2018最新北师大版高中数学必修三学案:第一章 2.2 分层抽样与系统抽样
- 格式:docx
- 大小:87.50 KB
- 文档页数:10
第一章统计1.2.2分层抽样和系统抽样一. 学习内容:简单随机抽样(抽签法与随机数表法)、分层抽样、系统抽样二、学习目标1、能从现实生活或其他学科中提出具有一定价值的统计问题;2、结合具体的实际问题情境,理解随机抽样的必要性和重要性;3、在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;4、能通过试验、查阅资料、设计调查问卷等方法收集数据。
三、知识要点1、抽样调查:通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查。
其中,调查对象的全体称为总体,被抽取的一部分称为样本。
抽样调查是相对于普查而言的,具有迅速及时、节约人力物力财力的优点。
2、简单随机抽样:也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点:逐个抽取,不放回抽样,每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3、简单随机抽样的方法——抽签法:先将总体中的所有个体编号,并把号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作),然后将这些号签放在一起进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取n次,就得到一个容量为n的样本。
对个体编号时,也可以利用已有的编号,例如从全班学生中抽取样本时,可以利用学生的学号、座位号等。
适用情形:当总体的个体数不多时,适宜采用这种方法。
步骤:①给调查对象群体中的每个对象编号;②准备“抽签”的工具,实施“抽签”;③对样本中每一个个体进行测量或调查。
4、简单随机抽样的方法——随机数表法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。
步骤:①将总体的个体编号;②在随机数表中选择开始数字和抽取的方向(上下左右等);③读数获取样本号码。
2.2 分层抽样与系统抽样 - 北师大版必修3教案一、教学目标1.了解分层抽样和系统抽样的定义和原理;2.掌握分层抽样和系统抽样的抽样方法和步骤;3.能够根据实际问题选择合适的抽样方法。
二、教学内容2.2.1 分层抽样分层抽样是一种按照某种特征把总体分成几个层次,然后从各层中按比例抽取样本的方法。
具体步骤如下:1.根据某种特征将总体按层划分;2.确定各层的比例和样本容量;3.分层抽样。
分层抽样的优点是:可以保证各层的代表性,适用于变异较大的总体,精度高。
2.2.2 系统抽样系统抽样是指按照一定的规律,从总体中每隔若干个单位取出一个样本。
具体步骤如下:1.确定总体容量和样本容量;2.计算出间隔k;3.随机确定一个起始数r;4.从第r个单位开始,每隔k个单位选取一个单位作为样本。
系统抽样的优点是:适用于总体有规则的分布,可减少随意性,易于操作。
三、教学方法1.结合案例进行分层抽样和系统抽样的讲解;2.利用黑板和PPT展示抽样方法的步骤和实现过程;3.通过小组讨论和练习,加强学生的理论运用和实际操作能力;4.教师指导学生根据实际问题选择合适的抽样方法,提高学生的应用能力。
四、教学过程4.1 分层抽样实例分析假设一家企业有不同年龄段的员工,现在需要对员工的工作满意度进行调查。
请根据员工的年龄将员工分为三个层次:20岁以下、20岁至30岁、30岁以上。
总共抽取30人作为样本。
请问应从每个层次分别抽取多少人?4.2 系统抽样实例分析某小区有120户居民,需要进行抽样调查。
现在计划抽取30户进行调查,请问应每隔多少户进行一次抽样?如果随机确定起始号码为10,那么抽哪几户?五、教学评估1.课后通过小测验,测试学生对于分层抽样和系统抽样的理解程度;2.评估学生的抽样方法选择和实际操作能力;3.对于学生提出的疑问进行解答,提高学生的课后自主学习能力。
六、教学反思本次教学通过案例实例分析和操作演练相结合的方式,深入浅出地讲解了分层抽样和系统抽样的定义、原理、步骤、优点和适用范围。
第一章 统计2.2分层抽样和系统抽样一 分层抽样1。
基本概念:(1)将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中随机抽取一定的样本,这种抽样方法就叫作分层抽样,有时也称作类型抽样.(2)在每个层中进行抽样时,大多数情况下采用简单随机抽样,有时也会用到其他的抽样方法,这要根据问题的需要来决定.2.分层抽样的操作步骤是:第一步,将总体按适当的标准进行分层; 第二步,计算出抽样比总体容量样本容量=k ; 第三步,按抽样比确定每层需要抽取的个体数;第四步,各层分别进行抽样;第五步,汇合成样本.例如,一个单位的职工有500人,其中不到35岁的有125人,35岁∽49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽出一个容量为100的样本,由于职工年龄与这项指标有关,决定采用分层抽样的方法进行抽取.因为样本容量与总体的个体数的比为100∶500=1∶5,所以在各年龄段抽取的个体数依次是:5125 ,5280,595,即25,56,19. 在各年龄段分别抽取时,可采用前面介绍的简单随机抽样,将各年龄段抽取的个体合在一起,就是所要抽取的样本.不难看出,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,分层抽样时,每一个个体被抽到的概率都是相等的.3.分层抽样具有以下特点:(1)适用于总体由差异明显的部分组成情况;(2)在每一层进行抽样时,可以根据个体情况采用不同的抽样方法.(3)它能够充分利用已掌握的信息,使样本具有良好的抽样;(4)它也是等概率抽样,分层抽样是等概率抽样,它也是公平的.用分层抽样从个体数为N 的总体中抽取一个容量为n 的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于Nn . 二 系统抽样1。
基本概念(1)系统抽样是将总本的个体进行编号,按简单随机抽样抽取第一个样本,然后按相同的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.(2)在抽样时,如果总体的排列存在明显的周期性或者事先是排好序的,那么利用系统抽样时将会产生明显的偏差,因为这样抽取的样本不具有代表性.2.系统抽样的步骤:一般地,假设要从容量为N 的总体中抽取容量为n 的样本,可以按下列步骤进行系统抽样: 第一步,采用随机的方式将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号,准考证号,门牌号等;第二步,确定分段间隔k 对将整个的编号分段(即分成几个部分).当n N 是整数时,取n N k =;当nN 不是整数时,则先通过从总体中用简单随机抽样剔除一些个体使剩下的总体中个体的个数能被n 整除,即][nN k =. 第三步,在第一段用简单随机抽样确定一个个体编号)(k m m ≤;第四步,按照事先确定的规则抽取样本,通常是将m 加上间隔k ,得到第2个个体编号为(k m +),再加上间隔k 得到第3个个体编号(k m 2+),这样继续下去,直到获取整个样本.例如,为了了解参加某种知识竞赛的1000名学生的成绩,打算从中抽取一个容量为50的样本.假定这1000名学生的编号1,2,…,1000.由于50∶1000=1∶20,我们将总体均分成50个部分,其中每一部分包括20个个体,例如第1部分的个体的编号是1,2,…,20.然后在第1部分随机抽取一个号码,比如它是第18号,那么可以从第18号起,每隔20个抽取一个号码,这样得到一个容量为50的样本 18,38,58,…,978,998.再如,上面的参加某种知识竞赛的学生为1003名,假定这1003名生的编号1,2,…,1000,1001,1002,1003,应从总体中剔除3个个体(可用随机数表法),将剩余的1000名学生重新编号,后再按上例抽样.3.系统抽样的特点:(1)适用于总体容量较大的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等概率抽样,每个个体被抽到的概率都是Nn . 