页式虚拟存储管理缺页中断的模拟系统的设计
- 格式:docx
- 大小:167.34 KB
- 文档页数:19
实验四页式虚拟存储管理中地址转换和缺页中断一、实验目的深入了解页式存储管理如何实现地址转换;进一步认识页式虚拟存储管理中如何处理缺页中断。
二、实验预备知识页式存储管理中地址转换的方法;页式虚拟存储的缺页中断处理方法。
三、实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。
假定主存64KB,每个主存块1024字节,作业最大支持到64KB,系统中每个作业分得主存块4块。
四、提示与讲解页式存储管理中地址转换过程很简单,假定主存块的大小为2n字节,主存大小为2m'字节和逻辑地址m位,则进行地址转换时,首先从逻辑地址中的高m-n位中取得页号,然后根据页号查页表,得到块号,并将块号放入物理地址的高m'-n位,最后从逻辑地址中取得低n位放入物理地址的低n位就得到了物理地址,过程如图6所示。
逻辑地址图6 页式存储管理系统地址转换示意图地址转换是由硬件完成的,实验中使用软件程序模拟地址转换过程,模拟地址转换的流程如图7所示(实验中假定主存64KB,每个主存块1024字节,即n=10,m'=16,物理地址中块号6位、块内地址10位;作业最大64KB,即m=16,逻辑地址中页号6位、页内地址10位)。
在页式虚拟存储管理方式中,作业信息作为副本放在磁盘上,作业执行时仅把作业信息的部分页面装入主存储器,作业执行时若访问的页面在主存中,则按上述方式进行地址转换,若访问的页面不在主存中,则产生一个“缺页中断”,由操作系统把当前所需的页面装入主存储器后,再次执行时才可以按上述方法进行地址转换。
页式虚拟存储管理方式中页表除页号和该页对应的主存块号外,至少还要包括存在标志(该页是否在主存),磁盘位置(该页的副本在磁盘上的位置)和修改标志(该页是否修改过)。
操作系统实验报告-页式虚拟存储管理中地址转换和缺页中断实验四页式虚拟存储管理中地址转换和缺页中断一.实验目的(1)深入了解存储管理如何实现地址转换。
(2)进一步认识页式虚拟存储管理中如何处理缺页中断。
二.实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
三.实验原理页式存储管理把内存分割成大小相等位置固定的若干区域,叫内存页面,内存的分配以“页”为单位,一个程序可以占用不连续的页面,逻辑页面的大小和内存页面的大小相同,内外存的交换也以页为单位进行,页面交换时,先查询快表,若快表中找不到所需页面再去查询页表,若页表中仍未找到说明发生了缺页中断,需先将所需页面调入内存再进行存取。
四.实验部分源程序#define size 1024//定义块的大小,本次模拟设为1024个字节。
#include "stdio.h"#include "string.h"#includestruct plist{int number; //页号int flag; //标志,如为1表示该页已调入主存,如为0则还没调入。
int block; //主存块号,表示该页在主存中的位置。
int modify; //修改标志,如在主存中修改过该页的内容则设为1,反之设为0int location; //在磁盘上的位置};//模拟之前初始化一个页表。
struct plist p1[7]={{0,1,5,0,010},{1,1,8,0,012},{2,1,9,0,013},{3,1,1,0,021},{4,0,-1,0,022},{5,0,-1,0,023},{6, 0,-1,0,125}};//命令结构,包括操作符,页号,页内偏移地址。
struct ilist{char operation[10];int pagenumber;int address;};//在模拟之前初始化一个命令表,通过程序可以让其顺序执行。
页式虚拟存储器管理中地址转换和缺页中断心得体会
在页式虚拟存储器管理中,地址转换和缺页中断是非常重要的概念和机制。
地址转换是指将逻辑地址(在进程中使用的地址)转换为物理地址(实际存在于主存储器中的地址)的过程。
它实现了虚拟内存的核心功能,使得每个进程可以感觉到它有独立的连续内存空间,而不受实际的物理内存大小限制。
地址转换通过页表来实现,页表中记录了虚拟页面与物理页面的对应关系。
当进程引用一个虚拟页面时,地址转换会根据页表将其映射到相应的物理地址上。
地址转换过程中还需要使用页表维护一些权限位来控制对页面的读写权限,保障内存的安全性。
缺页中断是在地址转换过程中发现虚拟页面不存在于主存中时触发的事件。
当进程引用一个未加载到内存的页面时,操作系统会产生一个缺页中断。
处理缺页中断的过程一般包括以下几个步骤:首先,操作系统会将控制权转移到中断处理程序,保存当前执行进程的上下文。
