2020-2021学年广东省佛山市第一中学高一上学期第一次段考试题 数学
- 格式:doc
- 大小:5.12 MB
- 文档页数:11
佛山一中2020-2021学年上学期高一级期中考试题化学命题人:梅枫审题人:叶承军2020年11月本试卷共6页,34小题,满分100分,考试时间90分钟。
可能用到的原子量:H 1 He 2 C 12 N 14 O 16 Na 23 Al 27 S 32 Cl 35.5 Ba 137第一部分选择题(共60分)一、选择题(本题包括30小题,只有一个....选项符合题意。
每小题2分,共60分)1.下列叙述正确的是A.1 mol H2O的质量为18g/mol B.CH4的摩尔质量为16gC.3.01×1023个SO2分子的质量为32g D.标准状况下,1 mol任何物质体积均为22.4L 2.下列各组物质依次为酸、混合物和碱的是A.硝酸钠、CuSO4·5H2O、KOH B.硫酸、空气、纯碱C.NaHSO4、NH3·H2O、熟石灰D.硝酸、食盐水、烧碱3. 下列物质的水溶液中,加入Ba(OH)2溶液后原溶液中溶质的阴、阳离子都减少的是A.Na2CO3B.CuSO4C.FeCl3D.Ca(NO3)24. 下列各组物质相互混合后,不会..发生离子反应的是A.K2SO4溶液和Mg(NO3)2溶液B.FeSO4溶液和锌块C.NaOH溶液和Fe2(SO4)3溶液D.醋酸钠(CH3COONa)溶液和盐酸5.能够用离子方程式:Ca2++CO32-= CaCO3↓表示的反应是A.石灰乳和碳酸钠溶液反应B.澄清石灰水和足量NaHCO3溶液反应C.氯化钙溶液和碳酸钾溶液反应D.澄清石灰水和少量CO2反应6. 下列溶液中氯离子浓度最大的是A.100 mL 0.8 mol·L-1 MgCl2溶液B.50 mL 0.5 mol·L-1 AlCl3溶液C.200 mL 1 mol·L-1 NaCl溶液D.200 mL 2 mol·L-1 KClO3溶液7.下列电离方程式中正确的是A. HNO3 ═ H++N5++3O2-B. Ba(OH)2 ═ Ba2++(OH-)2C. AlCl3 ═ Al+3+3Cl-D. Al2(SO4)3 ═ 2Al3++3SO42-8. 下列关于氯及其化合物的叙述正确的是A. 氯气的性质很活泼,它与氢气混合后立即发生爆炸B. 实验室制取氯气时,多余的氯气可以用氢氧化钙溶液吸收C. 久置的氯水没有漂白性D. 检验氯化氢气体中是否混有Cl2的方法是将气体通入硝酸银溶液9. 下列变化需要加入氧化剂才能实现的转化是A.浓H2SO4→SO2B.KClO3→O2 C.H2S→SO2D.HCO3-→CO210.单质到盐的转化关系可表示为: 下述转化关系不正确的是A .Na 2O −−−−→Na 2O 2H O −−−→NaOH 3CH COOH −−−−→ CH 3COONaB .Mg 2O −−−−→MgO 2H O −−−→Mg(OH)2HCl −−−→MgCl 2 C .C 2O −−−−→CO 22H O −−−→H 2CO 32Cu(OH −−−−→)CaCO 3 D .S 2O −−−−→SO 22H O −−−→H 2SO 32Na O −−−→Na 2SO 3 11. 对下列溶液中离子检验正确的是A. 某无色溶液滴入稀盐酸,产生气泡,证明该溶液一定含有CO 32-离子B. 向某种溶液中加入稀盐酸酸化的硝酸银,有白色沉淀,证明含Cl -离子C. 某溶液中先滴加氯化钡溶液,有白色沉淀,证明含SO 42-离子D. 某无色溶液中滴入无色酚酞试液显红色,证明该溶液一定显碱性12.下列关于胶体的说法,正确的是A .纳米材料粒子直径一般在 1~100 nm 之间,因此纳米材料属于胶体B .用可见光束照射可以区别溶液和胶体C .将NaOH 浓溶液滴加到饱和FeCl 3溶液中制备Fe(OH)3胶体D .胶体与溶液都可以通过滤纸、半透膜和分子筛13.N A 表示阿伏加德罗常数,下列叙述中正确的是A .1 mol NH 4+ 所含质子数为10N AB .25℃、1.01×105Pa 时,22gCO 2中含有1.5N A 个原子C .78g Na 2O 2固体中O 2-的数目为2N AD .将98g H 2SO 4溶解于500mL 水中,所得溶液中H +的物质的量浓度为4 mol/L14. 在强酸性...溶液中,下列离子组能大量共存且溶液为无色透明的是 A .Na + K + OH - Cl - B .Na + Cu 2+ SO 42- NO 3-C .Mg 2+ Na + SO 42- Cl -D .Ca 2+ HCO 3- NO 3- K +15.下列示意图中,白球代表氢原子,黑球代表氦原子,方框代表容器,容器中间有一个可以上下滑动的隔板(其质量忽略不计).其中能表示等质量的氢气与氦气的是 A . B . C . D .