科学计数法1.4 单元测试第二章整式加减2.1 整式的加减2.2 单元测试第三章一元一次方程3.1 解一元一次方程3.2 列方程解应用题(一)3.3 列方程解应用题(二)3.4 单元测试第四章图形认识初步4.1 多姿多彩的图形4.2 平面图形4.3 单元测试期末模拟试卷(一)期末模拟试卷(二)期末模拟试卷(三)有理数知识清单第一章有理数一、全章知识结构二、回顾正数、负数的意义及表示方法 1、正数的表示方法:a>0, 2、负数的表示方法:a<0三、有理数的分类定义:整数和分数统称为有理数有限小数和无限循环小数都是有理数而无限不循环小数却不是有理数1、按整数分数分类2、按数的正负性分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数负整数负数零正分数正整数正数有理数.3、在数轴上分类数轴:规定了原点,正方向和单位长度的直线叫做数轴。
数轴的作用:(1)用数轴上的点表示有理数; (2)在数轴上比较有理数的大小;(3)可用数轴揭示一个数的绝对值和互为相反数的几何意义;(4)在数轴上可求任意两点间的距离:两点间的距离=|x -y|=|y -x|四、有理数中具有特殊意义的数:相反数、倒数、绝对值、非负数1、相反数:(1)几何意义:在数轴上表示一对相反数的两个点与原点的距离相等。
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数..(2)代数意义:只有符号不同的两个数。
(3)互为相反数的特性:a+b=0,0的相反数是0。
(4)会求一个数的相反数:a 的相反数为 a-b 的相反数为 2、倒数:(1)乘积是1的两个数互为倒数 (2)互为倒数的特性: ab=1, (3)0没有倒数(4)互为负倒数: 乘积是-1的两个数互为负倒数; ab=-13、非负数:(1)就是大于或等于0的数:a ≥0(2)数轴上,在原点的右边包括原点的点表示的数(3)任何数的平方数都是非负数(4)非正数:就是小于或等于0的数:a ≤0(5)数轴上,在原点的左边包括原点的点表示的数4、绝对值:(学生演示)(1)几何意义:一个数的绝对值就是它到原点的距离。
初一培优数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -5答案:C2. 以下哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 1 = 5C. x^2 - 4 = 0D. x + 4 = 6答案:D3. 如果一个数的平方是25,那么这个数是?A. 5B. -5C. 5或-5D. 0答案:C4. 一个角的补角是它的余角的两倍,这个角的度数是多少?A. 30°C. 90°D. 120°答案:B5. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 非负数D. 非正数答案:C6. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C7. 一个数的相反数是-3,这个数是?A. 3B. -3C. 0D. 6答案:A8. 以下哪个选项是不等式?B. 3y + 5 > 0C. 7z - 2 = 5D. 8w = 16答案:B9. 一个数的立方是-8,这个数是?A. 2B. -2C. 4D. -4答案:B10. 如果一个角的正弦值是0.5,那么这个角可能是?A. 30°B. 60°C. 90°D. 120°答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是它本身,这个数是______。
答案:012. 一个角的余角是60°,那么这个角的度数是______。
答案:30°13. 如果一个数的绝对值是5,那么这个数可能是______或______。
答案:5,-514. 一个数的平方根是3,那么这个数是______。
答案:915. 一个数的立方根是2,那么这个数是______。
答案:816. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°17. 一个数的倒数是1/4,那么这个数是______。
七年级数学培优训练(线段、射线、直线、角)专题一 线段、射线、直线一、知识要点1.线段、射线及直线的定义及其表示方法将线段向两个方向无限延长就形成了直线。
直线没有端点 2.直线的性质(1)经过一点可以画无数条直线(2)性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”体现“惟一性” 3.点和直线的位置关系(1)点在直线上,或者说直线经过这个点 (2)点在直线外,也可以说直线不经过这个点 BlA二、例题和练习例1 如图共有 条线段, 条射线, 条直线. lA B C D课堂练习:1、如图,图中共有6个点,共有多少条线段?2、如图,图中共有n 个点,共有多少条线段? 例2、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①② B.①③ C.②④ D.③④ 课堂练习:1.往返于甲、乙两地的客车,中途停靠四个站,问(1)有多少种不同的票价?(2)要准备多少种车票?2.已知平面内的四个点A 、B 、C 、D ,过其中每两个点画直线可以画几条.专题二 比较线段的长短将线段向一个方向无限延长就形成了A 1 • A 2 • ……A 3 • A 4 • A n • A 1 • A 2 • A 5 • A 3 • A 4 • A 6 •一、知识要点1.线段性质(公理):两点之间,线段最短2.两点之间的距离:连结两点之间线段的长度3.线段的大小的比较方法 (1)叠合法A B CDAB CD ABCD (2)度量法AB=CD AB >CD AB <CD图4-2-14.线段的中点: 把一条线段分成两条相等的线段的点,叫做线段的中点. AB M点M 是线段AB 中点 AC=BC=21AB 图4-2-2二、例题和练习例1 如图所示,AB=16cm ,C 是AB 上一点,且AC=10 cm ,D 是AC 中点,E 是BC 中点,求线段DE 的长.AB C DE例2 如图,AB:BC:CD =2:3:4,AB 的中点M 与CD 中点N 的距离是3cm ,求BC 的长ABCD NM例3 已知线段AB=30mm, 直线AB 上画一条线段BC=10mm,点D 是线段AC 的中点,求CD 的长度.课堂练习1.如图,点C 是线段AC 上一点,点N 是线段BC 的中点,M 是AC 中点 (1)若AB=10cm AM=3cm 求NC 的长。