简单随机抽样、系统抽样、分层抽样的异同点例1 某校有在校高中生900人,其中高一学生300人,高二学生200人,高三学生400人,用分层抽样法抽取一个容量为45的样本,那么高一、高二、高三各年级的抽取人数分别是( )A .15,5,25B .15,15,15C .10,5,30D .15,10,20解:因为20190045=,所以高一、高二、高三各年级的抽取人数分别是 15300201=⨯,10200201=⨯,20400201=⨯, 即应从高一、高二、高三各年级分别抽取15人,10人和20人,组成一个容量为45的样本.故选D .例2 下列抽样实验中,最适宜用系统抽样法的是( ).A .某市的4个区共有2000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样.B .某厂生产的2000个电子元件中随机抽取5个入样.C .从某厂生产的2000个电子元件中随机抽取200个入样.D .从某厂生产的20个电子元件中随机抽取5个入样.解:A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数表法;D 中总体数很小,故适宜用抽签法.而C 比较符合适用系统抽样法.综上,可知选C .例3某校有在校高中生共1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人,来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较少,问应采用怎样的抽样方法?高三学生中应抽查多少人?解:因不同年级的学生消费情况有明显差别,所以应采用分层抽样.因为520:500:580=26:25:29,于是将80分成26:25:29的三部分,设三部分各抽个体数分别为26x ,25x ,29x ,由26x +25x +29x =80得x =1,所以高三学生中应抽查29人.例4为了了解某地区今年高一学生期中考试数学学科的成绩,拟从参加考试的25000名学生的数学成绩中,抽取容量为250的样本.请你选择恰当的抽样方法,设计抽样过程.规范解:注意到总体数和样本容量较大,且所有个体没有明显差异,故应采用系统抽样.按系统抽样的要求应先划分分段间隔,由于10025025000==k ,所以可按以下四步抽取样本: (1)对全体学生的数学成绩进行编号:1,2,3, (25000)(2)分段:由于样本容量与总体容量的比是1∶100,所以我们可将总体平均分为250个部分,其中每一部分包括100个个体.(3)在第一部分,即1到100号用简单随机抽样,抽取一个号码,如78.(4)以78作为起始数,然后顺次抽取178,且无明显差异时,宜采用系统抽样.点评:系统抽样方法的操作步骤是:编号——分段——确定起始号码——加间隔获取各段号码——获取样本.特别注意分段间隔,当总体容量能被样本容量整除时,分段间隔nN k =,使用系统抽样抽取样本时,通常是将起始数s 加上间隔k 得到第二个个体编号(s+k ),再加k 得到第三个个体编号(s+2k ),依次进行下去,直到获取整个样本.例5 为了了解某大学一年级新生英语学习的情况,拟从503名大学一年级学生中抽取50名作为样本,如何采用系统抽样方法完成这一抽样?解:第一步,将503名学生用随机方式编号为1,2,3, (503)第二步,用抽签法或随机数表法,剔除3个个体,这样剩下500名学生,对剩下的500名学生重新编号,或采用补齐号码的方式.第三步,确定分段间隔k ,将总体分为50个部分,每一部分包括10个个体,这时,每1部分的个体编号为1,2,...,10;第2部分的个体编号为11,12,...,20;依此类推,第50部分的个体编号为491,492, (500)第四步,在第1部分用简单随机抽样确定起始的个体编号,例如是5.第五步,依次在第2部分,第3部分,…,第50部分,取出号码为15,25,…,495这样得到一个容量为50的样本.例6(2006年四川卷)甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生(A )30人,30人,30人 (B )30人,30人,15人(C )20人,30人,10人 (D )30人,50人,10人解:甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生30人,30人,15人,选B .练习:1.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是A . 2B . 3C . 5D . 132.(2007年浙江卷,文13)某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,彩用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为 .3.某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人. 为了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,依简单随机抽样、系统抽样、分层抽样顺序的是 ( )方法1:将140人从1~140编号,然后制作出有编号1~140的140个形状、大小相同的号签,并将号签放人同一箱子里进行均匀搅拌,然后从中抽取20个号签,编号与签号相同的20个人被选出;方法2:将140人分成20组,每组7人,并将每组7人按1—7编号,在第一组采用抽签法抽出k号(1≤k≤7),则其余各组尾号也被抽到,20个人被选出;方法3:按20:140=1:7的比例,从教师中抽取13人,从教辅行政人员中抽取4人,从总务后勤人员中抽取3人.从各类人员中抽取所需人员时,均采用随机数表法,可抽到20个人.A.方法2,方法1,方法3 B.方法2,方法3,方法1C.方法1,方法2,方法3 D.方法3,方法1,方法24.从某厂生产的802辆家用轿车中随机抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.5.一个单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,如何从中抽取一个容量为100的样本?。
第2课时系统抽样学习目标 1.理解和掌握系统抽样的概念和步骤(重点).2.利用系统抽样解决实际问题(难点).3.了解三种抽样法的联系与区别(重点、易混点).预习教材P13-15完成下列问题:知识点1系统抽样的概念当总体容量和样本容量都很大时,无论是采用分层抽样或简单随机抽样,都是非常麻烦的.系统抽样就是为了解决这个问题.系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.系统抽样具有如下特点:系统抽样的优劣:(1)当总体中的个体数较大时,用系统抽样更易实施,更节约成本;(2)系统抽样的效果与个体的编号有关,如果编号的特征随编号呈周期性变化,可能使样本的代表性很差【预习评价】系统抽样有什么特点?提示系统抽样有如下特点:(1)适用于总体容量较大的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样,每个个体被抽到的可能性都是n N.知识点2 系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,我们可以按下列步骤进行系统抽样:(1)编号:先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)分段:确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k=N n ;(3)确定第一个编号:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)成样:按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.【预习评价】如何系统抽样的步骤?提示 (1)当利用已有编号时注意,已有编号必须是随机的,而不是周期性的;(2)在N n 不是整数而需剔除的过程中,要保证剔除时的随机性和客观性:(3)由于系统抽样时抽样间隔相等,因此系统抽样也被称作等距抽样(机械抽样). 