江西省萍乡市2019-2020学年高考数学第四次押题试卷含解析
- 格式:doc
- 大小:1.67 MB
- 文档页数:22
江西省萍乡市2019-2020学年高考数学四月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是,A B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为( )A .22122x y -= B .2213y x -= C .2213x y -= D .22144x y -= 【答案】A【解析】【分析】 点P 的坐标为()2,m ()0m >,()tan tan APB APF BPF ∠=∠-∠,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点P 的坐标为()2,m ()0m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值, 因为2tan a APF m +∠=,2tan a BPF m-∠=, 所以()2222tan tan 221a a a a m m APB APF BPF a a b b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当2b m m=()0m >,即当m b =时,等号成立, 此时APB ∠最大,此时APB 的外接圆面积取最小值,点P 的坐标为()2,b ,代入22221x y a b-=可得a =b == 所以双曲线的方程为22122x y -=. 故选:A本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.2.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( )A .12种B .18种C .24种D .64种【答案】C【解析】【分析】根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有246C =种分法; ②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有222A =种情况, 此时有224⨯=种情况,则有6424⨯=种不同的安排方法;故选:C .【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.3.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( )A .4B .8C .16D .2【答案】A【解析】【分析】利用等差的求和公式和等差数列的性质即可求得.【详解】 ()1252512511152550442a a S a a a a +==⇒+=⇒+=. 故选:A .【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.4.已知集合A ={﹣2,﹣1,0,1,2},B ={x|x 2﹣4x ﹣5<0},则A∩B =( )A .{﹣2,﹣1,0}B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}【答案】D【解析】【分析】 解一元二次不等式化简集合B ,再由集合的交集运算可得选项.【详解】因为集合{2,1,0,1,2},{|(5)(1)0}{|15}A B x x x x x =--=-+<=-<<{}{}{}2,1,0,1,2|150,1,2A B x x ∴⋂=--⋂-<<=,故选:D.【点睛】本题考查集合的交集运算,属于基础题.5.已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,1a =,4sin 3cos c A C =,ABC ∆的面积为32,则c =( )A .B .4C .5D .【答案】D【解析】【分析】由正弦定理可知4sin 4sin 3cos c A a C C ==,从而可求出34sin ,cos 55C C ==.通过13sin 22ABC S ab C ∆==可求出5b =,结合余弦定理即可求出c 的值. 【详解】解:4sin 3cos c A C =Q ,即4sin 3cos c A a C =4sin sin 3sin cos A C A C ∴=,即4sin 3cos C C =.22sin cos 1C C +=Q ,则34sin ,cos 55C C ==. 1133sin 12252ABC S ab C b ∆∴==⨯⨯⨯=,解得5b =. 222242cos 15215185c a b ab C ∴=+-=+-⨯⨯⨯=,c ∴= 故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角C 的正弦值余弦值.6.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A .17种B .27种C .37种D .47种 【答案】C【解析】【分析】由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有3464=种,其中最大值不是4的情况有3327=种,所以取得小球标号最大值是4的取法有642737-=种,故选:C【点睛】本题考查古典概型,考查补集思想的应用,属于基础题.7.已知复数z 满足1z =,则2z i +-的最大值为( )A .23+B.1+ C.2+ D .6 【答案】B【解析】【分析】设i,,z a b a b R =+∈,2z i +-=,利用复数几何意义计算.【详解】设i,,z a b a b R =+∈,由已知,221a b +=,所以点(,)a b 在单位圆上, 而2i |(2)(1)i |=z a b +-=++-(,)a b到(2,1)-的距离,故21z i +-≤+=1.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式|2||||2|z i z i +-≤+-来解决.8.已知向量11,,2a b m ⎛⎫== ⎪⎝⎭r r ,若()()a b a b +⊥-r r r r ,则实数m 的值为( ) A .12 B.C .12± D.±【分析】由两向量垂直可得()()0a b a b +⋅-=r r r r ,整理后可知220a b -=r r ,将已知条件代入后即可求出实数m 的值.【详解】解:()()a b a b +⊥-r r r r Q ,()()0a b a b ∴+⋅-=r r r r ,即220a b -=r r , 将1a =r 和22212b m ⎛⎫=+ ⎪⎝⎭r 代入,得出234m =,所以2m =±. 故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.9.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=【答案】A【解析】【分析】 设()11,A x y ,()22,B x y ,利用点差法得到1212422y y x x -==-,所以直线AB 的斜率为2,又过点(1,1),再利用点斜式即可得到直线AB 的方程.【详解】解:设()()1122,,,A x y B x y ,∴122y y +=,又21122244y x y x ⎧=⎨=⎩,两式相减得:()2212124y y x x -=-, ∴()()()1212124y y y y x x +-=-, ∴1212422y y x x -==-, ∴直线AB 的斜率为2,又∴过点(1,1),∴直线AB 的方程为:12(1)y x -=-,即2 10x y --=,本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.10.函数的图象可能是下列哪一个?( )A .B .C .D .【答案】A【解析】【分析】 由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.【详解】 由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.【点睛】 本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.抛物线22y x =的焦点为F ,则经过点F 与点()2,2M且与抛物线的准线相切的圆的个数有( ) A .1个B .2个C .0个D .无数个 【答案】B圆心在FM 的中垂线上,经过点F ,M 且与l 相切的圆的圆心到准线的距离与到焦点F 的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【详解】因为点(2,2)M 在抛物线22y x =上, 又焦点1(2F ,0), 由抛物线的定义知,过点F 、M 且与l 相切的圆的圆心即为线段FM 的垂直平分线与抛物线的交点, 这样的交点共有2个,故过点F 、M 且与l 相切的圆的不同情况种数是2种.故选:B .【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.12.过圆224x y +=外一点(4,1)M -引圆的两条切线,则经过两切点的直线方程是( ). A .440x y --=B .440x y +-=C .440x y ++=D .440x y -+= 【答案】A【解析】过圆222x y r +=外一点(,)m n ,引圆的两条切线,则经过两切点的直线方程为20mx ny r +-=,故选A .二、填空题:本题共4小题,每小题5分,共20分。
江西省萍乡市2019-2020学年高考数学第四次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a ,2a ,3a ,L ,50a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n =【答案】B【解析】【分析】【详解】 试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故26m =,12n =. 考点:程序框图、茎叶图.2.已知数列{}n a 中,121,2a a ==,且当n 为奇数时,22n n a a +-=;当n 为偶数时,()2131n n a a ++=+.则此数列的前20项的和为( )A .1133902-+ B .11331002-+ C .1233902-+ D .12331002-+ 【答案】A【解析】【分析】 根据分组求和法,利用等差数列的前n 项和公式求出前20项的奇数项的和,利用等比数列的前n 项和公式求出前20项的偶数项的和,进而可求解.【详解】当n 为奇数时,22n n a a +-=,则数列奇数项是以1为首项,以2为公差的等差数列,当n 为偶数时,()2131n n a a ++=+,则数列中每个偶数项加1是以3为首项,以3为公比的等比数列.所以201232013192420S a a a a a a a a a a =++++=+++++++L L L()()()24201091012111102a a a ⨯=⨯+⨯++++++-L ()1101313100101333902-=+--+=-. 故选:A【点睛】本题考查了数列分组求和、等差数列的前n 项和公式、等比数列的前n 项和公式,需熟记公式,属于基础题.3.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S【答案】C【解析】【分析】 设公差为d ,则由题意可得()()113479a d a d +=+,解得1451a d =-,可得1(554)51n n a a -=.令 554051n -<,可得 当14n ≥时,0n a >,当13n ≤时,0n a <,由此可得数列{}n a 前n 项和()*n S n N ∈中最小的.【详解】解:等差数列{}n a 中,已知51037a a =,且10a <,设公差为d ,则()()113479a d a d +=+,解得 1451a d =-, 11(554)(1)51n n a a a n d -∴=+-=. 令 554051n -<,可得545n >,故当14n ≥时,0n a >,当13n ≤时,0n a <, 故数列{}n a 前n 项和()*n S n N∈中最小的是13S .故选:C.【点睛】 本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.4.单位正方体ABCD-1111D C B A ,黑、白两蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA 1→A 1D 1→‥,黑蚂蚁爬行的路线是AB→BB 1→‥,它们都遵循如下规则:所爬行的第i+2段与第i 段所在直线必须是异面直线(i ∈N *).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A .1B .CD .0【答案】B【解析】【分析】根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.【详解】由题意,白蚂蚁爬行路线为AA 1→A 1D 1→D 1C 1→C 1C→CB→BA ,即过1段后又回到起点,可以看作以1为周期,由202063364÷=L ,白蚂蚁爬完2020段后到回到C 点;同理,黑蚂蚁爬行路线为AB→B B 1→B 1C 1→C 1D 1→D 1D→DA ,黑蚂蚁爬完2020段后回到D 1点,2.故选B.【点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.5.