初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。
试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。
因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。
试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。
试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。
答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。
试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。
人教版七年级数学第4章几何图形初步培优训练一、选择题1. 如图所示的几何体属于球的是()2. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm3. 图中的几何体的面数是()A.5B.6C.7D.84. 如图所示的几何体是由一些小正方体组成的,那么从左面看这个几何体得到的图形是()5. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是()A.①②B.①③C.②③D.①④6. [2019·北京一模]下列几何体中,是圆锥的为()7. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB8. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b9. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°10. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④二、填空题11. 如图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面及上面看所得到的平面图形中面积最小的是从________面看得到的平面图形.12. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.13. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.14. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.15. 图中可用字母表示出的射线有条.16. 如图4,O是直线AB上的一点,OC,OD,OE是从点O引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=°.三、作图题17. 如图①②,画出绕虚线旋转一周得到的立体图形.18. 如图①,正方体的下半部分涂上了黑色油漆,在如图②所示的正方体的展开图中把刷油漆的部分涂黑(图②中涂黑部分是正方体的下底面).四、解答题19. 小明和小亮在讨论“射击时为什么枪管上要有准星?”这一问题.小明说:“过两点有且只有一条直线,所以枪管上要有准星.”小亮说:“若将人眼看成一点,准星看成一点,目标看成一点,这不就有三点了吗?不是三点确定一条直线吗?”你认为他们两个谁的说法正确?20. 如图,下列各几何体的表面中包含哪些平面图形?21. 计算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.22. 如图①是一张长为4 cm,宽为3 cm的长方形纸片,将该长方形纸片分别绕长、宽所在的直线旋转一周(如图②③),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.23. 如图,已知∠AOD=150°.(1)如图(a),∠AOC=∠BOD=90°,则∠BOC的余角是°,∠BOC=°.(2)如图(b),已知∠AOB与∠BOC互为余角.①若OB平分∠AOD,求∠BOC的度数;②若∠COD是∠BOC的4倍,求∠BOC的度数.人教版七年级数学第4章几何图形初步培优训练-答案一、选择题1. 【答案】B2. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.3. 【答案】B[解析] 图中几何体是五棱锥,有5个侧面和1个底面,共有6个面.4. 【答案】A5. 【答案】A[解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.6. 【答案】D7. 【答案】B8. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.9. 【答案】C[解析] 如图,若OC在∠AOB内部,则∠BOC1=∠AOB-∠AOC1=70°-42°=28°;若OC在∠AOB外部,则∠BOC2=∠AOB+∠AOC2=70°+42°=112°.10. 【答案】A二、填空题11. 【答案】左[解析] 该几何体从正面看是由5个小正方形组成的平面图形;从左面看是由3个小正方形组成的平面图形;从上面看是由5个小正方形组成的平面图形,故面积最小的是从左面看得到的平面图形.12. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.13. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同14. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.16. 【答案】60[解析] 设∠1=x°,则∠2=2x°,∠3=3x°.