知识点3 三种抽样方法的比较简单随机抽样、分层抽样、系统抽样的比较如下表所示:【预习评价】 判断下面结论是否正确(正确的打“√”,错误的打“×”)(1)简单随机抽样是一种不放回抽样( )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关()(3)系统抽样在起始部分抽样时采用简单随机抽样()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关()答案(1)√(2)×(3)√(4)×(5)×题型一对系统抽样概念的理解【例1】下列抽样中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200名入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样解析根据系统抽样的定义和特点判断,A项中的总体有明显的层次,不适宜用系统抽样;B项中样本容量很小,适合用随机数法;D项中总体容量很小,适合用抽签法.答案 C规律方法系统抽样适用于个体数较大的总体,判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等可能入样.【训练1】下列抽样方法不是系统抽样的是()A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入样B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈解析A编号间隔相同,B时间间隔相同,D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.答案 C题型二系统抽样的应用【例2】为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解(1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.规律方法当总体容量能被样本容量整除时,分段间隔k=Nn;当用系统抽样抽取样本时,通常是将起始数l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.【训练2】现有60瓶牛奶,编号为1至60,若从中抽取6瓶检验,用系统抽样方法确定所抽取的编号可能为()A.3,13,23,33,43,53B.2,14,26,38,42,56C.5,8,31,36,48,54D.5,10,15,20,25,30解析因为60瓶牛奶分别编号为1至60,所以把它们依次分成6组,每组10瓶,要从中抽取6瓶检验,用系统抽样方法进行抽样.若在第一组抽取的编号为n(1≤n≤10),则所抽取的编号应为n,n+10,…,n+50.对照4个选项,只有A 项符合系统抽样.系统抽样的显著特点之一就是“等距抽样”.因此,对于本题只要求出抽样的间隔k=606=10,就可判断结果.答案 A题型三系统抽样的设计【例3】某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解(1)先把这253名学生编号000,001, (252)(2)用随机数法任取出3个号,从总体中剔除与这三个号对应的学生;(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段,每段含5名学生;(5)从第一段即1~5号中用简单随机抽样抽取一个号作为起始号,如l;(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.规律方法 1.当总体容量不能被样本容量整除时,要先从总体中随机剔除整除后余数个个体且必须是随机的,即每个个体被剔除的机会均等.剔除个体后使总体中剩余的总体容量能被样本容量整除.2.剔除个体后需对样本重新编号.3.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.【训练3】为了了解参加某次考试的2 607名学生的成绩,决定用系统抽样的方法抽取一个容量为260的样本.请根据所学的知识写出抽样过程.解按下列步骤获取样本:(1)将每一名学生编号,由0001到2607;(2)利用随机数法从总体中剔除7人;(3)将剩下的2 600名学生重新编号(分别为0001,0002,…,2600),并分成260段;(4)在第一段0001,0002,…,0010这十个编号中用简单随机抽样法抽取一个号码(如0003)作为起始号码;(5)将编号为0003,0013,0023,…,2593的个体抽出,即组成样本.【探究1】(1)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是()A.8B.13C.15D.18(2)某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为()A.6B.4C.3D.2解析(1)从52名学生中抽取4人,用系统抽样方法,则分段间隔为13.由题意知,第一段抽取的号码为5,则其他段抽取的号码应为18,31,44.(2)18×936+18=3,故选C.答案(1)D(2)C【探究2】某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽取一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量n=________.解析根据分层抽样的特点,样本中A种型号产品的数量应是样本容量的22+3+5=15,所以样本的容量n=16×5=80.答案80【探究3】从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为________.解析由系统抽样的特点可知,共80个产品,若抽取5个样本,则组距为80 5=16,又已知其中一个编号为28,则与之相邻的两个编号为12和44,故所取5个编号依次为12,28,44,60,76.即最大编号为76.答案76规律方法 1.进行系统抽样的关键及关注点(1)关键:根据总体和样本的容量确定分段间隔,根据第一段确定编号.(2)关注点:当总体不能被样本容量整除时,应采用等可能剔除的方法剔除部分个体,以获取整数间隔.2.分层抽样的适用条件及关注点(1)适用条件:适用于总体由差异明显的几部分组成时的情况.(2)关注点:①分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠;②为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同;③在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.课堂达标1.为了解1 200名学生对学校食堂饭菜的意见,打算从中抽取一个样本容量为40的样本,考虑采用系统抽样,则分段间隔k为()A.10B.20C.30D.40解析分段间隔k=1 20040=30.答案 C2.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2B.3C.4D.5解析因为1 252=50×25+2,所以应随机剔除2个个体,故选A.答案 A3.某公司有52名员工,要从中抽取10名员工参加国庆联欢活动,若采用系统抽样,则该公司每个员工被抽到的机会是________.解析采用系统抽样,需先剔除2名员工,确定间隔k=5,但每名员工被剔除的机会相等,即每名员工被抽到的机会也相等,故虽然剔除了2名员工,但这52名员工中每名员工被抽到的机会仍相等,且均为1052=526.答案5 264.在1 000个有机会中奖的号码(编号为000~999)中,公证部门用随机抽样的方法确定后两位数为88的号码为中奖号码,这种抽样方法是________,这10个中奖号码为__________________________________.解析这里运用了系统抽样的方法来确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案系统抽样088,188,288,388,488,588,688,788,888,9885.要从参加全运会某些项目比赛的1 013名运动员中抽取100名进行兴奋剂检查,采用何种抽样方法较好?写出过程.解应采用系统抽样.