然后,操作系统会查找该虚拟页面是否在辅存(如硬盘)上,并将其加载到空闲的物理页面中。
最后,更新页表,将虚拟页面的记录指向新加载的物理页面。
完成这些步骤后,操作系统可以重新执行原进程,并使其继续访问该页面。
通过地址转换和缺页中断机制,页式虚拟存储器管理可以实现更高效的内存管理。
它允许系统在有限的物理内存的情况下运行多个进程,减少了进程间的内存冲突。
同时,通过将未使用的页面交换到辅存中,它也能够提供更大的可用内存空间,提高系统的整体性能。
以上是我对地址转换和缺页中断的心得体会,希望对您有所帮助。
一、实验目的1. 理解缺页中断的概念及其在操作系统中的作用。
2. 掌握常见的页面置换算法,如先进先出(FIFO)、最近最少使用(LRU)等。
3. 通过模拟实验,验证不同页面置换算法对缺页中断次数的影响。
4. 深入了解页式虚拟存储管理中地址转换的过程。
二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 实验工具:Visual Studio三、实验内容1. 模拟缺页中断的产生2. 实现不同的页面置换算法3. 分析页面置换算法对缺页中断次数的影响4. 模拟地址转换过程四、实验步骤1. 模拟缺页中断的产生(1)定义一个模拟指令序列,包含多个页面号。
(2)创建一个模拟的页表,用于记录每个页面是否在内存中。
(3)根据指令序列,遍历页表,判断访问的页面是否在内存中。
(4)如果页面不在内存中,则产生缺页中断。
2. 实现不同的页面置换算法(1)先进先出(FIFO)算法:- 定义一个队列,用于存储内存中的页面号。
- 当发生缺页中断时,将新页面号入队,同时判断队列长度是否超过内存块数。
- 如果队列长度超过内存块数,则将队首元素出队,模拟页面置换过程。
(2)最近最少使用(LRU)算法:- 定义一个链表,用于存储内存中的页面号。
- 当发生缺页中断时,将新页面号插入链表尾部。
- 如果链表长度超过内存块数,则从链表头部删除元素,模拟页面置换过程。
3. 分析页面置换算法对缺页中断次数的影响(1)定义一个变量,用于记录缺页中断次数。
(2)遍历模拟指令序列,根据不同的页面置换算法处理缺页中断。
(3)统计不同算法下的缺页中断次数,并进行比较。
4. 模拟地址转换过程(1)根据指令中的逻辑地址,计算页号和偏移量。
(2)根据页号,查找页表,判断页面是否在内存中。
(3)如果页面在内存中,则根据偏移量计算物理地址。
(4)如果页面不在内存中,则产生缺页中断。
五、实验结果与分析1. 模拟缺页中断的产生通过模拟指令序列,成功产生了缺页中断。
《操作系统原理》实验教学大纲一、实验教学内容与基本要求实验一 批处理系统的作业调度1 目的要求1.加深对作业概念的理解;2.深入了解批处理系统如何组织作业、管理作业和调度作业。
2 实验内容编写程序完成批处理系统中的作业调度,要求采用响应比高者优先的作业调度算法。
实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验二 进程管理1 目的要求1.加深对进程概念的理解,明确进程和程序的区别。
2.深入了解系统如何组织进程、创建进程。
3.进一步认识如何实现处理器调度。
2 实验内容编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。
实验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验三 动态分区存储管理方式的主存分配回收1 目的要求深入了解动态分区存储管理方式主存分配回收的实现。
2 实验内容编写程序完成动态分区存储管理方式的主存分配回收的实现。
实验具体包括:首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配和回收;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验四 页式虚拟存储管理中地址转换和缺页中断1 目的要求1.深入了解页式存储管理如何实现地址转换;2.进一步认识页式虚拟存储管理中如何处理缺页中断。
2 实验内容编写程序完成页式存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。
淮海工学院计算机科学系实验报告书课程名:《操作系统》题目:虚拟存储器管理页面置换算法模拟实验班级:学号:姓名:一、实验目的与要求1.目的:请求页式虚存管理是常用的虚拟存储管理方案之一。
通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。
2.要求:本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