依题意,得x+2x+3x=180,解得x=30,所以∠4=4x°=120°,∠5=180°-120°=60°.三、作图题17. 【答案】解:如图所示:18. 【答案】解:如图所示.四、解答题19. 【答案】解:小明的说法正确,小亮的说法不正确.如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,目标必须在人眼与准星确定的直线上,换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=41°39'-32°5'31″=9°33'29″.22. 【答案】解:绕长方形的长所在的直线旋转一周得到的圆柱的底面半径为3 cm,高为4 cm,体积为π×32×4=36π(cm3).绕长方形的宽所在的直线旋转一周得到的圆柱的底面半径为4 cm,高为3 cm,体积为π×42×3=48π(cm3).因此绕长方形的宽所在的直线旋转一周得到的圆柱的体积大.23. 【答案】解:(1)因为∠AOC=∠BOD=90°,所以∠BOC+∠AOB=90°,∠BOC+∠COD=90°.所以∠BOC的余角是∠AOB和∠COD.因为∠AOD=150°,∠AOC=90°,所以∠COD=60°.因为∠BOD=90°,所以∠BOC=30°.故答案为60,30.(2)①因为∠AOB与∠BOC互为余角,所以∠AOC=∠AOB+∠BOC=90°.因为OB平分∠AOD,所以∠AOB=∠AOD=×150°=75°.所以∠BOC=∠AOC-∠AOB=90°-75°=15°.②由①知∠AOC=90°.因为∠COD=∠AOD-∠AOC=150°-90°=60°,且∠COD是∠BOC的4倍,所以∠BOC=15°.。
七年级下册每课必练数学培优强化训练1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则20082008b a +等于 ( )(A )1 (B ) -1 (C ) ±1 (D ) 22、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面积是 ( )(A) 252cm (B) 452cm (C) 3752cm (D) 15752cm3、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正方形的 ( )(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上图1 图34、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是 ( )(A )2α-β (B )α-β (C )α+β (D )以上都不正确5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=21PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为 ( )(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x元,根据题意,可列方程为7、2.42º= º ′ ″8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表:(1)用数量x 表示售价C 的公式,C=___ __ __ (2)当销售数量为12千克时,售价C 为_____ _9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=2110、解方程(1) 5(x -1)-2(x+1)=3(x -1)+x+1(2)235.112.018.018.0103.002.0x x x --+-=+11、用棋子摆出下列一组图形:(1)(2)(3) (1)填写下表:(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(用含n 的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?12、如图所示, 设l =AB+AD+CD, m=BE+CE, n=BC. 试比较m 、n 、l 的大小, 并说明理由.数学培优强化训练(十二)(答案)1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则a2007+b 2007等于( A )(A )1 (B ) -1 (C ) 1 (D ) 22、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面积是 ( C )(A) 252cm (B) 452cm (C) 3752cm (D) 15752cm图1 图33、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正方形的( B )(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上4、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是( A )(A )2α-β (B )α-β (C )α+β (D )以上都不正确5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=21PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为( D )(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔7、2.42º8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表:(1(2)当销售数量为12千克时,售价C 为_____32.4__9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=110、解方程. (每小题3分, 共6分)(1) 5(x -1)-2(x+1)=3(x -1)+x+1 (2) 35.118.018.0102.0x x x --+-=+11、用棋子摆出下列一组图形:(1)(2)(3)(1)填写下表:(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(用含n 的代数式表示)解:依题意可得当摆到第n 个图形时棋子的枚数应为:6 + 3(n -1)= 6 + 3n - 3 = 3n+3(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?(1分)解:由上题可知此时9933=+n ∴32=n答:第32个图形共有99枚棋子。