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( )A .69人B .84人C .108人D .115人 【答案】D【解析】【分析】先求得100名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得500名学生中对四大发明只能说出一种或一种也说不出的人数.【详解】在这100名学生中,只能说出一种或一种也说不出的有100453223--=人,设对四大发明只能说出一种或一种也说不出的有x 人,则10050023x =,解得115x =人. 故选:D【点睛】本小题主要考查利用样本估计总体,属于基础题.6.函数cos 2320,2y x x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦ B .0,3π⎡⎤⎢⎥⎣⎦ C .,62ππ⎡⎤⎢⎥⎣⎦ D .,32ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】【分析】利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为cos 22y x x =2sin(2)2sin(2)66x x ππ=-=--,由3222,262k x k k πππππ+-+∈Z ≤≤,解得5,36k x k k Z ππππ+≤≤+∈,即函数的增区间为5[,],36k k k ππππ++∈Z ,所以当0k =时,增区间的一个子集为[,]32ππ. 故选D.【点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.7.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的左支交于不同的两点A ,B ,若2AF FB =u u u r u u u r ,则该双曲线的离心率为( ).A.3 B.2C.3 D【答案】A【解析】【分析】直线l 的方程为b x y c a =-,令1a =和双曲线方程联立,再由2AF FB =u u u r u u u r 得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线l 的方程为b x y c a=-,不妨设1a =. 则x by c =-,且221b c =- 将x by c =-代入双曲线方程2221y x b -=中,得到()4234120b y b cy b +--= 设()()1122,,,A x y B x y 则341212442,11b c b y y y y b b +=⋅=-- 由2AF FB =u u u r u u u r ,可得122y y =-,故32442242121b c y b by b ⎧-=⎪⎪-⎨⎪-=⎪-⎩则22481b c b =-,解得219=b则3c ==所以双曲线离心率3c e a == 故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.8.已知集合1|2A x x ⎧⎫=<-⎨⎬⎩⎭,{|10}B x x =-<<则A B =I ( ) A .{|0}x x < B .1|2x x 禳镲<-睚镲镲铪C .1|12x x ⎧⎫-<<-⎨⎬⎩⎭D .{|1}x x >- 【答案】C【解析】【分析】由题意和交集的运算直接求出A B I .【详解】 ∵ 集合1|2A x x ⎧⎫=<-⎨⎬⎩⎭,{|10}B x x =-<< ∴A B =I 1|12x x ⎧⎫-<<-⎨⎬⎩⎭.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.9.已知等式2324214012141(1(2))x x x a a x a x a x -+⋅-=++++L 成立,则2414a a a +++=L ( ) A .0B .5C .7D .13【答案】D【解析】【分析】 根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由2324214012141(1(2))x x x a a x a x a x -+⋅-=++++L 可知:令0x =,得0011a a ⇒==;令1x =,得012140121411(1)a a a a a a a a =++++++++⇒=L L ;令1x =-,得0123140123142727(2)()()a a a a a a a a a a =-++-++-++⇒=+-+L L , (2)(1)+得,024********(28)14a a a a a a a a ++++=⇒++++=L L ,而01a =,所以241413a a a +++=L .故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.10.若集合M ={1,3},N ={1,3,5},则满足M ∪X =N 的集合X 的个数为( )A .1B .2C .3D .4【答案】D【解析】 X 可以是{}{}{}{}5,1,5,3,5,1,3,5共4个,选D.11.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】由余弦函数的单调性找出cos cos A B <的等价条件为A B >,再利用大角对大边,结合正弦定理可判断出“cos cos A B <”是“sin sin A B >”的充分必要条件.【详解】 Q 余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<,由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >.因此,“cos cos A B <”是“sin sin A B >”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.12.抛物线()220y px p =>的准线与x 轴的交点为点C ,过点C 作直线l 与抛物线交于A 、B 两点,使得A 是BC 的中点,则直线l 的斜率为( )A .13±B.3± C .±1 D.± 【答案】B【解析】【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为2p x my =-,由题意得出212y y =,将直线l 的方程与抛物线的方程联立,列出韦达定理,结合212y y =可求得m 的值,由此可得出直线l 的斜率. 【详解】 由题意可知点,02p C ⎛⎫- ⎪⎝⎭,设点()11,A x y 、()22,B x y ,设直线AB 的方程为2p x my =-, 由于点A 是BC 的中点,则212y y =, 将直线l 的方程与抛物线的方程联立得222p x my y px⎧=-⎪⎨⎪=⎩,整理得2220y mpy p -+=,由韦达定理得12132y y y mp +==,得123mp y =,2222121829m p y y y p ===,解得4m =±, 因此,直线l的斜率为13m =±. 故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。
江西省萍乡市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .不充分不必要【答案】B【解析】【分析】由线面关系可知m n ⊥,不能确定n 与平面α的关系,若//n α一定可得m n ⊥,即可求出答案.【详解】 ,m m n α⊥⊥Q ,不能确定αn ⊂还是αn ⊄,//m n n α∴⊥¿,当//n α时,存在a α⊂,//,n a ,由,m m a α⊥⇒⊥又//,n a 可得m n ⊥,所以“m n ⊥”是“//n α”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.2.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )A .433B .3C .33D .23【答案】B【解析】【分析】由三视图确定原几何体是正三棱柱,由此可求得体积.【详解】由题意原几何体是正三棱柱,1242V =⨯=. 故选:B .【点睛】 本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.3.已知复数41i z i =+,则z 对应的点在复平面内位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】利用复数除法运算化简z ,由此求得z 对应点所在象限.【详解】依题意()()()()41212211i i z i i i i i -==-=++-,对应点为()2,2,在第一象限. 故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.4.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( )AB .2C .4D .【答案】C【解析】【分析】 设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,根据导数的几何意义,求出切线斜率,进而得到切线方程,将P 点坐标代入切线方程,抽象出直线AB 方程,且过定点为已知圆的圆心,即可求解.【详解】圆22650x y y +-+=可化为22(3)4x y +-=. 设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭, 则12,l l 的斜率分别为1212,22x x k k ==,所以12,l l 的方程为()21111:24x x l y x x =-+,即112x y x y =-, ()22222:24x x l y x x =-+,即222x y x y =-, 由于12,l l 都过点(,3)P t -,所以11223232x t y x t y ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即()()1122,,,A x y B x y 都在直线32x t y -=-上, 所以直线AB 的方程为32x t y -=-,恒过定点(0,3), 即直线AB 过圆心(0,3), 则直线AB 截圆22650x y y +-+=所得弦长为4.故选:C.【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题. 5.已知平面向量a r ,b r 满足()1,2a =-r ,()3,b t =-r ,且()a ab ⊥+r r r ,则b =r ( ) A .3B. C.D .5【答案】B【解析】【分析】 先求出a b +r r ,再利用()0a a b ⋅+=r r r 求出t ,再求b r . 【详解】解:()()()1,23,2,2t t a b -+-=-=-+r r由()a a b ⊥+r r r ,所以()0a a b ⋅+=r r r ()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-r,=r b 故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.6.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM AC ,B .存在点E ,使得平面//BEF 平面11CCD D C .BM ⊥平面1CC FD .三棱锥B CEF -的体积为定值【答案】B【解析】【分析】 根据平行的传递性判断A ;根据面面平行的定义判断B ;根据线面垂直的判定定理判断C ;由三棱锥B CEF -以三角形BCF 为底,则高和底面积都为定值,判断D.【详解】在A 中,因为,F M 分别是,AD CD 中点,所以11////FM AC AC ,故A 正确;在B 中,由于直线BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故B 错误;在C 中,由平面几何得BM CF ⊥,根据线面垂直的性质得出1BM C C ⊥,结合线面垂直的判定定理得出BM ⊥平面1CC F ,故C 正确;在D 中,三棱锥B CEF -以三角形BCF 为底,则高和底面积都为定值,即三棱锥B CEF -的体积为定值,故D 正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.7.下列函数中,值域为R 的偶函数是( )A .21y x =+B .x x y e e -=-C .lg y x =D .2y x =【答案】C【解析】试题分析:A 中,函数为偶函数,但1y ≥,不满足条件;B 中,函数为奇函数,不满足条件;C 中,函数为偶函数且y R ∈,满足条件;D 中,函数为偶函数,但0y ≥,不满足条件,故选C .考点:1、函数的奇偶性;2、函数的值域.8.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( )A .B .C .1D .2【答案】C【解析】【分析】 每一次成功的概率为,服从二项分布,计算得到答案. 【详解】 每一次成功的概率为,服从二项分布,故. 故选:.【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.9.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .2【答案】B【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,表示的可行域,如图,由20 2390x y x y +-=⎧⎨--=⎩可得31x y =⎧⎨=-⎩, 将2z x y =+变形为2y x z =-+,平移直线2y x z =-+,由图可知当直2y x z =-+经过点()3,1-时,直线在y 轴上的截距最大,z 最大值为2315z =⨯-=,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.若集合{}2|0,|121x A x B x x x +⎧⎫=≤=-<<⎨⎬-⎩⎭,则A B I =( ) A .[2,2)-B .(]1,1-C .()11-,D .()12-, 【答案】C【解析】【分析】求出集合A ,然后与集合B 取交集即可.【详解】 由题意,{}2|0|211x A x x x x +⎧⎫=≤=-≤<⎨⎬-⎩⎭,{|12}B x x =-<<,则{|11}A B x x =-<<I ,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.11.设双曲线22221x y a b -=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于22a a b ++,则该双曲线的渐近线斜率的取值范围是 ( )A .(1,0)(0,1)-UB .(,1)(1,)-∞-+∞UC .(2,0)(0,2)-UD .(,2)(2,)-∞-+∞U【答案】A【解析】【分析】【详解】由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于22a a b ++,所以,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)b k a =±∈-⋃(,故选A . 12.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )A .B .C .D .【答案】C【解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C 是符合要求的.考点:三视图二、填空题:本题共4小题,每小题5分,共20分。