二、实验说明1.设计中虚页和实页的表示本设计利用C语言的结构体来描述虚页和实页的结构。
在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
2.关于缺页次数的统计为计算命中率,需要统计在20次的虚页访问中命中的次数。
为此,程序应设置一个计数器count,来统计虚页命中发生的次数。
每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。
最终命中率=count/20*100%。
页式虚拟FIFO存储管理缺页中断的模拟算法FIFO一课程设计目的与功能1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。
设计并实现出的结果程序要能够很好地显示页面调入和替换详细信息。
2初始条件(1)预备内容:阅读操作系统的内存管理章节内容,了解有关虚拟存储器、页式存储管理等概念,并体会和了解缺页和页面置换的具体实施方法。
(2)实践准备:掌握一种计算机高级语言的使用3 开发环境(1)使用系统:Windows XP(2)使用语言:C++(3)开发工具:Visual C++ 6.04功能设计的结果程序能实现OPT、FIFO、随机淘汰算法模拟页式存储管理缺页中断,主要能够处理以下的情形:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可随机生成页面序列,替代用户输入;(4) 缺页时,如果发生页面置换,输出淘汰的页号。
二需求分析,整体功能及设计数据结构或模块说明1 需求分析在纯页式存储管理提高了内存的利用效率,但并不为用户提供虚存,换句话说,当一个用户程序的页数大于当前总空闲内存块数时,系统就不能将该程序装入运行。
即用户程序将受到物理内存大小的限制。
为了解决这个问题,人们提出了能提供虚存的存储管理技术——请求分页存储管理技术和请求分段技术。
本设计实现请求分页管理技术。
请求分页系统是在分页系统的基础上,增加了请求调页功能和页面置换功能所形成的页式虚拟存储系统。
它允许只装入部分页面的程序和数据,便启动运行。
以后,再通过调页功能和页面置换功能,陆续把即将要运行的页面调入内存,同时把暂时不运行的页面换出到外存上。
置换时以页面为单位,为了能实现请求调页和置换功能,系统必须提供必要的硬件支持和相应的软件。
页式虚拟存储管理中地址转换和缺页中断的模拟
实验目的:
1.深入了解页式虚拟存储管理技术如何实现地址转换。
2.进一步认识页式虚拟存储管理中如何处理缺页中断。
实验要求:
编写程序模拟实现页式虚拟存储管理中的地址转换过程以及缺
页中断的处理过程。
实验指导:
1.请求分页中硬件地址变换过程。
(1)
自己设计一个主存分配表。
(2)对逻辑地址进行划分为页号和页内地址
(3)越界检查,若越界直接中断退出程序的执行。
(不越界情况下)检索页表分2种情况:其一,若该页在内存,则找到其对应的物理块号;合并块号和块内地址形成物理地址。
进行输出。
(4)其二,若该页不再内存,产生缺页中断,调用缺页中断子
程序执行缺页中断处理过程。
中断返回后重新执行被中断的指令。
2.采用某一种页面置换算法实现分页管理的缺页调度。
(1)当硬件发出缺页中断后转操作系统处理缺页中断。
查看主存分块表看有无可用空闲块。
若有则为进程分配一块。
若无空闲块,当采用一种页面置换算法(例如FIFO形成队列),其头部放在变量K 中淘汰最先进入主存的一页,若该页修改过,好要重新写回磁盘。
然后再把当前要访问的页装入该内存块,并修改页表和存储分块表。
数组P中各个元素为作业已在主存的页号。
假定作业最多可分配m块。
当淘汰一页时,总是淘汰P[K]所指页。
之后调整数组P:
P[K]=要装入的页;
K=(K+1)mod m;
流程图如下:。
操作系统实验二〔第一题〕一.实验内容模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。
二.实验目的在电脑系统总,为了提高主存利用率,往往把辅助存储器作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间综合可以超出主存的绝对地址空间。
用这种方法扩充的主存储区成为虚拟存储器。
三.实验题目模拟分页式存储管理中硬件的地址转换和产生缺页中断。