过程如下:第一步,将1 013名运动员随机编号为0001,0002,0003, (1013)第二步,随机地从总体中抽取13个号码,并将编号相对应的运动员剔除;第三步,将剩下的1 000名运动员重新编号为1,2,3,…,1000,分成100段,每段10个号码,在第一段十个编号中用简单随机抽样确定第一个个体编号为l,则将编号为l,l+10,l+20,…,l+990的运动员抽出,组成样本.课堂小结1.系统抽样的实质是“分组”抽样,适用于总体中的个体数较大的情况.2.解决系统抽样问题的两个关键步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)用系统抽样法抽取样本,当Nn不为整数时,取k=⎣⎢⎡⎦⎥⎤Nn,即先从总体中用简单随机抽样的方法剔除(N-nk)个个体,且剔除多余的个体不影响抽样的公平性.基础过关1.下列抽样试验中,最适宜用系统抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本.C.从参加考试的1 200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解情况解析A项中总体容量、样本容量都较小,可用抽签法或随机数法;B项中总体含有差异明显的几部分,不宜用系统抽样;D项中样本容量较小,可采用随机数法;只有C项中总体容量与样本容量都较大,适宜用系统抽样.答案 C2.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25C.26D.28解析 5 008除以200的整数商为25,故选B.答案 B3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,14解析将20个同学分成4个组,每组5个号,间距为5.答案 A4.一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是_____________________________________________________________________ .解析由题意,设抽取样本的编号为6n+3,则3≤6n+3≤59,且n∈N,所以n=0,1,2,3,4,5,6,7,8,9,相应的编号依次为3,9,15,21,27,33,39,45,51,57.答案3,9,15,21,27,33,39,45,51,575.某单位有职工72人,现需用系统抽样法从中抽取一个样本,若样本容量为n,则不需要剔除个体,若样本容量为n+1,则需剔除2个个体,则n=________. 解析由题意知n为72的约数,n+1为70的约数,其中72的约数有1,2,3,4,6,8,9,12,18,24,36,72,其中加1能被70整除的有1,4,6,9,其中n=1不符合题意,故n=4或6或9.答案4或6或96.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,求三个营区分别被抽中的人数.解由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.所以第Ⅲ营区被抽中的人数是50-25-17=8.综上,三个营区分别被抽中的人数为25,17,8.7.从某厂生产的702辆摩托车中随机抽取70辆测试某项性能,请合理选择抽样方法进行抽样,并写出抽样过程.解用系统抽样,抽样过程如下:第一步,将702辆摩托车用随机的方式编号为1,2,3, (702)第二步,从总体中剔除2辆(剔除方法必须是随机的),将剩下的700辆摩托车重新用随机的方式编号,分别为1,2,3,…,700,并均分成70段;第三步,在第一段1,2,3,…,10这十个号码中用简单随机抽样抽出一个(如6)作为起始号码;第四步,将编号为6,16,26,…,696的个体抽出,组成样本.能力提升8.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是()A.13B.19C.20D.51解析由系统抽样的原理可知,抽样的间隔k=524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,从而可知C项正确.答案 C9.用系统抽样的方法从个体为1 003的总体中,抽取一个容量为50的样本,则在整个抽样过程中每个个体被抽到的可能性是()A.11 000B.11 003C.501 003D.120解析 根据系统抽样的方法可知,每个个体入样的可能性相同,均为n N ,所以每个个体入样的可能性是501 003.答案 C10.若总体中含有1 650个个体,现要采用系统抽样从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,重新编号后应均分为________段,每段有________个个体.解析 1 650=47×35+5,根据系统抽样的定义求解.答案 5 35 4711.一个总体中的80个个体的编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,用错位系统抽样的方法抽取一个容量为8的样本,即规定先在第0组随机抽取一个号码,记为i ,依次错位地得到后面各组的号码,即在第k 组中抽取个位数字为i +k (当i +k <10时)或i +k -10(当i +k ≥10时)的号码.当i =6时,所抽到的8个号码是______________________.解析 由题意得,在第1组抽取的号码的个位数字是6+1=7,故应选17;在第2组抽取的号码的个位数字是6+2=8,故应选28;依此类推,应选39,40,51,62,73.答案 6,17,28,39,40,51,62,7312.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题: 本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔;1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样,取一张人民币,编码的后两位数为02.13.(选做题)某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采取系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取工程师n 36×6=n 6(人),抽取技术人员n 36×12=n 3(人),抽取技工n 36×18=n 2(人).所以n 应是6的倍数,36的约数即n =6,12,18,36.当样本容量为(n +1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量为6.。
2.2 分层抽样与系统抽样第1课时 分层抽样[学习目标] 1.理解分层抽样的概念.2.会用分层抽样从总体中抽取样本.3.能用分层抽样解决实际问题.知识点一 分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.分层抽样具有如下特点:(1)适用于总体由差异明显的几部分组成的情况;(2)按比例确定每层抽取个体的个数;(3)在每一层进行抽样时,采用简单随机抽样或系统抽样的方法;(4)分层抽样能充分利用已掌握的信息,使样本具有良好的代表性;(5)分层抽样也是等机会抽样,每个个体被抽到的可能性都是,而且在每层抽样时,样本容量n总体容量N 可以根据个体情况采用不同的抽样方法.知识点二 分层抽样的步骤思考 分层抽样的总体具有什么特性?答 分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.题型一 对分层抽样概念的理解例1 有40件产品,其中一等品10件,二等品25件,次品5件.现从中抽出8件进行质量分析,则应采取的抽样方法是( )A .抽签法B .随机数法C .系统抽样D .分层抽样答案 D解析 总体是由差异明显的几部分组成,符合分层抽样的特点,故采用分层抽样.反思与感悟 判断抽样方法是分层抽样,主要是依据分层抽样的特点:(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.跟踪训练1 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件编号00,01,02,…,99,用抽签法抽取20个.