江西省萍乡市2019-2020学年高考数学三月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知21,0(),0x x f x x x ⎧-≥=⎨-<⎩,则21log 3f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A .2B .23 C .23-D .3【答案】A 【解析】 【分析】利用分段函数的性质逐步求解即可得答案. 【详解】Q 21log 03<,∴22211(log )log log 3033f =-=>;∴221[(log )](log 3)3123f f f ==-=;故选:A . 【点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.2.已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅u u u r u u u r的值为( ) A .118 B .54C .14D .18【答案】D 【解析】 【分析】设BA a =u u u r r ,BC b =u u u r r,作为一个基底,表示向量()1122DE AC b a ==-u u u r u u u r r r ,()3324DF DE b a ==-u u u r u u u r r r ,()1324AF AD DF a b a =+=-+-u u u r u u u r u u u r r r r 5344a b =-+r r,然后再用数量积公式求解.【详解】设BA a =u u u r r ,BC b =u u u r r,所以()1122DE AC b a ==-u u u r u u u r r r ,()3324DF DE b a ==-u u u r u u u r r r ,()1324AF AD DF a b a =+=-+-u u u r u u u r u u u r r r r 5344a b =-+r r ,所以531448AF BC a b b b ⋅=-⋅+⋅=u u u r u u u r r r r r .故选:D 【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.3.设函数()22cos 23sin cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .72【答案】A 【解析】 【分析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值. 【详解】()22cos 23sin cos f x x x x m =++1cos23sin 2x x m =+++2sin(2)16x m π=+++,0,2x π⎡⎤∈⎢⎥⎣⎦时,72[,]666x πππ+∈,1sin(2)[,1]62x π+∈-,∴()[,3]f x m m ∈+,由题意17[,3][,]22m m +=,∴12m =. 故选:A . 【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键. 4.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥【答案】A 【解析】 【分析】作'DD AB ⊥于'D ,DE AC ⊥于E ,分析可得'DED α=?,'DAD β=∠,再根据正弦的大小关系判断分析得αβ≥,再根据线面角的最小性判定βγ≥即可. 【详解】作'DD AB ⊥于'D ,DE AC ⊥于E .因为平面DAB ⊥平面ABC ,'DD ⊥平面ABC .故,'AC DE AC DD ⊥⊥, 故AC ⊥平面'DED .故二面角D AC B --为'DED α=?. 又直线DA 与平面ABC 所成角为'DAD β=∠,因为DA DE ≥, 故''sin 'sin 'DD DD DED DAD DE DA???.故αβ≥,当且仅当,A E 重合时取等号.又直线AB 与平面ADC 所成角为γ,且'DAD β=∠为直线AB 与平面ADC 内的直线AD 所成角,故βγ≥,当且仅当BD ⊥平面ADC 时取等号.故αβγ≥≥.故选:A 【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.5.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( ) A .15︒ B .30︒C .45︒D .60︒【答案】D 【解析】 【分析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得2l R =即可得圆锥轴截面底角的大小. 【详解】设圆锥的母线长为l,底面半径为R,则有2222R Rl R R ππππ+=+,解得2l R =,所以圆锥轴截面底角的余弦值是12R l =,底角大小为60︒. 故选:D 【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.6. “2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】A 【解析】 【分析】根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 【详解】∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.7.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A .203π B .6πC .103π D .163π 【答案】C 【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为2112122Vππ=⨯⨯⨯=,上部半圆锥的体积为2211422233V ππ=⨯⨯⨯=,所以该几何体的体积为12410233V V V πππ=+=+=,故应选C . 8.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .2【答案】B 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,表示的可行域,如图,由20 2390x y x y +-=⎧⎨--=⎩可得31x y =⎧⎨=-⎩, 将2z x y =+变形为2y x z =-+, 平移直线2y x z =-+,由图可知当直2y x z =-+经过点()3,1-时, 直线在y 轴上的截距最大, z 最大值为2315z =⨯-=,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9.已知集合{}2|2150A x x x =-->,{}|07B x x =<<,则()R A B ðU 等于( )A .[)5,7-B .[)3,7-C .()3,7-D .()5,7-【答案】B 【解析】 【分析】解不等式确定集合A ,然后由补集、并集定义求解. 【详解】由题意{}2|2150A x x x =-->{|3x x =<-或5}x >,∴{|35}R A x x =-≤≤ð,(){|37}R A B x x =-≤<U ð.故选:B. 【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.10.如图所示,为了测量A 、B 两座岛屿间的距离,小船从初始位置C 出发,已知A 在C 的北偏西45︒的方向上,B 在C 的北偏东15︒的方向上,现在船往东开2百海里到达E 处,此时测得B 在E 的北偏西30°的方向上,再开回C 处,由C 向西开26百海里到达D 处,测得A 在D 的北偏东22.5︒的方向上,则A 、B 两座岛屿间的距离为( )A .3B .32C .4D .2【答案】B 【解析】 【分析】先根据角度分析出,,CBE ACB DAC ∠∠∠的大小,然后根据角度关系得到AC 的长度,再根据正弦定理计算出BC 的长度,最后利用余弦定理求解出AB 的长度即可. 【详解】由题意可知:60,67.5,45,75,60ACB ADC ACD BCE BEC ∠=︒∠=︒∠=︒∠=︒∠=︒, 所以180756045CBE ∠=︒-︒-︒=︒,18067.54567.5DAC ∠=︒-︒-︒=︒, 所以DAC ADC ∠=∠,所以26CA CD ==又因为sin sin BC CE BEC CBE =∠∠,所以2BC ==所以AB ===故选:B. 【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.11.已知随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.若21211p p <<<,则( ) A .()()12E E ξξ<,()()12D D ξξ< B .()()12E E ξξ<,()()12D D ξξ> C .()()12E E ξξ>,()()12D D ξξ< D .()()12E E ξξ>,()()12D D ξξ>【答案】B 【解析】 【分析】根据二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,再根据21211p p <<<和二次函数的性质求解. 【详解】因为随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.所以i ξ服从二项分布, 由二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,因为21211p p <<<, 所以()()12E E ξξ<,由二次函数的性质可得:()()1f x x x =-,在1,12⎡⎤⎢⎥⎣⎦上单调递减,所以()()12D D ξξ>. 故选:B 【点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题.12.1x <是12x x+<-的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要【答案】B 【解析】 【分析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。