(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。
A B D E 1 2Q P O N 七年级数学暑期培优专题训练(综合4)班级 姓名 一、选择题1. 下列等式中,计算正确的是( )A .a a a =÷910B .x x x =-23C .pqpq 6)3(2=- D .623x x x =⋅2. 在下列各组图形中,是全等的图形是( )A 、B 、C 、D 、3. 下列各组线段中,能组成三角形的是( )(A)10 ,20, 30 (B)20, 30, 40 (C)10, 20, 40 (D)10, 40, 50 4. 若9a 2+24ab +k 是一个完全平方式,则k =( )A .2b 2B .4b 2C .8b 2D .16b 2 5. 如图,在方格纸中有α、β、γ三个角,则它们的大小关系为( )A.αβγ< C.αβγ>> D.αβγ==6. 将不等式组⎩⎨⎧>-+≥+xx x 33)3(212的解集在数轴上表示出来,正确的是( )7.如图,四边形ABCD 中,∠A +∠B =200°,∠ADC 、∠DCB 的平分线相交于点O ,则∠COD 的度数是( )A .80°B .90°C .100°D .110° 二、填空题8. 空气就是我们周围的气体。
我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动。
已知在0摄氏度及一个标准大气压下1cm 3空气的质量是0.001293克,用科学计数法表示为______克。
9.如图,B 、C 、D 三点共线,CE ∥AB ,∠1=51°,∠2=46°,则∠A= °10.如图,MO=ON, MP=OQ ,要使△MOP 与△ONQ 全等,还须添加一个什么条件,并把需要的条件写出来____________.11.如图,把一张平行四边形纸片ABCD 沿BD 对折使C 点落在E 处,BE 与AD 相交于点O. 若∠DBC=15°,则∠BOD= °12. 如图, (甲)是四边形纸片ABCD ,其中∠B=120︒,∠D=50︒。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √4C. √-16D. √02. 已知x + 2 = 0,则x = ()A. -2B. 2C. 0D. 无法确定3. 若a、b、c是等差数列,且a = 3,b = 5,则c = ()A. 7B. 6C. 4D. 84. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = 3x^25. 若等腰三角形底边长为6,腰长为8,则该三角形的周长为()A. 14B. 22C. 26D. 306. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆7. 若a > b,则下列不等式中正确的是()A. a + c > b + cB. ac > bcC. a/c > b/cD. a - c > b - c8. 下列方程中,有唯一解的是()A. x^2 + 5x + 6 = 0B. x^2 + 5x + 6 = 0C. x^2 + 5x + 6 = 0D. x^2 + 5x + 6 = 09. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 圆10. 若a、b、c是等比数列,且a = 2,b = 4,则c = ()A. 8B. 6C. 3D. 12二、填空题(每题3分,共30分)11. 已知x - 3 = 5,则x = _______。
12. 若等差数列的首项为2,公差为3,则第10项为_______。
13. 若y = 2x - 1,则当x = 3时,y = _______。
14. 若a、b、c是等比数列,且a = 3,b = 9,则c = _______。
15. 等腰三角形的底边长为8,腰长为10,则该三角形的面积为_______。
16. 若等腰梯形的上底长为4,下底长为10,高为6,则该梯形的面积为_______。
七年级有理数培优拓展题一、有理数培优拓展题。
1. 若a - 2+(b + 3)^2 = 0,求a + b的值。
- 解析:因为绝对值是非负的,一个数的平方也是非负的。
要使a - 2+(b + 3)^2 = 0成立,则a-2 = 0且(b + 3)^2=0。
- 由a - 2 = 0可得a=2;由(b + 3)^2 = 0可得b=-3。
- 所以a + b=2+(-3)=-1。
2. 计算(-1)+2+(-3)+4+·s+(-99)+100。
- 解析:可以将相邻的两项看作一组,即(-1 + 2)+(-3 + 4)+·s+(-99+100)。
- 每一组的结果都是1,一共有100÷2 = 50组。
- 所以原式的结果为50×1 = 50。
3. 已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。
- 解析:因为a、b互为相反数,所以a + b = 0;因为c、d互为倒数,所以cd = 1;m的绝对值是2,则m=±2。
- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1=1;- 当m=-2时,(a + b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。
4. 比较-(5)/(6)与-(4)/(5)的大小。