四.程序清单//// 操作实验二.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"#include<iostream>#include<string>#include<fstream>using namespace std;class ins{private:string ope;long int page;long int unit;public:ins(){ }ins(string o,long int p,long int u):ope(o),page(p),unit(u){}void setope(string o){ ope=o;}void setpage(long int p){ page=p;}void setunit(long int u){ unit=u;}string getope(){return ope;}long int getpage(){return page;}long int getunit(){return unit;}};class work{private:long int Page;int sym;long int inum;long int onum;public:work(){}work(long int P, int s,long int i,long int o):Page(P),sym(s),inum(i),onum(o){} void setPage(long int P){ Page=P;}void setsym( int s){ sym=s;}void setinum(long int i){ inum=i;}void setonum(long int o){ onum=o;}long int getPage(){return Page;}int getsym(){return sym;}long int getinum(){return inum;}long int getonum(){return onum;}};void diaodu(work *w,ins * i,int numofins){ for(int j=0;j<numofins;j++){long int tempofk;long int a =i[j].getpage();for(int k=0;k<7;k++) //7是页表的页数if(w[k].getPage()!=a)continue;else{tempofk=k;break;}if(w[tempofk].getsym()==1)cout<<"绝对地址:"<<w[tempofk].getinum()*128+i[j].getunit()<<" "<<"磁盘地址为:"<<w[tempofk].getonum()<<" "<<"操作为:"<<i[j].getope()<<endl;else cout<<"*"<<"发生缺页中断"<<endl;}}int main(){ins*INS=new ins[12];INS[0].setope ("+");INS[0].setpage(0);INS[0].setunit(70);INS[1].setope ("+");INS[1].setpage(1);INS[1].setunit(50);INS[2].setope ("×");INS[2].setpage(2);INS[2].setunit(15);INS[3].setope ("存"); INS[3].setpage(3);INS[3].setunit(21);INS[4].setope ("取"); INS[4].setpage(0);INS[4].setunit(56);INS[5].setope ("-");INS[5].setpage(6);INS[5].setunit(40);INS[6].setope ("移位"); INS[6].setpage(4);INS[6].setunit(53);INS[7].setope ("+");INS[7].setpage(5);INS[7].setunit(23);INS[8].setope ("存"); INS[8].setpage(1);INS[8].setunit(37);INS[9].setope ("取"); INS[9].setpage(2);INS[9].setunit(78);INS[10].setope ("+"); INS[10].setpage(4);INS[10].setunit(1);INS[11].setope ("存"); INS[11].setpage(6);INS[11].setunit(84);work*W =new work[7]; ifstream in("g://operate1.txt");long int p;int s;long int i;long int o;for(int jj=0;jj<7 ;jj++){in>>p;in>>s;in>>i;in>>o ;W[jj].setPage(p);W[jj].setsym(s);W[jj].setinum(i);W[jj].setonum(o);}diaodu(W,INS,12);}五.结果显示操作系统实验二〔第二题〕一.用先进先出〔FIFO〕九.程序清单/ 操作系统实验二.cpp : 定义控制台应用程序的入口点。