江西省萍乡市2019-2020学年高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( ) A .12- B .15-C .16-D .18-【答案】C 【解析】 【分析】根据已知条件求得等差数列{}n a 的通项公式,判断出n S 最小时n 的值,由此求得n S 的最小值. 【详解】依题意11237217a d a d +=-⎧⎨+=-⎩,解得17,2a d =-=,所以29n a n =-.由290n a n =-≤解得92n ≤,所以前n项和中,前4项的和最小,且4146281216S a d =+=-+=-. 故选:C 【点睛】本小题主要考查等差数列通项公式和前n 项和公式的基本量计算,考查等差数列前n 项和最值的求法,属于基础题.2.已知边长为4的菱形ABCD ,60DAB ∠=︒,M 为CD 的中点,N 为平面ABCD 内一点,若AN NM =,则AM AN ⋅=u u u u r u u u r( )A .16B .14C .12D .8【答案】B 【解析】 【分析】取AM 中点O ,可确定0AM ON ⋅=u u u u r u u u r;根据平面向量线性运算和数量积的运算法则可求得2AM uuuu r ,利用()AM AN AM AO ON ⋅=⋅+u u u u r u u u r u u u u r u u u r u u u r可求得结果.【详解】取AM 中点O ,连接ON ,AN NM =Q ,ON AM ∴⊥,即0AM ON ⋅=u u u u r u u u r.60DAB ∠=o Q ,120ADM ∴∠=o ,()22222cos 416828AM DM DADM DA DM DA ADM ∴=-=+-⋅∠=++=u u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r,则()21142AM AN AM AO ON AM AO AM ON AM ⋅=⋅+=⋅+⋅==u u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r .故选:B . 【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.3.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[20,40)(单位:元)的同学有34人,则n 的值为( )A .100B .1000C .90D .90【答案】A 【解析】 【分析】利用频率分布直方图得到支出在[20,40)的同学的频率,再结合支出在[20,40)(单位:元)的同学有34人,即得解 【详解】由题意,支出在[20,40)(单位:元)的同学有34人 由频率分布直方图可知,支出在[20,40)的同学的频率为34(0.010.024)100.34,1000.34n +⨯=∴==. 故选:A 【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题. 4.若函数()()2sin 2cos f x x x θ=+⋅(02πθ<<)的图象过点()0,2,则( )A .函数()y f x =的值域是[]0,2B .点,04π⎛⎫⎪⎝⎭是()y f x =的一个对称中心C .函数()y f x =的最小正周期是2πD .直线4x π=是()y f x =的一条对称轴【答案】A 【解析】 【分析】根据函数()f x 的图像过点()0,2,求出θ,可得()cos21f x x =+,再利用余弦函数的图像与性质,得出结论. 【详解】由函数()()2sin 2cos f x x x θ=+⋅(02πθ<<)的图象过点()0,2,可得2sin 22θ=,即sin 21θ=,22πθ∴=,4πθ=,故()()22sin 2cos 2cos cos21f x x x x x θ=+⋅==+, 对于A ,由1cos21x -≤≤,则()02f x ≤≤,故A 正确; 对于B ,当4x π=时,14f π⎛⎫=⎪⎝⎭,故B 错误; 对于C ,22T ππ==,故C 错误; 对于D ,当4x π=时,14f π⎛⎫=⎪⎝⎭,故D 错误; 故选:A 【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题. 5.设正项等差数列{}n a 的前n 项和为n S ,且满足6322S S -=,则2823a a 的最小值为A .8B .16C .24D .36【答案】B 【解析】 【分析】 【详解】方法一:由题意得636332()2S S S S S -=--=,根据等差数列的性质,得96633,,S S S S S --成等差数列,设3(0)S x x =>,则632S S x -=+,964S S x -=+,则222288789962212333(3)()()=3a a a a a S S a a a a a S ++-==++2(4)x x+=168816x x =++≥=,当且仅当4x =时等号成立,从而2823aa的最小值为16,故选B.方法二:设正项等差数列{}n a的公差为d,由等差数列的前n项和公式及6322S S-=,化简可得11653262(3)222a d a d⨯⨯+-+=,即29d=,则222282222222243()33(6)16163382333aa a da aa a a a a++===++≥⋅+816=,当且仅当221633aa=,即243a=时等号成立,从而2823aa的最小值为16,故选B.6.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.920π+B.926π+C.520π+D.526π+【答案】C【解析】【分析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222Sππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C.【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.7.已知平面向量,,a b cr r r,满足||2,||1,b a bc a bλμ=+==+r r rr r r且21λμ+=,若对每一个确定的向量ar,记||cr的最小值为m,则当ar变化时,m的最大值为()A.14B.13C.12D.1【答案】B【解析】【分析】根据题意,建立平面直角坐标系.令,OP a OB b ==u u u r r u u u r r OC c =u u u r r.E 为OB 中点.由1a b +=rr 即可求得P 点的轨迹方程.将c a b λμ=+r r r变形,结合21λμ+=及平面向量基本定理可知,,P C E 三点共线.由圆切线的性质可知||c r的最小值m 即为O 到直线PE 的距离最小值,且当PE 与圆M 相切时,m 有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为m 的最大值. 【详解】根据题意,||2,b =r设()(),,2,0OP a x y OB b ====u u u r r u u u r r ,(),1,0OC c E =u u u r r则2b OE =r u u u r由1a b +=r r代入可得()2221x y ++=即P 点的轨迹方程为()2221x y ++=又因为c a b λμ=+r r r ,变形可得22b c a λμ⎛⎫=+ ⎪⎝⎭rr r ,即2OC OP OE λμ=+uuur uuu r uuu r ,且21λμ+=所以由平面向量基本定理可知,,P C E 三点共线,如下图所示:所以||c r的最小值m 即为O 到直线PE 的距离最小值根据圆的切线性质可知,当PE 与圆M 相切时,m 有最大值 设切线PE 的方程为()1y k x =-,化简可得kx y k 0--=由切线性质及点M 2211k k k --=+,化简可得281k =即2k =±所以切线方程为22044x y --=或22044x y +-=所以当a r变化时, O 到直线PE 的最大值为13m ==即m 的最大值为13故选:B 【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用, 圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.8.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直,则该双曲线的离心率为( ) A .2 BCD .【答案】B 【解析】 【分析】由题中垂直关系,可得渐近线的方程,结合222c a b =+,构造齐次关系即得解 【详解】双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直.∴双曲线的渐近线方程为12y x =±. 12b a ∴=,得2222214,4b ac a a =-=.则离心率2c e a ==. 故选:B 【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题. 9.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D 【解析】【分析】由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小; 而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅ 由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得()2221lg 13lg12lg14lg 13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅((lg13lg13lg 0lg12lg13+⋅-=>⋅所以a c >, 综上可知a c b >>, 故选:D. 【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.10.己知集合{|13}M y y =-<<,{|(27)0}N x x x =-…,则M N ⋃=( ) A .[0,3) B .70,2⎛⎤ ⎥⎝⎦C .71,2⎛⎤- ⎥⎝⎦D .∅【答案】C 【解析】 【分析】先化简7{|(27)0}|02N x x x x x ⎧⎫=-=⎨⎬⎩⎭剟?,再求M N ⋃. 【详解】因为7{|(27)0}|02N x x x x x ⎧⎫=-=⎨⎬⎩⎭剟?, 又因为{|13}M y y =-<<,所以71,2M N ⎛⎤⋃=- ⎥⎝⎦, 故选:C. 【点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.11.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( ) A .210x y --= B .210x y +-=C .210x y -+=D .210x y ---=【答案】A 【解析】 【分析】设()11,A x y ,()22,B x y ,利用点差法得到1212422y y x x -==-,所以直线AB 的斜率为2,又过点(1,1),再利用点斜式即可得到直线AB 的方程. 【详解】解:设()()1122,,,A x y B x y ,∴122y y +=,又21122244y x y x ⎧=⎨=⎩,两式相减得:()2212124y y x x -=-, ∴()()()1212124y y y y x x +-=-,∴1212422y y x x -==-,∴直线AB 的斜率为2,又∴过点(1,1),∴直线AB 的方程为:12(1)y x -=-,即2 10x y --=, 故选:A. 【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.12.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a ⊂α,b ⊂β,a //β,b //α,则“a //b“是“α//β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】根据面面平行的判定及性质求解即可. 【详解】解:a ⊂α,b ⊂β,a ∥β,b ∥α,由a ∥b ,不一定有α∥β,α与β可能相交; 反之,由α∥β,可得a ∥b 或a 与b 异面,∴a ,b 是两条不同的直线,α,β是两个不同的平面,且a ⊂α,b ⊂β,a ∥β,b ∥α, 则“a ∥b“是“α∥β”的既不充分也不必要条件. 故选:D. 【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
江西省萍乡市2019-2020学年高考数学仿真第三次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<【答案】A 【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望. 详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球, 红球的个数就会出现,1,1m m m -+三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是2,1,,1,2m m m m m --++五种情况,所以分析可以求得1212,()()p p E E ξξ><,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.2.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】做出函数(),()f x g x 的图象,问题转化为函数(),()f x g x 的图象在[5,5]-有7个交点,而函数(),()f xg x在[5,0]-上有3个交点,则在[0,5]上有4个不同的交点,数形结合即可求解. 【详解】作出函数(),f x ()g x 的图象如图所示,由图可知方程()()f x g x =在[5,0]-上有3个不同的实数根, 则在[0,5]上有4个不同的实数根, 当直线y kx =经过(4,1)时,14k =; 当直线y kx =经过(5,1)时,15k =, 可知当1154k ≤<时,直线y kx =与()f x 的图象在[0,5]上有4个交点, 即方程()()f x g x =,在[0,5]上有4个不同的实数根. 故选:D. 【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.3.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤【答案】C 【解析】 【分析】根据程序框图的运行,循环算出当31S =时,结束运行,总结分析即可得出答案. 【详解】由题可知,程序框图的运行结果为31, 当1S =时,9i =; 当1910S =+=时,8i =;当19818S =++=时,7i =; 当198725S =+++=时,6i =; 当1987631S =++++=时,5i =. 此时输出31S =. 故选:C. 【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题. 4.