- 解析:先求出它们的绝对值,|-(5)/(6)|=(5)/(6)=(25)/(30),|-(4)/(5)|=(4)/(5)=(24)/(30)。
- 因为(25)/(30)>(24)/(30),根据两个负数比较大小,绝对值大的反而小,所以-(5)/(6)<-(4)/(5)。
5. 计算(-2)^3×(-(1)/(2))^2。
- 解析:先计算指数运算,(-2)^3=-8,(-(1)/(2))^2=(1)/(4)。
- 则(-2)^3×(-(1)/(2))^2=-8×(1)/(4)=-2。
初一数学培优练习班级 姓名 一、选择题1.在下列各数-(+3)、22-、231⎪⎭⎫ ⎝⎛-、432-、()20071--、-|-4|中,负数有( )A .2个B .3 个C .4 个D .5个2.下列关于单项式532xy -的说法中,正确的是( )A .系数是3,次数是2B .系数是53-,次数是3C .系数是53,次数是3 D .系数是53,次数是23.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )A .81034.0⨯B .6104.3⨯C .61034⨯D .7104.3⨯ 4.下列各组是同类项的一组是( )A . xy 2与x 2-2yB .–2a 3b 与2ba 3C .a 3与b 3D .3x 2y 与-4x 2yz 5.已知m 、n 为两个不相等的有理数,根据流程图中的程序,当输出数值y 为48时,所输入的m 、n 中较大的数为( ). A .48 B .24 C .16 D .86.如果多项式2271x ab b kab -++-不含a b 项,则k 的值为 ( )A. 0 B. 7 C. 1 D.不能确定 7.如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3千米,距Q 站点0.7千米,则这辆公交车的位置在 ( ) A .P 站点与O 站点之间 B .O 站点与Q 站点之间 C .Q 站点与R 站点之间 D .R 站点与S 站点之间8.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a 、b 、c的箱第4题图Q -0 2.4 1 3.7(单位:千米)O PR S Q S子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A .2a +2b +4cB .2a +4b +6cC .4a +6b +6cD .4a +4b +8c9.负整数按图的规律排列.请写出第20行,第21列的数字 .二、填空题10、若x P +4x 3-qx 2-2x +5是关于x 的五次四项式,则q -p= 。
七年级数学上册一元一次方程 培优专项练习解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b ;(5)方程两边同除以未知数的系数,得出方程的解.例1 解方程 例2 解方程0.40.90.10.50.030.020.50.20.03x x x +-+-=练习 11110721()3(233623x x x x x +-⎡⎤⎡⎤--=--⎢⎥⎢⎥⎣⎦⎣⎦1112{[(4)6]8}19753x ++++=()()()243563221x x x --=--+111133312222y ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭0.20.450.0150.010.5 2.50.250.015x x x ++-=-0.10.020.10.10.30.0020.05x x -+-=122233x x x -+-=-7110.2510.0240.0180.012x x x --+=-0.10.40.2111.20.3x x -+-= 3=--+--+--b a c x a c b x c b a x cb a x b ac x a c b x c b a x ++=+-++-++-3例3.若关于x 的一元一次方程=1的解是x=-1,则k 的值是( )2332x k x k --+A . B .1 C .- D .0271311例4.若方程3x-5=4和方程的解相同,则a 的值为多少?0331=--x a 当x = ________时,代数式与的值相等.12x -113x +-例5.(方程与代数式联系) a 、b 、c 、d 为实数,现规定一种新的运算 . bc ad dc b a -=(1)则的值为 ;(2)当 时,= .2121-185)1(42=-x x 例6.(方程的思想)如图,一个瓶身为圆柱体的玻璃瓶内装有高厘米的墨水,将瓶盖盖好后倒置,墨水水面a 高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的( )A .B .C .D .b a a +b a b +h a b +ha h+例7.解方程(分类讨论)b ax =例8.问当a 、b 满足什么条件时,方程2x+5-a=1-bx :(1)有唯一解;(2)有无数解;(3)无解。
七年级数学暑期培优专题训练(综合1)班级 姓名 一、填空题:1.a 2·(-a 3)=______________;(a +2b )(a -2b )=_______.2.分解因式x 2+x -6=_______.3.2×4m ×8m ÷16=217,m =_______.4.6m (x 2-9)与9mx -27m 的公因式为_______.5.(a -2b )2=(a +2b )2+M ,则M =_______. 6.已知等腰三角形的一条边等于3,另一条边等于7,那么这个三角形的周长是_______. 7.如果x 2+mx +16是一个完全平方式,那么m 的值为_______. 8.若m 2+n 2-6n +4m +13=0,则m n =_______.9.如图,在△ABC 中,CE ,BF 是两条高,若∠A =65°,则∠BOC 的度数是_______.10.如图,在Rt △ABC 中,∠C =90°,AC =10,BC =5,线段PQ =AB ,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP =_______时,△ABC 和△PQA 全等.11. 如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中90,30C B E ∠=︒∠=∠=︒.如图2,固定ABC ,使DEC 绕点C 旋转。