方法2:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法正确的是( )①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是;15②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;③在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体特征;④在上述抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征.A .①②B .①③C .①④D .②③答案 B解析 根据两种抽样的特点知,不论哪种抽样,总体中每个个体入样的可能性都相等,都是,故①正确,②错误.由于总体中有差异较明显的三个层(一级品、二级品和三级品),故n N 方法③抽到的样本更有代表性,③正确,④错误.故①③正确.题型二 分层抽样的应用例2 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?解 用分层抽样来抽取样本,步骤如下:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为=,则在不到35岁的职工中抽取10050015125×=25(人);15在35岁至49岁的职工中抽取280×=56(人);15在50岁及50岁以上的职工中抽取95×=19(人).15(3)在各层分别按系统抽样或随机数法抽取样本.(4)汇总每层抽样,组成样本.反思与感悟 利用分层抽样抽取样本的操作步骤:(1)将总体按一定属性特征进行分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层的个体数占总体的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样);(5)最后将每一层抽取的样本汇总合成样本.跟踪训练2 一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是________.答案 8,16,10,6解析 抽样比为=,故各层抽取的人数依次为40800120160×=8,320×=16,200×=10,120×=6.120120120120抽样方法例3 某单位有老年人28人、中年人54人、青年人81人,为了调查他们的身体状况,从中抽取一个容量为36的样本,则最适合抽取样本的办法是( )A .简单随机抽样B .抽签法C .分层抽样D .先从老年人中剔除1人,再用分层抽样分析 根据题意结合各种抽样方法的特点进行选择.解析 因为总体由差异明显的三部分组成,所以考虑用分层抽样.因为总人数为28+54+81=163,样本容量为36,由于按抽样,无法得到整数解,因此考虑先剔除136163人,将抽样比变为=.若从老年人中随机地剔除1人,则老年人应抽取27×=6(人),361622929中年人应抽取54×=12(人),青年人应抽取81×=18(人),从而组成容量为36的样本.2929答案 D解后反思 本题易错选C.已知总体是由差异明显的三部分组成,因而盲目选了C ,却忽略了分层抽样过程中的取整要求.1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( )A .简单随机抽样B .抽签法C .随机数表法D .分层抽样答案 D解析 从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层抽样.2.为了保证分层抽样时,每个个体等可能地被抽取,必须要求( )A .每层的个体数必须一样多B .每层抽取的个体数相等C .每层抽取的个体可以不一样多,但必须满足抽取n i =n ·(i =1,2,…,k )个个体,其中k Ni N 是层数,n 是抽取的样本容量,N i 是第i 层所包含的个体数,N 是总体容量D .只要抽取的样本容量一定,每层抽取的个体数没有限制答案 C解析 选项正误理由A×每层的个体数不一定都一样多B ×由于每层的容量不一定相等,每层抽同样多的个体,从整个总体来看,各层之间的个体被抽取的可能性显然就不一样了C√对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽入样本的可能性是相同的D ×每层抽取的个体数是有限制的3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A .30人,30人,30人B .30人,45人,15人C .20人,30人,10人D .30人,50人,10人答案 B解析 先求抽样比==,再各层按抽样比分别抽取,甲校抽取nN 903 600+5 400+1 80011203 600×=30(人),乙校抽取5 400×=45(人),丙校抽取1 800×=15(人),故选B.1120112011204.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8 B .10,6 C .9,7D .12,4答案 C解析 抽样比为=,则一班和二班分别被抽取的人数是54×=9,42×=7.1654+421616165.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.答案 60解析 根据题意,应从一年级本科生中抽取的人数为×300=60.44+5+5+6 1.对于分层抽样中的比值问题,常利用以下关系式解:(1)=;样本容量n 总体容量N 各层抽取的样本数该层的容量(2)总体中各层容量之比=对应层抽取的样本数之比.2.选择抽样方法的规律:(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法.(2)当总体容量较大,样本容量较小时,可采用随机数法.(3)当总体是由差异明显的几部分组成时,可采用分层抽样法.。
2.2分层抽样与系统抽样●教学目标1.知识与技能(1)正确理解系统抽样、分层抽样的概念;(2)掌握系统抽样、分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样.(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用系统和分层的方法从总体中抽取样本.3.情感、态度与价值观通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.●重点难点正确理解系统抽样、分层抽样的概念,掌握系统抽样和分层抽样的步骤,并能灵活应用相关知识从总体中抽取样本.●教学过程回顾:1、什么是简单随机抽样?2、什么样的总体适合简单随机抽样?引入新课:分层抽样【问题导思】例1:某地农田分布在山地、丘陵、平原、洼地不同的地形上,要对这个地区的农作物产量进行调查,应当采用什么抽样方法?例2:某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当怎样进行抽样?将总体按其特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.系统抽样【问题导思】例3:某工厂平均每天生产某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检查其质量状况.假设一天的生产时间中生产机器零件的件数是均匀的,请你设计一个调查方案.例4 某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况.请你设计一个调查方案.系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样. 课堂训练为了了解参加知识竞赛的1000名学生的成绩,现从中抽取一个容量为50的样本.请按系统抽样的方式设计一个抽样过程.课后作业:发布于平板电脑,按时完成。
2.2分层抽样与系统抽样学习目标:理解分层抽样与系统抽样的概念,会用这些方法从总体中抽取样本。