已知等差数列{}n a 的前n 项和为n S ,262,21a S ==,则5a = A .3 B .4C .5D .6【答案】C 【解析】 【分析】 【详解】方法一:设等差数列{}n a 的公差为d ,则112656212a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111a d =⎧⎨=⎩,所以51(51)15a =+-⨯=.故选C . 方法二:因为166256()3()2a a S a a +==+,所以53(2)21a +=,则55a =.故选C . 5.已知抛物线24y x =的焦点为F ,准线与x 轴的交点为K ,点P 为抛物线上任意一点KPF ∠的平分线与x 轴交于(,0)m ,则m 的最大值为( ) A.3- B.3C.2D.2-【答案】A 【解析】 【分析】11mm-=+, 求出等式左边式子的范围,将等式右边代入,从而求解. 【详解】解:由题意可得,焦点F (1,0),准线方程为x =−1, 过点P 作PM 垂直于准线,M 为垂足,由抛物线的定义可得|PF|=|PM|=x +1, 记∠KPF 的平分线与x 轴交于(m,0),(1m 1)H -<<根据角平分线定理可得||||||=||||||PF PM FH PK PK KH =, 211(1)4mmx x-=+++, 当0x =时,0m =,当0x ≠21242(1)4112x xx x⎫=⎪⎪++⎣⎭+++,211032221mm m-≤<⇒<≤-+ 综上:0322m ≤≤- 故选:A . 【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题. 6.若集合{}10A x x =-≤≤,01xB x x ⎧⎫=<⎨⎬-⎩⎭,则A B =U ( )A .[)1,1-B .(]1,1-C .()1,1-D .[]1,1-【答案】A 【解析】 【分析】用转化的思想求出B 中不等式的解集,再利用并集的定义求解即可. 【详解】解:由集合01xB xx ⎧⎫=<⎨⎬-⎩⎭,解得{|01}B x x =<<,则{}{}{}[)|10|01|111,1A B x x x x x x =-<<=-<=-U U 剟? 故选:A . 【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题. 7.要得到函数12y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数23y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度【答案】B 【解析】 【分析】 【详解】分析:根据三角函数的图象关系进行判断即可.详解:将函数23y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到12233y x x ππ=⨯-=-()(), 再将得到的图象向左平移4π个单位长度得到3412y x x ()(),πππ=-+=- 故选B .点睛:本题主要考查三角函数的图象变换,结合ω和ϕ的关系是解决本题的关键.8.设不等式组00x y x +≥⎧⎪⎨-≤⎪⎩表示的平面区域为Ω,若从圆C :224x y +=的内部随机选取一点P ,则P取自Ω的概率为( ) A .524B .724C .1124D .1724【答案】B 【解析】 【分析】画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率. 【详解】作出Ω中在圆C 内部的区域,如图所示, 因为直线0x y +=,30x -=的倾斜角分别为34π,6π, 所以由图可得P 取自Ω的概率为3746224πππ-=.故选:B 【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题. 9.在声学中,声强级L (单位:dB )由公式1210110I L g -⎛⎫=⎪⎝⎭给出,其中I 为声强(单位:2W/m ).160dB L =,275dB L =,那么12I I=( ) A .4510 B .4510-C .32-D .3210-【答案】D 【解析】 【分析】 由1210110I L g -⎛⎫= ⎪⎝⎭得lg 1210L I =-,分别算出1I 和2I 的值,从而得到12I I 的值. 【详解】 ∵1210110I L g -⎛⎫=⎪⎝⎭, ∴()()1210lg lg1010lg 12L I I -=-=+,∴lg 1210LI =-, 当160L =时,1160lg 121261010L I =-=-=-,∴6110I -=, 当275L =时,2275lg 1212 4.51010L I =-=-=-,∴ 4.5210I -=, ∴36 1.5124.5210101010I I ----===, 故选:D. 【点睛】本小题主要考查对数运算,属于基础题.10.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】利用复数模的计算、复数的除法化简复数z ,再根据复数的几何意义,即可得答案; 【详解】Q ()55(1)5513451222i i z i z i i -+=+=⇒===-+, ∴z 对应的点55(,)22-,∴z 对应的点位于复平面的第四象限.故选:D. 【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题. 11.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=【答案】D 【解析】 【分析】由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可.【详解】解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D. 【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.12.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u r u u u r u u u r ,x ,y R ∈,则23x y +=( ) A .2 B .53C .43D .32【答案】B 【解析】 【分析】首先根据题中条件和三角形中几何关系求出x ,y ,即可求出23x y +的值. 【详解】如图所示过O 做三角形三边的垂线,垂足分别为D ,E ,F , 过O 分别做AB ,AC 的平行线NO ,MO ,由题知222294cos 607212AB AC BC BC BC AB AC +-++︒==⇒=⋅⋅,则外接圆半径212sin 603BC r ==⋅︒, 因为⊥OD AB ,所以22212319OD AO AD =-=-=, 又因为60DMO ∠=︒,所以2133DM AM =⇒=,43MO AN ==, 由题可知AO xAB y AC AM AN =+=+u u u r u u u r u u u r u u u u r u u u r,所以16AM x AB ==,49AN y AC ==, 所以5233x y +=. 故选:D. 【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题. 二、填空题:本题共4小题,每小题5分,共20分。
江西省萍乡市2019-2020学年高考数学第三次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.要排出高三某班一天中,语文、数学、英语各2节,自习课1节的功课表,其中上午5节,下午2节,若要求2节语文课必须相邻且2节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( ) A .84 B .54 C .42D .18【答案】C 【解析】 【分析】根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案. 【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求2节语文课必须相邻且2节数学课也必须相邻,将2节语文课和2节数学课分别捆绑,然后在剩余3节课中选1节到上午,由于2节英语课不加以区分,此时,排法种数为1233232218C A A A =种; ②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但2节语文课不加以区分,2节数学课不加以区分,2节英语课也不加以区分,此时,排法种数为14242224C A A =种. 综上所述,共有182442+=种不同的排法. 故选:C . 【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题. 2.已知函数321()(0)3f x ax x a =+>.若存在实数0(1,0)x ∈-,且012x ≠-,使得01()()2f x f =-,则实数a 的取值范围为( ) A .2(,5)3B .2(,3)(3,5)3⋃ C .18(,6)7D .18(,4)(4,6)7⋃ 【答案】D 【解析】 【分析】首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果. 【详解】()22f x ax x '=+,令()0f x '=,得10x =,22x a=-.其单调性及极值情况如下:x2,a ⎛⎫-∞-⎪⎝⎭2a - 2,0a ⎛⎫- ⎪⎝⎭0 ()0,∞+()f x ' +_0 +()f xZ 极大值]极小值Z若存在0111,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫=- ⎪⎝⎭, 则()21221112a a f f ⎧-<-⎪⎪⎪->-⎨⎪⎪⎛⎫-<-⎪ ⎪⎝⎭⎩(如图1)或3122a a -<-<-(如图2).(图1)(图2) 于是可得()18,44,67a ⎛⎫∈⋃ ⎪⎝⎭, 故选:D. 【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.3.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向左平移5π12个长度单位【答案】D 【解析】55cos(2)sin(2)sin(2)sin 2()332612y x x x x πππππ=+=++=+=+,所以要的函数cos(2)3y x π=+的图象,只需将函数sin 2y x =的图象向左平移512π个长度单位得到,故选D4.已知()3,0A -,()3,0B ,P 为圆221x y +=上的动点,AP PQ =u u u r u u u r,过点P 作与AP 垂直的直线l 交直线QB 于点M ,若点M 的横坐标为x ,则x 的取值范围是( )A .1x ≥B .1x >C .2x ≥D .2x ≥【答案】A 【解析】 【分析】由题意得2MB MA BQ OP -==,即可得点M 的轨迹为以A ,B 为左、右焦点,1a =的双曲线,根据双曲线的性质即可得解. 【详解】如图,连接OP ,AM ,由题意得22MB MA BQ OP -===,∴点M 的轨迹为以A ,B 为左、右焦点,1a =的双曲线, ∴1x ≥.故选:A.【点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题. 5.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a < D .b a >【答案】C 【解析】 【分析】令23a b t ==,则0t >,1t ≠,将指数式化成对数式得a 、b 后,然后取绝对值作差比较可得. 【详解】令23abt ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3tb t ==, ()lg lg lg lg 3lg 20lg 2lg 3lg 2lg 3t t t a b -∴-=-=>⋅,因此,a b >. 故选:C. 【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.6.在边长为2的菱形ABCD 中,BD =ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的外接球的表面积为( ) A .23π B .2πC .4πD .6π【答案】D 【解析】 【分析】取AC 中点N ,由题意得BND ∠即为二面角B AC D --的平面角,过点B 作BO DN ⊥于O ,易得点O 为ADC V 的中心,则三棱锥A BCD -的外接球球心在直线BO 上,设球心为1O ,半径为r ,列出方程22233r r ⎛⎫⎛-+= ⎪ ⎪ ⎝⎭⎝⎭即可得解. 【详解】如图,由题意易知ABC V 与ADC V 均为正三角形,取AC 中点N ,连接BN ,DN , 则BN AC ⊥,DN AC ⊥,∴BND ∠即为二面角B AC D --的平面角, 过点B 作BO DN ⊥于O ,则BO ⊥平面ACD ,由3BN ND ==,1cos 3BND ∠=可得3cos 3ON BN BND =⋅∠=,233OD =,232633OB ⎛⎫=-= ⎪ ⎪⎝⎭, ∴13ON ND =即点O 为ADC V 的中心,∴三棱锥A BCD -的外接球球心在直线BO 上,设球心为1O ,半径为r , ∴11BO DO r ==,126OO r =-,∴222262333r r ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得6r =, ∴三棱锥A BCD -的外接球的表面积为234462S r πππ==⨯=. 故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题. 7.