当点D 恰好落在AB 边上时,填空:线段DE 与AC 的位置关系是 ;设BDC 的面积为1S ,AEC 的面积为2S 。
则1S 与2S 的数量关系是 。
二、选择题:12.下列命题是假命题的是 ( )A .若x <y ,则x +2013<y +2013B .面积相等的三角形是全等三角形C .若1x -+(y -3)2=0则x =1,y =3 D .平移不改变图形的形状和大小13.下列分解因式正确的是 ( )A .a 2-2b 2=(a +2b )(a -2b )B .y 2-x 2=(y -x ) (x -y )C .-a 2+9b 2=-(a -3b )(a +3b ) D .4x 2-y 2=(y -2x )(2x +y )14.如果不等式组320x x m -≥⎧⎨>⎩有解,则m 的取值范围是 ( )A .m >32B .m ≥32C .m <32 D .m ≤3215.如图,△A BC ≌△A DF ,∠B =20°,∠E =110°,∠EAB =30°,则∠BAD 的度数为 ( )A .80°B .110°C .70°D .130° 16.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠BDA =∠CDA D .∠B =∠C17.如果(x +1)(x 2-5ax +a )的乘积中不含x 2项,则a 为 ( ) A .-5B .5C .15D .-1518.下列各组的条件,能判定△ABC ≌△A ′B ′C ′的是 ( )A.AB=A′B′,AC=A′C′,∠C=∠C′ ; B.AB=A′B′,AC=A′C′,∠B=∠B′C.AB=A′B′,AC=A′C′,∠A=∠A′ ; D.∠A=∠A′,∠B=∠B′,∠C=∠C′19.如图,AD∥BC,AB∥DC,则全等三角形共有( )A.2对B.3对C.4对D.5对20.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论中正确的有( )①△ACE≌△BCD②BG=AF③△DCG≌△ECF④△ADB≌△CEA⑤DE=DG⑥∠AOB=60°A.①②③⑤B.①②④⑤C.①②③⑥D.①②③④⑤⑥三、解答题:21.计算(1)230120.125201112-⎛⎫-⨯++-⎪⎝⎭(2)(-2x)·(2x2y-4xy2)(3)(x+y-3)(x-y+3) (4)(x+1)(x2+1)(x4+1)(x-1)22.先化简,再求值.(2a+b)2-(3a-b)2+5a(a-b),当a=15,b=-2时.23.若关于x、y的二元一次方程组25245x y kx y k+=+⎧⎨-=-⎩的解满足不等式x<0,y>0,求k的取值范围.24.已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为点E,BF//AC交CE的延长线于点F.求证:(1)△ACD≌△CBF(2)DB=BF25.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.(正方形四条边都相等,四个角都是直角) 我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)猜想图1中线段BG和线段DE的长度和位置关系:______________.(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断上述猜想是否仍然成立:_______(成立、不成立)若成立,请你选取图2或图3中的一种情况说明你的判断.26.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.。
七年级(下)数学培优试题(一)含答案一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项符合题意)1。
下列各式计算正确的是( )A 。
3332x x x ⋅=B .235()x x =C .358x x x +=D .444()xy x y =2。
下列能用平方差公式计算的是( )A 。
)y x )(y x (-+-B 。
)x 1)(1x (---C 。
)x y 2)(y x 2(-+D 。
)1x )(2x (+-3.如图1,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为( ) A 。
65º B 。
70º C 。
97º D 。
115º4.2011世界园艺博览会在西安浐灞生态区举办,这次会园占地面积为418万平方米,这个数据用科学记数法可表示为(保留两个有效数字)( ) 图1A 。
4。
18×106平方米B 。
4.1×106平方米C 。
4。
2×106平方米 D. 4。
18×104平方米5.某校组织的联欢会上有一个闯关游戏:将四张画有含30°的直角三角形、正方形、等腰三角形、平行四边形这四种图形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形就可以过关,那么翻一次就过关的概率是( )A 。
1/4B 。
1/2C . 1/3 D.16。
如图2,一块实验田的形状是三角形(设其为△ABC ),管理员从BC 边上的一点D 出发,沿DC →CA →AB →BD 的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体( )A.转过90° B 。
转过180° C.转过270° D 。
转过a b c d2 4 1360°7. 如图3所示,在△ABC 和△DEF 中,BC ∥EF ,∠BAC =∠D ,且AB =DE =4,BC =5,AC =6,则EF 的长为( ).A 4B .5C 。