认知探究::1.什么叫分层抽样?2.什么叫系统抽样?例题拓展:例一、某校有职工140人,其中教师91人,行政人员28人,后勤人员21人.为了了解职工的某种情况,要从中抽取一个容量为20的样本.试分别用简单随机抽样、系统抽样、分层抽样三种方法抽取样本.例二、选择合适的抽样方法,写出抽样过程.(1)有30个篮球,其中甲厂的有21个,乙厂有9个,抽取10个样本.(2)有两箱共有30个篮球,其中一箱21个,另一箱9个,抽取3个样本.(3)有300个篮球,抽取10个样本.(4)有300个篮球,抽取30个样本.课堂练习:1.为了了解高一年级学生身体发育情况,学校计划在高一年级的10个班的某2个班按男女比例抽取样本,正确的抽样方法是()A.简单随机抽样 B.系统抽样C. 先用分层抽样再用随机数表法D.先用抽签法,再用分层抽样2.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样法,那么抽取的中型商店是()A.2 B. 3 C. 5 D.133.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个组,组号依次为1,2,…,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组中随机抽取的号码为m,那么在第k组中抽取的号码个位数与m+k的个位数字相同.当m=6时,则在第7组中抽取的号码是()A.62 B.63 C.65 D.734.将一个总体分为A、B、C三层,其个体数之比为5:3:2,若用分层抽样方法抽取容量为100的样本,则应从C中抽取个个体.5.为了解某区计算机水平测试中5009名考生的成绩,从中抽取了200名学生的成绩进行统计分析,采用系统抽样方法抽取样本时,每组样本容量为 .6.采用系统抽样的方法,从个体数为1003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为,抽样间隔为 .梳理总结我们学了哪三种抽样方法?写出它们的区别与适用范围.。
2.2分层抽样与系统抽样学习目标 1.理解并掌握系统抽样、分层抽样.2.会用系统抽样、分层抽样从总体中抽取样本.3.理解三种抽样的区别与联系.知识点一分层抽样思考分层抽样的总体具有什么特性?梳理1.分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照____________随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为____________.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由____________的几个部分组成时,往往选用分层抽样的方法.3.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层);第二步,计算抽样比.抽样比=样本容量总体中的个体数;第三步,各层抽取的个体数=______________________;第四步,依各层抽取的个体数,按________________从各层抽取样本;第五步,综合每层抽样,组成样本.知识点二系统抽样思考1当总体中的个体数较多时,为什么不宜用简单随机抽样?思考2 用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取? 梳理1.系统抽样的概念将总体中的个体进行编号,等距分组,在第一组中按照________________抽取第一个样本,然后按__________(称为________)抽取其他样本.这种抽样方法有时也叫____________或____________. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体________.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k ,对编号进行________.当N n (n 是样本容量)是整数时,取k =N n ;当Nn 不是整数时,先从总体中________剔除几个个体,再____________, 然后分段; (3)在第1段用________________确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l ____________得到第2个个体编号________,再加____得到第3个个体编号______,依次进行下去,直到获取整个样本. 知识点三 三种抽样方法的比较思考 系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样,这种说法对吗?类型一分层抽样及应用命题角度1分层抽样适用情形判定例1某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?反思与感悟分层抽样实质是利用已知信息尽量使样本结构与总体结构相似.在实际操作时,并不排斥与其他抽样方法联合使用.跟踪训练1某单位有员工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?命题角度2 分层抽样具体实施步骤例2 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层抽样的方法抽取,写出抽样过程.反思与感悟 在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体容量之比.跟踪训练2 某单位最近组织了一次健身活动,活动小组分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取200人进行抽查,试确定: (1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.类型二系统抽样及应用例3为了了解参加某种知识竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.引申探究在本例中,如果总体是1 002,其余条件不变,又该怎么抽样?反思与感悟当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.由于剔除方法采用简单随机抽样,所以即使是被剔除的个体,在整个抽样过程中被抽到的机会和其他个体是一样的.跟踪训练3某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施.1.检测员每10分钟从匀速传递的新产品生产流水线上抽取一件新产品进行某项指标检测,这样的抽样方法是()A.系统抽样法B.抽签法C.随机数法D.其他抽样方法2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1 212 D.2 0123.为了调查某省各城市PM2.5的值,按地域把36个城市分成甲、乙、丙三组,对应的城市数分别为6,12,18.若用分层抽样的方法抽取12个城市,则乙组中应抽取的城市数为________.4.某班级有50名学生,现要采用系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并均匀分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.5.一批产品中有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法从这批产品中抽取一个容量为20的样本.1.系统抽样有以下特点:(1)适用于总体容量较大的情况;(2)剔除多余个体及第一段抽样都要用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样,每个个体被抽到的可能性都是nN;(4)是不放回抽样.在抽样时,只要第一段抽取的个体确定了,后面各段中要抽取的个体依照事先确定好的规律就自动地被抽出,因此简单易行.2.总体容量小,简单随机抽样;总体容量大,系统抽样;总体差异明显,分层抽样.在实际抽样中,为了使样本具有代表性,通常要同时使用几种抽样方法.答案精析问题导学 知识点一思考 分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样. 梳理1.所占比例 类型抽样 2.差异明显 3.各层总的个体数×抽样比 简单随机抽样 知识点二思考1 因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.