某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .12πB .16πC .24πD .48π【答案】A 【解析】 【分析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为22,如图:⊥,且OD⊂平面SAC,∴的外接圆的圆心为斜边AC的中点D,OD AC∆ABCQ,==SA AC2∴的中点O为外接球的球心,SC∴半径3R=,∴外接球表面积4312=⨯=.Sππ故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.8.用数学归纳法证明,则当时,左端应在的基础上加上()A.B.C.D.【答案】C【解析】【分析】首先分析题目求用数学归纳法证明1+1+3+…+n1=时,当n=k+1时左端应在n=k的基础上加上的式子,可以分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.【详解】当n=k时,等式左端=1+1+…+k1,当n=k+1时,等式左端=1+1+…+k 1+k 1+1+k 1+1+…+(k+1)1,增加了项(k 1+1)+(k 1+1)+(k 1+3)+…+(k+1)1. 故选:C . 【点睛】本题主要考查数学归纳法,属于中档题./9.已知函数()cos (0)f x x x ωωω=->,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( ) A .12x π=-B .12x π=C .3x π=-D .3x π=【答案】D 【解析】 【分析】由题,得()cos 2sin 6f x x x x πωωω⎛⎫=-=-⎪⎝⎭,由()y f x =的图象与直线2y =的两个相邻交点的距离等于π,可得最小正周期T π=,从而求得ω,得到函数的解析式,又因为当3x π=时,226x ππ-=,由此即可得到本题答案. 【详解】由题,得()cos 2sin 6f x x x x πωωω⎛⎫=-=- ⎪⎝⎭,因为()y f x =的图象与直线2y =的两个相邻交点的距离等于π, 所以函数()y f x =的最小正周期T π=,则22Tπω==, 所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭, 当3x π=时,226x ππ-=, 所以3x π=是函数()2sin 26f x x π⎛⎫=-⎪⎝⎭的一条对称轴, 故选:D 【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性. 10.()712x x-的展开式中2x 的系数为( )A .84-B .84C .280-D .280【答案】C 【解析】由题意,根据二项式定理展开式的通项公式1C k n k kk n T a b -+=,得()712x -展开式的通项为()172kk kk T C x +=-,则()712x x-展开式的通项为()1172kk k k T C x -+=-,由12k -=,得3k =,所以所求2x 的系数为()3372280C -=-.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式1C r n r r r n T ab -+=,再根据所求问题,通过确定未知的次数,求出r ,将r 的值代入通项公式进行计算,从而问题可得解.11.设集合{}2A x x a =-<<,{}0,2,4B =,若集合A B I 中有且仅有2个元素,则实数a 的取值范围为 A .()0,2 B .(]2,4 C .[)4,+∞ D .(),0-∞【答案】B 【解析】 【分析】由题意知{}02A ⊆,且4A ∉,结合数轴即可求得a 的取值范围. 【详解】由题意知,{}=02A B I ,,则{}02A ⊆,,故2a >, 又4A ∉,则4a ≤,所以24a <≤, 所以本题答案为B. 【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定A B I 中的元素是解题的关键,属于基础题.12.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是( )A .37B .47C .57D .67【答案】D 【解析】 【分析】由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解. 【详解】由题,窗花的面积为21241140-⨯=,其中小正方形的面积为5420⨯=, 所以所求概率1402061407P -==,故选:D 【点睛】本题考查几何概型的面积公式的应用,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
江西省萍乡市2019-2020学年高考适应性测试卷数学试题(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量(a =r ,b r是单位向量,若a b -=r r ,则,a b =r r ( ) A .6π B .4π C .3π D .23π 【答案】C【解析】【分析】设(,)b x y =r,根据题意求出,x y 的值,代入向量夹角公式,即可得答案;【详解】 设(,)b x y =r ,∴(1)a b x y -=-r r ,Q b r是单位向量,∴221x y +=,Q a b -=r r ,∴22(1))3x y -+=,联立方程解得:1,2x y ⎧=-⎪⎪⎨⎪=⎪⎩或1,0,x y =⎧⎨=⎩当1,2x y ⎧=-⎪⎪⎨⎪=⎪⎩时,13122cos ,212a b -+<>==⨯r r ;∴,3a b π<>=r r 当1,0,x y =⎧⎨=⎩时,11cos ,212a b <>==⨯r r ;∴,3a b π<>=r r 综上所述:,3a b π<>=r r . 故选:C.【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意b r 的两种情况.2.函数()1ln 1y x x=-+的图象大致为( )A .B .C .D .【答案】A【解析】【分析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项.【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项. 3.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .【答案】B【解析】考点:程序框图. 分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i <5时退出,故选B .4.下列说法正确的是( )A .命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀>,2sin x x >”B .若平面α,β,γ,满足αγ⊥,βγ⊥则//αβC .随机变量ξ服从正态分布()21,N σ(0σ>),若(01)0.4P ξ<<=,则(0)0.8P ξ>= D .设x 是实数,“0x <”是“11x <”的充分不必要条件 【答案】D【解析】【分析】由特称命题的否定是全称命题可判断选项A ;,αβ可能相交,可判断B 选项;利用正态分布的性质可判断选项C ;11x<⇒0x <或1x >,利用集合间的包含关系可判断选项D. 【详解】命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀≤,2sin x x >”,故A 错误;αγ⊥, βγ⊥,则,αβ可能相交,故B 错误;若(01)0.4P ξ<<=,则(12)0.4P ξ<<=,所以10.40.4(0)0.12P ξ--<==,故(0)0.9P ξ>=,所以C 错误;由11x<,得0x <或1x >, 故“0x <”是“11x <”的充分不必要条件,D 正确. 故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.5.已知,,,m n l αβαβαβ⊥⊂⊂=I ,则“m ⊥n”是“m ⊥l”的【分析】构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线AD=直线l。
江西省萍乡市2019-2020学年高考数学仿真第一次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是棱AD ,1CC ,11C D 的中点,给出下列四个命题:①1EF B C ⊥;② 直线FG 与直线1A D 所成角为60︒;③ 过E ,F ,G 三点的平面截该正方体所得的截面为六边形;④ 三棱锥B EFG -的体积为56. 其中,正确命题的个数为( ) A .1B .2C .3D .4 【答案】C【解析】【分析】画出几何体的图形,然后转化判断四个命题的真假即可.【详解】如图;连接相关点的线段,O 为BC 的中点,连接EFO ,因为F 是中点,可知1B C OF ⊥,1EO B C ⊥,可知1B C ⊥平面EFO ,即可证明1B C EF ⊥,所以①正确;直线FG 与直线1A D 所成角就是直线1A B 与直线1A D 所成角为60︒;正确;过E ,F ,G 三点的平面截该正方体所得的截面为五边形;如图:是五边形EHFGI .所以③不正确;如图:三棱锥B EFG -的体积为:由条件易知F 是GM 中点,所以B EFG B EFM F BEM V V V ---==, 而=2311522131=2222BEM ABE EDM ABMD S S S S ∆∆+⨯-⨯⨯-⨯-⨯=-梯形, 1551326F EBM V -=⨯⨯=.所以三棱锥B EFG -的体积为56,④正确; 故选:C .【点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.2.已知集合{}2,1,0,1,2A =--,2}2{|0B x x x =-+>,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}2,1,0,1,2-- 【答案】D【解析】【分析】先求出集合B ,再与集合A 求交集即可.【详解】 由已知,22172()024x x x -+=-+>,故B R =,所以A B =I {}2,1,0,1,2--.本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.3.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A .83B .163C .43D .8【答案】A【解析】【分析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,1822233V =⨯⨯⨯=. 故选:A .【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.4.若集合{|2020}A x N x =∈=,22a = ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉ 【答案】D【解析】【分析】由题意{|2020}A x N x =∈==∅,分析即得解 【详解】由题意{|2020}A x N x =∈==∅,故a A ∉,{}A a ⊆本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题. 5.已知直四棱柱1111ABCD A B C D -的所有棱长相等,60ABC ︒∠=,则直线1BC 与平面11ACC A 所成角的正切值等于( )A .64 B.104 C .5 D .155【答案】D【解析】【分析】以A 为坐标原点,AE 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴,建立空间直角坐标系.求解平面11ACC A 的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱1111ABCD A B C D -,60ABC ︒∠=,取BC 中点E ,以A 为坐标原点,AE 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴,建立空间直角坐标系.设2AB =,则11(0,0,0),(0,0,2),(3,1,0),(3,1,0),(3,1,2)A A B C C -, 11(0,2,2),(3,1,0),(0,0,2)BC AC AA ===u u u r u u u r u u u r .设平面11ACC A 的法向量为(,,)n x y z =r, 则130,20,n AC x y n AA z ⎧⋅=+=⎪⎨⋅==⎪⎩v v 取1x =,得(1,3,0)n =r .设直线1BC 与平面11ACC A 所成角为θ,1BC n ⋅u u u r r2610cos 14θ⎛⎫∴=-= ⎪ ⎪⎝⎭, ∴直线1BC 与平面11ACC A 所成角的正切值等于15 故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题. 6.如果实数x y 、满足条件10{1010x y y x y -+≥+≥++≤,那么2x y -的最大值为( )A .2B .1C .2-D .3-【答案】B【解析】【分析】【详解】解:当直线2x y z -=过点()0,1A -时,z 最大,故选B7.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A .甲B .乙C .丙D .丁【答案】C【解析】【分析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.8.