燕山大学课程设计说明书课程设计名称:操作系统OS题目:页式存储管理中页面置换(淘汰)的模拟程序班级:计算机应用二班开发小组名称:CAMPUS课题负责人:课题组成员:姓名学号班级自评成绩课题开发日期:2011-1-10至2011-1-14一.概述1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。
2.主要完成的任务自行输入实际页数、内存可用页面数、存取内存时间、存取快表时间及缺页中断时间,然后由用户随机输入各页面号,模拟系统自动运行出FIFO、LRU、OPT、LFU四种算法的缺页次数、缺页率、命中率、总存取时间、存取平均时间等结果。
3 使用的开发工具(1)使用系统:Windows7(2)使用语言:C++(3)开发工具:Visual C++ 6.04 解决的主要问题设计的结果程序能实现FIFO、OPT、LRU、LFU算法模拟页式存储管理缺页中断,主要能够处理以下的问题:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可由用户输入页面序列;(4)系统自动计算总存取时间及平均存取时间。
二使用的基本概念和原理1.概念FIFO即先进先出页面置换算法,该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。
LRU 即最近最久未使用页面置换算法,该算法选择最近最久未使用的页面予以淘汰。
OPT 即最佳值换算法,其选择淘汰的页面是在最长时间内不再被访问的页面。
LFU 即最近使用最少页面置换算法,其淘汰的页面是最近一段时间内使用最少的页面。
缺页中断存取页面时页面不在内存中需从外存调入的现象。
缺页次数即在存取页面过程中发生缺页中断的次数。
命中率在存取过程中页面在内存中次数占页面存取总次数的百分比。
总存取时间即存取所有页面所消耗的总时间。
存取平均时间即存取一次页面平均所用的时间。
2.原理页式存储管理把内存分割成大小相等位置固定的若干区域,叫内存页面,内存的分配以“页”为单位,一个程序可以占用不连续的页面,逻辑页面的大小和内存页面的大小相同,内外存的交换也以页为单位进行,页面交换时,先查询快表,若快表中找不到所需页面再去查询页表,若页表中仍未找到说明发生了缺页中断,需先将所需页面调入内存再进行存取。
三.总体设计通过对所解决的问题的实质的分析,即使用不同的算法对页表进行查询,分查到和查不到两种情况进行处理,主要是采用面向过程的技术路线,把解决问题的方法进行分步处理。
软件主要采用函数调用的总体结构,把各种替换算法分别用函数实现,在主函数中进行调用,各函数之间相互独立。
整个程序的主要流程就是先输入问题中需要用到的各种数据,如页面序列,实际页数,内存中的页数和存取时间等等。
然后我们可以选择相应的替换算法进行分析替换,得到相应的存取时间和缺页情况。
具体的流程图如下:图1请求分页流程图四.详细设计具体的设计使用的函数除了主函数中的输入输出函数外,大部分使用函数调用,所用的函数主要有四种替换算法函数FIFO,LRU,OPT,LFU以及所有替换算法中都要用到的查询函数Search,LFU中的使用次数最少函数Min,OPT中计算使用距离的函数Compfu,LRU中的最久未使用时间函数Max,各算法使用函数具体如下:void main(){int m=0,t=0,N=0;cout<<"请输入实际页数:";cin>>m;Pro *p=new Pro[m];//p是用来放页面的地方cout<<"可用内存页面数"<<endl;cin>>N;Pro *page=new Pro[N];//page是放物理块的地方char c;int x,y,z;cout<<"请输入存取内存时间(ns)"<<endl;cin>>x;cout<<"请输入访问快表时间(ns)"<<endl;cin>>y;cout<<"请输入缺页中断时间(ns)"<<endl;cin>>z;float n=0;Input(m,N,p,page);//m是页面的总长,N是物理块的长度do{cout<<"f:FIFO页面置换"<<endl;cout<<"l:LRU页面置换"<<endl;cout<<"o:OPT页面置换"<<endl;cout<<"u:LFU页面置换"<<endl;cout<<"按其它键结束"<<endl;cin>>c;if(c=='f')//FIFO页面置换{FIFO(p,page,m,N,x,y,z);}if(c=='l')//LRU页面置换{LRU(p,page,m,N,x,y,z);}if(c=='o')//OPT页面置换{OPT(p,page,m,N,x,y,z);}if(c=='u')//OPT页面置换{LFU(p,page,m,N,x,y,z);}}while(c=='f'||c=='l'||c=='o'||c=='u');}以上为主函数的内容。