思考2 用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k . 梳理1.简单随机抽样 分组的间隔 抽样距 等距抽样 机械抽样2.(1)编号 (2)分段 随机 重新编号 (3)简单随机抽样 (4)加上间隔k l +k k l +2k 知识点三思考 不对,因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取是按事先确定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样. 梳理抽样过程中每个个体被抽取的概率相等 从总体中逐个不放回抽取 简单随机抽样是基础 样本容量较小 将总体分成均衡的几部分,按规则关联抽取 用简单随机抽样抽取起始号码 总体中的个体数较多,样本容量较大 将总体分成几层,按比例分层抽取 用简单随机抽样或系统抽样对各层抽样 总体由差异明显的几部分组成 题型探究例1 解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异,为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样. (2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样. (3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.跟踪训练1 解 因为员工按年龄分为三个层,各层的身体状况有明显的差异,所以为了使样本具有代表性,需要采用分层抽样.抽样比为1∶5,即每5人中抽取一人.35岁以下:125×15=25(人),35岁~49岁:280×15=56(人),50岁以上:95×15=19(人).例2 解 抽样过程如下:第一步,确定抽样比,样本容量与总体容量的比为20160=18.第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16×18=2(人);从教师中抽取112×18=14(人);从后勤人员中抽取32×18=4(人).第三步,采用简单随机抽样的方法,抽取行政人员2人,教师14人,后勤人员4人. 第四步,把抽取的个体组合在一起构成所需样本.跟踪训练2 解 (1)设登山组人数为x ,则游泳组人数为3x ,再设游泳组中,青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x =10%,解得b =50%,c =10%, 故a =1-50%-10%=40%.所以游泳组中,青年人、中年人、老年人各占的比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60,抽取的中年人人数为200×34×50%=75,抽取的老年人人数为200×34×10%=15.例3 解 适宜选用系统抽样,抽样过程如下: (1)随机地将这1 000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50个部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l .(4)以l 为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l ,l +20,l +40,…,l +980.引申探究 解 (1)将每个学生编一个号,由1至1002. (2)利用随机数法剔除2个号.(3)将剩余的1 000名学生重新编号1至1000.(4)按编号顺序均分成50个部分,每部分包括20个个体.(5)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l .(6)以l 为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l ,l +20,l +40,…,l +980.跟踪训练3 解 (1)将每个工人编一个号,由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新编号0001至1000.(4)分段,取间隔k =1 00010=100,将总体均分为10组,每组100个工人.(5)从第一段即0001号到0100号中随机抽取一个号l . (6)按编号将l,100+l,200+l ,…,900+l ,共10个号选出. 这10个号所对应的工人组成样本. 当堂训练1.A 2.B 3.4 4.375.解 系统抽样法:将200个产品编号为1~200,然后将编号分成20个部分,在第1部分中用简单随机抽样法抽取1个编号.如抽到5号,那么得到编号为5,15,25,…,195的个体,即可得到所需样本.分层抽样法:因为100+60+40=200,所以20200=110,所以100×110=10,60×110=6,40×110=4.因此在一级品、二级品和三级品中分别抽取10个、6个和4个,即可得到所需样本.。
2.2分层抽样与系统抽样学习目标 1.理解并掌握系统抽样、分层抽样.2.会用系统抽样、分层抽样从总体中抽取样本.3.理解三种抽样的区别与联系.知识点一分层抽样思考分层抽样的总体具有什么特性?梳理1.分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照____________随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为____________.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由____________的几个部分组成时,往往选用分层抽样的方法.3.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层);第二步,计算抽样比.抽样比=样本容量总体中的个体数;第三步,各层抽取的个体数=______________________;第四步,依各层抽取的个体数,按________________从各层抽取样本;第五步,综合每层抽样,组成样本.知识点二系统抽样思考1当总体中的个体数较多时,为什么不宜用简单随机抽样?思考2 用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取? 梳理1.系统抽样的概念将总体中的个体进行编号,等距分组,在第一组中按照________________抽取第一个样本,然后按__________(称为________)抽取其他样本.这种抽样方法有时也叫____________或____________. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体________.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k ,对编号进行________.当N n (n 是样本容量)是整数时,取k =N n ;当Nn 不是整数时,先从总体中________剔除几个个体,再____________,然后分段; (3)在第1段用________________确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l ____________得到第2个个体编号________,再加____得到第3个个体编号______,依次进行下去,直到获取整个样本. 知识点三 三种抽样方法的比较思考 系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样,这种说法对吗?类型一分层抽样及应用命题角度1分层抽样适用情形判定例1某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?反思与感悟分层抽样实质是利用已知信息尽量使样本结构与总体结构相似.在实际操作时,并不排斥与其他抽样方法联合使用.跟踪训练1某单位有员工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?