在边长为1的等边三角形ABC 中,点E 是AC 中点,点F 是BE 中点,则AF AB ⋅=u u u r u u u r ( ) A .54 B .34 C .58 D .38【答案】C【解析】【分析】根据平面向量基本定理,用,AB AC u u u r u u u r 来表示AF u u u r ,然后利用数量积公式,简单计算,可得结果.【详解】由题可知:点E 是AC 中点,点F 是BE 中点()12AF AB AE =+u u u r u u u r u u u r ,12AE AC =u u u r u u u r 所以1124AF AB AC =+u u u r u u u r u u u r 又11cos 1122AB AC AB AC A ⋅=∠=⨯⨯=u u u r u u u r u u u r u u u r 所以1124AF AB AB AC AB ⎛⎫⋅=+⋅ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r则2115248AF AB AB AC AB ⋅=+⋅=u u u r u u u r u u u r u u u r u u u r 故选:C【点睛】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.22焦距为( )A.3B .C .6D .【答案】A【解析】【分析】根据焦点到渐近线的距离,可得b ,然后根据222,c b c a e a =-=,可得结果. 【详解】由题可知:双曲线的渐近线方程为0bx ay ±=取右焦点(),0F c ,一条渐近线:0l bx ay -=则点F 到l =222b a c +=所以b =222c a -= 又2222399c c c a a a =⇒=⇒= 所以223292c c c -=⇒= 所以焦距为:23c =故选:A【点睛】本题考查双曲线渐近线方程,以及,,,a b c e 之间的关系,识记常用的结论:焦点到渐近线的距离为b ,属基础题.10.集合}{220A x x x =--≤,{}10B x x =-<,则A B U =( ) A .}{1x x <B .}{11x x -≤<C .{}2x x ≤D .{}21x x -≤< 【答案】C【解析】【分析】 先化简集合A,B ,结合并集计算方法,求解,即可.【详解】所以{}2A B x x ⋃=≤,故选C .【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B ,难度较小.11.设集合{}1,2,3A =,{}220B x x x m =-+=,若{3}A B ⋂=,则B =( ) A .{}1,3-B .{}2,3-C .{}1,2,3--D .{}3【答案】A【解析】【分析】 根据交集的结果可得3是集合B 的元素,代入方程后可求m 的值,从而可求B .【详解】依题意可知3是集合B 的元素,即23230m -⨯+=,解得3m =-,由2230x x --=,解得1,3x =-.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.12.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ).A .16B .283C .5D .4【答案】D【解析】【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=, 即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n m m n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D.【点睛】13.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转角02παα⎛⎫<< ⎪⎝⎭,所得直线方程是20x y --=,若将它继续旋转2πα-角,所得直线方程是210x y +-=,则直线l 的方程是______.【答案】230x y --=【解析】【分析】 求出点P 坐标,由于直线210x y +-=与直线l 垂直,得出直线l 的斜率为12,再由点斜式写出直线l 的方程.【详解】 ()1,120210x x y P y -⎧⇒-⎨--=+⎩= 由于直线210x y +-=可看成直线l 先绕点P 逆时针方向旋转角α,再继续旋转2πα-角得到,则直线210x y +-=与直线l 垂直,即直线l 的斜率为12 所以直线l 的方程为11(1)2y x +=-,即230x y --= 故答案为:230x y --=【点睛】 本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题. 14.已知O 为矩形ABCD 的对角线的交点,现从,,,,A B C D O 这5个点中任选3个点,则这3个点不共线的概率为________. 【答案】45【解析】【分析】基本事件总数3510n C ==,这3个点共线的情况有两种AOC 和BOD ,由此能求出这3个点不共线的概率.【详解】解:O 为矩形ABCD 的对角线的交点,现从A ,B ,C ,D ,O 这5个点中任选3个点,基本事件总数3510n C ==,∴这3个点不共线的概率为241105p =-=. 故答案为:45. 【点睛】 本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,属于基础题. 15.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为_______.【答案】24【解析】 由分层抽样的知识可得2400903624002000n⨯=++,即1600n =,所以高三被抽取的人数为16009024240020001600⨯=++,应填答案24. 16.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.【答案】5 【解析】【分析】计算sinαy r ==,再利用诱导公式计算得到答案. 【详解】由题意可得x =1,y =2,r =sinα5y r ==,∴sin (π﹣α)=sinα=.故答案为:5. 【点睛】 本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.三、解答题:共70分。
江西省萍乡市2019-2020学年高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图,输出的结果为( )A .193B .4C .254D .132【答案】A 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,x M 的值,当3x =,1943M =>,退出循环,输出结果. 【详解】程序运行过程如下:3x =,0M =;23x =,23M =;12x =-,16M =;3x =,196M =;23x =,236M =; 12x =-,103M =;3x =,1943M =>,退出循环,输出结果为193, 故选:A. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.2.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928【答案】A 【解析】 【分析】根据循环结构的运行,直至不满足条件退出循环体,求出x 的范围,利用几何概型概率公式,即可求出结论. 【详解】程序框图共运行3次,输出的x 的范围是[]23247,, 所以输出的x 不小于103的概率为24710314492472322414-==-.故选:A. 【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题. 3.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤ D .21,2n n n ∃>≤【答案】C 【解析】根据命题的否定,可以写出p ⌝:21,2nn n ∀>≤,所以选C.4.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( ) A . B .C .1D .2【答案】C 【解析】 【分析】每一次成功的概率为,服从二项分布,计算得到答案.【详解】每一次成功的概率为,服从二项分布,故.故选:. 【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力. 5.一个算法的程序框图如图所示,若该程序输出的结果是34,则判断框中应填入的条件是( )A .5?i >B .5?i <C .4?i >D .4?i <【答案】D 【解析】 【分析】首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及i 的关系,最终得出选项. 【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:110112122S i =+==+=⨯,; 第二次循环:1122132233S i =+==+=⨯,; 第三次循环:2133143344S i =+==+=⨯,, 此时退出循环,根据判断框内为跳出循环的语句,4i ∴<?,故选D . 【点睛】题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.从集合{}3,2,1,1,2,3,4---中随机选取一个数记为m ,从集合{}2,1,2,3,4--中随机选取一个数记为n ,则在方程221x y m n +=表示双曲线的条件下,方程221x y m n+=表示焦点在y 轴上的双曲线的概率为( ) A .917B .817C .1735D .935【答案】A 【解析】 【分析】设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,分别计算出(),()P A P AB ,再利用公式()(/)()P AB P B A P A =计算即可. 【详解】设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,由题意,334217()7535P A ⨯+⨯==⨯,339()7535P AB ⨯==⨯,则所求的概率为()9(/)()17P AB P B A P A ==. 故选:A. 【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.7.已知集合{}2|230A x x x =--<,集合{|10}B x x =-≥,则()A B ⋂=R ð( ).A .(,1)[3,)-∞+∞UB .(,1][3,)-∞+∞UC .(,1)(3,)-∞+∞UD .(1,3)【答案】A 【解析】 【分析】算出集合A 、B 及A B I ,再求补集即可. 【详解】由2230x x --<,得13x -<<,所以{|13}A x x =-<<,又{|1}B x x =≥, 所以{|13}A B x x ⋂=≤<,故()A B ⋂=R ð{|1x x <或3}x ≥. 故选:A. 【点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.8.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )A .7πB .6πC .5πD .4π【答案】C 【解析】 【分析】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案. 【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为21322152πππ⨯⨯+⨯=. 故选:C . 【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.9.过抛物线()220y px p =>的焦点F 作直线与抛物线在第一象限交于点A ,与准线在第三象限交于点B ,过点A 作准线的垂线,垂足为H .若tan 2AFH ∠=,则AF BF=( )A .54B .43C .32D .2【答案】C 【解析】 【分析】需结合抛物线第一定义和图形,得AFH V 为等腰三角形,设准线与x 轴的交点为M ,过点F 作FC AH ⊥,再由三角函数定义和几何关系分别表示转化出()cos 2pBF πα=-,()tan sin 2p AF απα=-,结合比值与正切二倍角公式化简即可【详解】如图,设准线与x 轴的交点为M ,过点F 作FC AH ⊥.由抛物线定义知AF AH =, 所以AHF AFH α∠=∠=,2FAH OFB πα∠=-=∠,()()cos 2cos 2MF pBF παπα==--,()()()tan tan sin 2sin 2sin 2CF CH p AF ααπαπαπα===---,所以()2tan tan tan 13tan 2tan 222AFBF αααπαα-====--.故选:C 【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题 10.设01p <<,随机变量ξ的分布列是ξ1-0 1P1(1)3p - 2313p 则当p 在(,)34内增大时,( )A .()E ξ减小,()D ξ减小B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小 D .()E ξ增大,()D ξ增大【答案】C 【解析】 【分析】1121()(1)(1)3333E p p p ξ=-⨯-+=-,22()()()D E E ξξξ=-,判断其在23(,)34内的单调性即可.