下面为所调用的函数int Search(int e, Pro *page ,int N){for(int i=0;i<N;i++){if(e==page[i].num)return i;}return -1;}查询函数Search的参数为所要查询的页号e,快表中的页号page、以及快表中页数N,最后的返回值为所要查询页号在快表中的位置i或查不到的返回值-1.void FIFO(Pro p[] ,Pro page[] ,int m, int N, int x ,int y, int z){int a=0;float n=0;int i=0;int t=0;for(i=0;i<N;i++) {page[i].num=0;}cout<<"页面置换情况: "<<endl;for(i=0;i<m;i++){if(Search(p[i].num,page,N)>=0){a+=(x+y);continue;}else{t=t%N;n++;page[t].num=p[i].num;t++;a+=(3*x+z);}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<" 命中率:"<<1-n/m<<" 总存取时间:"<<a<<"ns"<<" 存取平均时间:"<<a/m<<"ns"<<endl;}FIFO替换算法中使用的参数有实际页表p[] ,快表page[] ,实际页数m,内存可用页面数N,快表存取时间x ,内存存取时间y, 缺页中断时间z,最后的返回值是缺页次数n,缺页率,命中率,总存取时间以及平均存取时间。
void LRU(Pro p[],Pro page[],int m,int N,int x,int y,int z){int a=0;float n=0;int i=0;int t=0;for(i=0;i<N;i++){page[i].num=0;page[i].time=N+2-i;}cout<<"页面置换情况: "<<endl;while(i<m){//int k;t=Search(p[i].num,page,N);if(t>=0){a+=(x+y);page[t].time=0;}Else{n++;t=Max(page,N);page[t].num=p[i].num;page[t].time=0;a+=(3*x+z);}for(int j=0;j<N;j++){if(j==t)continue;page[t].time++;}i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<" 命中率:"<<1-n/m<<" 总存取时间:"<<a<<"ns"<<" 存取平均时间:"<<a/m<<"ns"<<endl;}LRU置换算法中的参数有实际页号p[],快表中的页号page[],实际页数m,内存可用页面数N,快表存取时间x,内存存取时间y,缺页中断时间z。
返回值为缺页次数n,缺页率,命中率,总存取时间以及平均存取时间。
int Max(Pro *page,int N){int e=page[0].time,i=0;int k=0;while(i<N){if(e<page[i].time){k=i;}i++;}return k;}Max函数中的参数有快表中页号page,内存可用页数N。
返回值是最近最久未使用的页面位置k。
void OPT(Pro p[],Pro page[],int m,int N,int x,int y,int z){int a=0;float n=0;int i=0;int t=0;for(i=0;i<N;i++){page[i].num=0;}while(i<m){a+=(x+y);if(Search(p[i].num,page,N)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p,m)){temp=Compfu(page,i,t,p,m);cn=t;}}page[cn]=p[i];n=n+1;i++;a+=(3*x+z);}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<" 命中率:"<<1-n/m<<" 总存取时间:"<<a<<"ns"<<" 存取平均时间:"<<a/m<<"ns"<<endl;}OPT置换算法中的参数有实际页号p[],快表中的页号page[],实际页数m,内存可用页面数N,快表存取时间x,内存存取时间y,缺页中断时间z。