命题角度2 分层抽样具体实施步骤例2 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层抽样的方法抽取,写出抽样过程.反思与感悟 在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体容量之比.跟踪训练2 某单位最近组织了一次健身活动,活动小组分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取200人进行抽查,试确定: (1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.类型二系统抽样及应用例3为了了解参加某种知识竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.引申探究在本例中,如果总体是1 002,其余条件不变,又该怎么抽样?反思与感悟当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.由于剔除方法采用简单随机抽样,所以即使是被剔除的个体,在整个抽样过程中被抽到的机会和其他个体是一样的.跟踪训练3某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施.1.检测员每10分钟从匀速传递的新产品生产流水线上抽取一件新产品进行某项指标检测,这样的抽样方法是()A.系统抽样法B.抽签法C.随机数法D.其他抽样方法2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1 212 D.2 0123.为了调查某省各城市PM2.5的值,按地域把36个城市分成甲、乙、丙三组,对应的城市数分别为6,12,18.若用分层抽样的方法抽取12个城市,则乙组中应抽取的城市数为________.4.某班级有50名学生,现要采用系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并均匀分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.5.一批产品中有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法从这批产品中抽取一个容量为20的样本.1.系统抽样有以下特点:(1)适用于总体容量较大的情况;(2)剔除多余个体及第一段抽样都要用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样,每个个体被抽到的可能性都是nN;(4)是不放回抽样.在抽样时,只要第一段抽取的个体确定了,后面各段中要抽取的个体依照事先确定好的规律就自动地被抽出,因此简单易行.2.总体容量小,简单随机抽样;总体容量大,系统抽样;总体差异明显,分层抽样.在实际抽样中,为了使样本具有代表性,通常要同时使用几种抽样方法.答案精析问题导学 知识点一思考 分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样. 梳理1.所占比例 类型抽样 2.差异明显 3.各层总的个体数×抽样比 简单随机抽样 知识点二思考1 因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.思考2 用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k . 梳理1.简单随机抽样 分组的间隔 抽样距 等距抽样 机械抽样2.(1)编号 (2)分段 随机 重新编号 (3)简单随机抽样 (4)加上间隔k l +k k l +2k 知识点三思考 不对,因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取是按事先确定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样. 梳理抽样过程中每个个体被抽取的概率相等 从总体中逐个不放回抽取 简单随机抽样是基础 样本容量较小 将总体分成均衡的几部分,按规则关联抽取 用简单随机抽样抽取起始号码 总体中的个体数较多,样本容量较大 将总体分成几层,按比例分层抽取 用简单随机抽样或系统抽样对各层抽样 总体由差异明显的几部分组成 题型探究例1 解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异,为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样. (2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样. (3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.跟踪训练1 解 因为员工按年龄分为三个层,各层的身体状况有明显的差异,所以为了使样本具有代表性,需要采用分层抽样.抽样比为1∶5,即每5人中抽取一人.35岁以下:125×15=25(人),35岁~49岁:280×15=56(人),50岁以上:95×15=19(人).例2 解 抽样过程如下:第一步,确定抽样比,样本容量与总体容量的比为20160=18.第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16×18=2(人);从教师中抽取112×18=14(人);从后勤人员中抽取32×18=4(人).第三步,采用简单随机抽样的方法,抽取行政人员2人,教师14人,后勤人员4人. 第四步,把抽取的个体组合在一起构成所需样本.跟踪训练2 解 (1)设登山组人数为x ,则游泳组人数为3x ,再设游泳组中,青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x =10%,解得b =50%,c =10%, 故a =1-50%-10%=40%.所以游泳组中,青年人、中年人、老年人各占的比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60,抽取的中年人人数为200×34×50%=75,抽取的老年人人数为200×34×10%=15.例3 解 适宜选用系统抽样,抽样过程如下: (1)随机地将这1 000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50个部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l .(4)以l 为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l ,l +20,l +40,…,l +980.引申探究 解 (1)将每个学生编一个号,由1至1002. (2)利用随机数法剔除2个号.(3)将剩余的1 000名学生重新编号1至1000.(4)按编号顺序均分成50个部分,每部分包括20个个体.(5)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l .(6)以l 为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l ,l +20,l +40,…,l +980.跟踪训练3 解 (1)将每个工人编一个号,由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新编号0001至1000.(4)分段,取间隔k =1 00010=100,将总体均分为10组,每组100个工人.(5)从第一段即0001号到0100号中随机抽取一个号l . (6)按编号将l,100+l,200+l ,…,900+l ,共10个号选出. 这10个号所对应的工人组成样本. 当堂训练1.A 2.B 3.4 4.375.解 系统抽样法:将200个产品编号为1~200,然后将编号分成20个部分,在第1部分中用简单随机抽样法抽取1个编号.如抽到5号,那么得到编号为5,15,25,…,195的个体,即可得到所需样本.分层抽样法:因为100+60+40=200,所以20200=110,所以100×110=10,60×110=6,40×110=4.因此在一级品、二级品和三级品中分别抽取10个、6个和4个,即可得到所需样本.。