初一培优数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 3D. -7答案:C2. 计算下列哪个表达式的结果为负数?A. 5 - 3B. 2 + (-4)C. 6 × 2D. 8 ÷ 2答案:B3. 下列哪个分数是最简分数?A. 4/8B. 3/6C. 5/10D. 7/14答案:A4. 哪个数的绝对值最大?A. 2B. -3C. 0D. 4答案:B5. 哪个数的平方最小?A. 2B. -3C. 0D. 4答案:C6. 下列哪个方程的解是x = 2?A. 2x - 4 = 0B. 3x + 6 = 0C. 4x - 8 = 0D. 5x + 10 = 0答案:A7. 哪个不等式的解集是x > 3?A. x - 3 > 0B. x + 3 > 0C. x - 3 < 0D. x + 3 < 0答案:A8. 下列哪个图形的周长最长?A. 边长为3的正方形B. 长为4,宽为2的长方形C. 直径为5的圆D. 边长为4的等边三角形答案:C9. 哪个数是无理数?A. 2B. 1/2C. πD. 0.7510. 下列哪个图形的面积最大?A. 边长为4的正方形B. 长为5,宽为3的长方形C. 半径为3的圆D. 底为4,高为5的三角形答案:C二、填空题(每题4分,共40分)11. 计算:(-3) × (-2) = ______。
答案:612. 计算:(-4) ÷ 2 = ______。
13. 计算:|-5| = ______。
答案:514. 计算:√9 = ______。
答案:315. 计算:(1/2) + (1/3) = ______。
答案:5/616. 计算:(2/3) × (3/4) = ______。
答案:1/217. 计算:(-2)² = ______。
答案:418. 计算:(-3)³ = ______。
七年级数学培优练习汇总七年级数学经典练习(1)绝对值专题练习1、同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离。
试探索:(1)求|5﹣(﹣2)|= _________ .(2)设x是数轴上一点对应的数,则|x+1|表示_______ 与_ __ 之差的绝对值。
(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为____ ___ __ 。
2、小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x 与2这两点在数轴上的距离;那么|x+3|可看成x与_________ 在数轴上的距离。
请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________ (写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________ ;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________ ,此时x为_________ ;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.3、试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.4、若ab<0,试化简++.5、化简:|3x+1|+|2x-1|6、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x满足的条件及此常数的值。
7、如果0<p<15,那么代数式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值( )A. 30 B. 0 C. 15 D.一个与p有关的代数式8.已知(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)=36,求x+2y+3z的最大值和最小值.9.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.七年级数学经典练习(2)有理数运算专题练习1、0.125+314+(-318)+1123+(-0.25)2、计算111112233420082009++++L变式:101971......951511+++3、如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111 248163264128256+++++++=__________。
4、计算2-22-23-24-25-26-27-28-29+2105、将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?6、自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c+61d 等于() A .18B .316C .732D .15647、 a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是()A .30B .32C .34D .368、若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是()A .a <b <cB .b <c <aC .c <b <aD .a <c <b9、如果20012002()1,()1a b a b +=--=,则20032003a b +的值是()A .2B .1C .0D .-1 9、11111(1)(1)(1)(1)(1)1324351998200019992001+++++L 的值得整数部分为() A .1 B .2 C .3 D .410、请你从下表归纳出13+23+33+43+…+n 3的公式,并计算出13+23+33+43+…+1003的值.11.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.七年级数学经典练习(3)整式运算与方程专题练习1、已知关于x、y的多项式不含二次项,求5a-8b的值.2、若,则的值为_______________.3、代数式的值9,则的值为______________.4、已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?5、已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0(1)当x=0时,有何结论;(2)当x=1时,有何结论;(3)当x=-1时,有何结论;(4)求a5+a3+a1的值。