【详解】解:根据题意1121()(1)(1)3333E p p p ξ=-⨯-+=-在23,34p ⎛⎫∈ ⎪⎝⎭内递增, 22111()(1)(1)333E p p ξ=-⨯-+=222221121442411()()()(1)()3333999923D E E p p p p p p ξξξ⎛⎫=-=-+--=-++=-- ⎪+⎝⎭,是以12p =为对称轴,开口向下的抛物线,所以在23,34⎛⎫⎪⎝⎭上单调递减,故选:C . 【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题. 11.sin80cos50cos140sin10︒︒︒︒+=( )A .B .C .12-D .12【答案】D 【解析】 【分析】利用109080,1409050︒︒︒︒︒=-=+o,根据诱导公式进行化简,可得sin80cos50cos80sin 50︒︒︒︒-,然后利用两角差的正弦定理,可得结果. 【详解】由809010,1409050︒︒︒︒︒=-=+o所以()sin10sin 9080cos10︒︒︒︒=-=()cos140cos 9050sin50︒︒︒︒=+=-,所以原式()sin80cos50cos80sin50sin 8050︒︒︒︒︒︒=-=- 所以原式1sin 302==o故1sin80cos50cos140sin102︒︒︒︒+= 故选:D 【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题. 12.已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若函数()3222111()324f x x bx a c ac x =+++-存在极值,则角B 的取值范围是( ) A .0,3π⎛⎫⎪⎝⎭B .,63ππ⎛⎫⎪⎝⎭C .,3π⎛⎫π⎪⎝⎭D .,6π⎛⎫π⎪⎝⎭【答案】C 【解析】 【分析】求出导函数()f x ',由()0f x '=有不等的两实根,即>0∆可得不等关系,然后由余弦定理可及余弦函数性质可得结论. 【详解】()3222111()324f x x bx a c ac x =+++-Q ,()2221()4f x x bx a c ac '∴=+++-.若()f x 存在极值,则()2221404b ac ac -⨯⨯+->,222a c b ac ∴+-<又2221cos ,cos 22a cb B B ac +-=∴<.又()0,,3B B π∈π∴<<πQ .故选:C . 【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键. 二、填空题:本题共4小题,每小题5分,共20分。
江西省萍乡市2019-2020学年高考数学第四次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()22018tan 1xx m f x x x m =+++()0,1m m >≠,若()13f =,则()1f -等于( )A .-3B .-1C .3D .0【答案】D 【解析】分析:因为题设中给出了()1f 的值,要求()1f -的值,故应考虑()(),f x f x -两者之间满足的关系.详解:由题设有()2212018tan 2018tan 11x x x m f x x x x x m m ---=-+=-+++,故有()()212f x f x x +-=+,所以()()113f f +-=,从而()10f -=,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.2.若复数z 满足(1)12i z i +=+,则||z =( )A .2B .32C .2D .12【答案】C 【解析】 【分析】 化简得到1322z i =-+,1322z i =--,再计算复数模得到答案.【详解】(1)12i z i +=+,故()()()()121121313111222i i i i z i i i i +++-+====-+++-,故1322z i =--,z 2=. 故选:C . 【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力. 3.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( )A .3B .223C .22D .13【答案】C 【解析】 【分析】根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案. 【详解】显然直线()02p y k x k ⎛⎫=-> ⎪⎝⎭过抛物线的焦点,02p F ⎛⎫⎪⎝⎭如图,过A,M 作准线的垂直,垂足分别为C ,D ,过M 作AC 的垂线,垂足为E根据抛物线的定义可知MD=MF ,AC=AF ,又AM=MN ,所以M 为AN 的中点,所以MD 为三角形NAC 的中位线,故MD=CE=EA=12AC 设MF=t ,则MD=t ,AF=AC=2t ,所以AM=3t ,在直角三角形AEM 中,ME=2222922AM AE t t t -=-=所以22tan 22ME tk MAE AE =∠===故选:C 【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.4.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5,5P m ⎛⎫ ⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( ) A .210B .10 C .7210D .310【答案】A 【解析】 【分析】根据单位圆以及角度范围,可得m ,然后根据三角函数定义,可得sin ,cos θθ,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果. 【详解】由题可知:2251m ⎛⎫+= ⎪ ⎪⎝⎭,又θ为锐角 所以0m >,255m =根据三角函数的定义:255sin ,cos 55θθ==所以4sin 22sin cos 5θθθ==223cos 2cos sin 5θθθ=-=-由sin 2sin 2cos cos 2sin 444πππθθθ⎛⎫+=+ ⎪⎝⎭ 所以42322sin 24525210πθ⎛⎫+=⨯-⨯= ⎪⎝⎭ 故选:A 【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.5.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 【答案】B【解析】试题分析:由集合A 中的函数,得到,解得:,∴集合,由集合B 中的函数,得到,∴集合,则,故选B .考点:交集及其运算.6.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A .4B .5C .6D .7【答案】C 【解析】 【分析】根据程序框图程序运算即可得. 【详解】 依程序运算可得:4602520460603460604046040,,,;,,,;,,,;r i m n r i m n r i m n ============205402006,,,;,r i m n r i ======,故选:C 【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程. 7.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( ) A .24π B .6πC .33πD .12π【答案】A 【解析】 【分析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,∵四面体所有棱长都是4, ∴正方体的棱长为22 设球的半径为r , 则()222224r =+,解得6r =所以2424S r ππ==, 故选:A . 【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题.8.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D .2【答案】A 【解析】 【分析】由()()f a f b =推导出1b a =,且01a <<,将所求代数式变形为2244244222a b a b a b a b+-+=-++,利用基本不等式求得2a b +的取值范围,再利用函数的单调性可得出其最小值. 【详解】Q 函数()ln f x x =满足()()f a f b =,()()22ln ln a b ∴=,即()()ln ln ln ln 0a b a b -+=,0a b Q <<,ln ln a b ∴<,ln ln 0a b ∴+=,即()ln 01ab ab =⇒=,21ab a ∴=>,则01a <<,由基本不等式得112222a b a a a a+=+≥⋅=12a =时,等号成立.()()()()222224428442442222222a b ab a b a b a b a b a b a b a b+--+-+-+===-++++Q ,由于函数42x y x=-在区间)⎡+∞⎣上为增函数,所以,当2a b +=时,224442a b a b +-+取得最小值02=.故选:A. 【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.9.定义域为R 的偶函数()f x 满足任意x ∈R ,有(2)()(1)f x f x f +=-,且当[2,3]x ∈时,2()21218f x x x =-+-.若函数()log (1)a y f x x =-+至少有三个零点,则a 的取值范围是( )A .0,2⎛ ⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】B 【解析】 【分析】由题意可得()f x 的周期为2,当[2,3]x ∈时,2()21218f x x x =-+-,令()log (1)a g x x =+,则()f x 的图像和()g x 的图像至少有3个交点,画出图像,数形结合,根据(2)(2)g f >,求得a 的取值范围. 【详解】()f x 是定义域为R 的偶函数,满足任意x ∈R ,(2)()(1)f x f x f +=-,令1,(1)(1)(1)x f f f =-=--,又(1)(1),(1))(2)(0,f f x f x f f -=∴+==,()f x ∴为周期为2的偶函数,当[2,3]x ∈时,22()212182(3)f x x x x =-+-=--,当2[0,1],2[2,3],()(2)2(1)x x f x f x x ∈+∈=+=--, 当2[1,0],[0,1],()()2(1)x x f x f x x ∈--∈=-=-+, 作出(),()f x g x 图像,如下图所示:函数()log (1)a y f x x =-+至少有三个零点, 则()f x 的图像和()g x 的图像至少有3个交点,()0f x ≤Q ,若1a >,()f x 的图像和()g x 的图像只有1个交点,不合题意,所以01a <<,()f x 的图像和()g x 的图像至少有3个交点, 则有(2)(2)g f >,即log (21)(2)2,log 32a a f +>=-∴>-,221133,,01,03a a a a ∴><<<∴<<Q . 故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.10.定义运算()()a a b a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .【答案】A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值,因此函数()1,0122,0xx x f x x >⎧=⊕=⎨≤⎩,只有选项A 中的图象符合要求,故选A.11.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“UA B =∅I ð”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】作出韦恩图,数形结合,即可得出结论. 【详解】如图所示,⊆⇒⋂=∅U A B A B ð, 同时⋂=∅⇒⊆U A B A B ð. 故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.12.函数()()()sin 0,0f x x ωϕωϕπ=+><<的图象如图所示,为了得到()cos g x x ω=的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 【答案】C【解析】 【分析】根据正弦型函数的图象得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合图像变换知识得到答案. 【详解】 由图象知:7212122T T ππππ=-=⇒=,∴2ω=. 又12x π=时函数值最大,所以2221223k k πππϕπϕπ⨯+=+⇒=+.又()0,ϕπ∈, ∴3πϕ=,从而()sin 23f x x π⎛⎫=+⎪⎝⎭,()cos 2sin 2sin 22123g x x x x πππ⎡⎤⎛⎫⎛⎫==+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 只需将()f x 的图象向左平移12π个单位即可得到()g x 的图象,故选C. 【点睛】已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式 (1)max min max min ,22y y y y A B -+==.(2)由函数的周期T 求2,.T πωω= (3)利用“五点法”中相对应的特殊点求ϕ,一般用最高点或最低点求. 二、填空题:本题共4小题,每小题5分,共20分。