6、已知ax4+bx3+cx2+dx+e=(x-2)4(1)求a+b+c+d+e.(2)试求a+c的值.7、设xyz都是整数,且11整除7x+2y-5z.求证:11整除3x-7y+12z.8、方程2009122320092010x x x +++=的解是( ) A .2008 B .2009 C .2010D .20119、若干本书分给小朋友,每人m 本,则余14本;每人9本,则最后一人只得6本,问小朋友共几人?有多少本书?10、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元?当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将此批蔬菜全部销售或加工完毕,为此公司研制三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能对蔬菜进行精加工,没来得及加工的在市场直接销售. 方案三:部分蔬菜精加工,其余蔬菜粗加工,并恰好15天完成. 你认为选择哪种获利多?为什么?11、某出租车汽车停车站已有6辆出租车,第一辆出租车出发后,每隔4分钟就有一辆出租车开出,在第一辆车开出2分钟后,有一辆出租车进站,以后每隔6分钟就有一辆出租车回站,回站的出租车,在原有的出租车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租车开出后,经过最少多少时间,车站不能正常发车?七年级数学经典练习(4)二次根式专题练习1.下列式子一定是二次根式的是()A.2--xB.xC.22+xD.22-x2、若b b -=-3)3(2,则()A.b>3 B.b<3 C.b ≥3 D.b ≤33、若13-m 有意义,则m 能取的最小整数值是()A.m=0B.m=1C.m=2D.m=34、已知|a ?b +1|+√2a ?3b ?4=0,求4a +b 2的立方根。
5、求5?√?x 2+4的最大值和最小值。
6、当x<2时,√x 2?4x +4= ;若x>1时,√1x 2+x 2?2= 。
8、化简625①-9、在实数范围内将下列各式因式分解:10、已知实数a 满足,求a -20052的值44+x a a a =-+-2006200511.阅读下面问题:12)12)(12()12(1121-=-+-?=+;;23)23)(23(23231-=-+-=+34)(34(34341-=-+-=+.……试求:(1)671+的值;(2)17231+的值;(3)nn ++11(n 为正整数)的值。
12、计算:20062007)56()56(-?+。
13、已知a ,b ,c 为三角形的三边,化简222)()()(a c b a c b cb a -++--+-+。
14、已知a.b 为有理数,x.y 分别表示5-根号7的整数部分和小数部分,且满足:axy+by 2=1,求a+b 的值。
七年级数学经典练习(5)一元一次不等式专题练习1、关于x 的不等式组0320x a x ->??->?的整数解共有6个,则a 的取值范围是。
2、已知关于x 的不等式组41320x xx a +?>+?+那么a 的取值范围是__________。
3、若正整数x ≤y ≤z ,k 为整数,且7111=++z y x ,试求正整数x 、y 、z 的值。
4、求方程3x +2y =17的正整数解。
5、a 、b 、c 、d 是正整数,且a+b =20,a+c =24,a+d =22,设a+b+c+d 的最大值为M ,最小值为N ,求M -N 的值.6、关于x的不等式|x-2000|+|x|≤9999,求整数x值的个数为多少个?7、已知方程2|x|-k=kx-3无负数解,则k的取值范围是。
8、认真阅读下面三个人的对话.小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱).售货员:本来你用10元钱买一盒饼干是多余的,但再买一袋牛奶就不够了.不过今天是儿童节,我给你买的饼干打九折,两样东西请拿好,还有找你的8角钱.旁边者:一盒饼干的标价可是整数哦!根据对话内容,试求出饼干和牛奶的标价各是多少?七年级数学经典练习(6)整式乘法专题练习(1)1、若(a m+1b n+2)(a 2n ﹣1b 2n )=a 5b 3,则求m+n 的值。
2、已知:,请你求出S 的值。
3、乘法公式应用的五个层次乘法公式:(a +b)(a -b)=a 2-b 2;(a ±b)=a 2±2ab +b 2;(a ±b)(a 2±ab +b 2)=a 3±b 3.第一层次──正用 (2)(-2x -y)(2x -y)。
例1计算:第二层次──逆用,即将这些公式反过来进行逆向使用.例2计算:(1)19982-1998·3994+19972;第三层次──活用:根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式.例3化简:(2+1)(22+1)(24+1)(28+1)+1;例4计算:(2x -3y -1)(-2x -3y +5)201132122221----+++++=s第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a 2+b 2=(a +b)2-2ab ,a 3+b 3=(a +b)3-3ab(a +b)等,则求解十分简单、明快.例5已知a +b=9,ab=14,求2a 2+2b 2和a 3+b 3值.第五层次──综合后用:将(a +b)2=a 2+2ab +b 2和(a -b)2=a 2-2ab +b 2综合,可得 (a +b)2+(a -b)2=2(a 2+b 2);(a +b)2-(a -b)2=4ab ;等,合理地利用这些公式处理某些问题显得新颖、简捷.例6计算:(2x +y -z +5)(2x -y +z +5).4、已知a+b=8,ab=c 2+16,求a+2b+3c 的值。