金属单质 碱性氧化物碱 盐 金属单质 酸性氧化物 酸 盐O 2 O 2 H 2O H 2O 酸或酸性氧化物 碱或碱性氧化物 O 2 O 2 O 2 O 2 H 2O H 2O H 2O H 2O CH 3COOH HCl Na 2O Ca(OH) 216.在电解质溶液的导电性实验(装置如图所示)中,若向某一电解质溶液中逐滴加入另一溶液时,则灯泡由亮变暗,至熄灭后又逐渐变亮的是A.盐酸中逐滴加入氢氧化钠溶液B.硫酸铜溶液中逐滴加入氢氧化钡溶液C.硫酸中逐滴加入氯化钡溶液D.盐酸中逐滴加入硝酸银溶液17. 下列叙述中正确的是A.等质量的O2、O3中所含氧原子个数之比为2:3B.标准状况下,体积相等的CCl4和Cl2,前者含有的氯原子数是后者的两倍C.1molCO和CH4的混合气体所含的碳原子数和1molCO2所含的碳原子数相等D.10g NH3中含有原子数目约为4×6.02×102318.现有①1mol纯净的Na2CO3②1molNa2CO3和NaHCO3的混合物,下列描述正确的是A.分别与足量盐酸反应时①消耗盐酸量少B.分别与足量氯化钡溶液反应时②产生的沉淀多C.分别配成等体积的溶液时②的c(Na+)大D.相同条件下,分别与足量盐酸反应时放出的CO2体积相等19.已知还原性由强到弱的顺序为SO32−>I−>Br−,碘单质易升华。
佛山一中2021级高二上学期第一次段考地理一、单项选择题:本题共40小题,每小题1.5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
如图是地球公转轨道示意图,图中甲、乙、丙、丁四点将轨道四等分,P点为地球近日点。
读图,回答下列小题。
1. 地球在公转轨道上运动所用时间最少的一段是()A. 甲→乙B. 乙→丙C. 丙→丁D. 丁→甲2. 五四青年节前后,地球在公转轨道上的位置最接近()A. 甲点B. 乙点C. 丙点D. 丁点【答案】1. A 2. C【解析】【1题详解】本题考查地球公转速度的特点以及读图分析能力。
据图可知,根据“地轴左倾左冬,右倾右冬”可判断,图示P表示近日点附近,公转速度最快,又因为图中甲、乙、丙、丁四点将轨道均分成四等份,所以甲乙之间公转运动所用的时间最少。
故选A。
【2题详解】材料信息表明,图中P点表示近日点附近,位于1月初,甲、乙、丙、丁为四等分点,每段应代表三个月,P位于位于甲、乙正中间,结合公转方向可知,则甲代表的日期应是1月初前1个半月,约11月下旬,乙代表的日期应是1月初后1个半月,2月下旬,依此类推,丙应5月下旬,丁应为8月下旬,由此判断,五四青年节前后,地球在公转轨道上的位置最接近丙点,C符合题意,排除ABD。
故选C。
中学生小李参加国际夏令营活动时,随身带了一部全球通手机,但未改手机上的时间和日期,仍显示的是北京时间。
小李乘飞机到达目的地时,当地报时为11时,而手机上的时间为8时。
据此完成下面两题。
3. 小李到达地点的经度可能为()A. l60°WB. 160°EC. 80°WD. 150°E4. 小李到达目的地时,埃及开罗(东二区)的区时为()A. 2时B. 6时C. 8时D. 16时【答案】3. B 4. A【解析】【分析】【3题详解】小李到达目的地时,手机上显示的北京时间为8时,当地的区时为11时,由此可推算出小李到达地点位于东十一区(东八区与东十一区相差3个小时,东加西减),该时区的经度范围为157.5°E—172.5°E,B符合题意。
广东省佛山市第一中学2023-2024学年高一上学期第一次教学质量检测(10月)数学试题学校:___________姓名:___________班级:___________考号:___________(2)求关于x 的不等式2321ax x ax -+>-的解集.21.如图所示,将一个矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求M 在射线AB 上,N 在射线AD 上,且对角线MN 过点C ,已知AB 长为4米,AD 长为3米,设AN x =米.(1)要使矩形花坛AMPN 的面积大于54平方米,则AN 的长应在什么范围内;(2)要使矩形花坛AMPN 的扩建部分铺上大理石,则AN 的长度是多少时,用料最省?22.已知函数2()2f x x ax =++,R a Î.(1)若对于任意[1,1]x Î-,不等式()2(1)4f x a x £-+恒成立,求实数a 的取值范围;(2)已知()g x x m =-+,当3a =-时,若对任意1[1,4]x Î,总存在2(1,8)x Î,使()()12f x g x =成立,求实数m 的取值范围.C 、0b a <<Q ,\0a b +<,故C 对;D 、0b a <<Q ,||||||a b a b \+=+成立,故D 不对.故选:D .5.A【分析】先确定二次函数f (x )=x 2-2ax +1的单调区间,然后根据题目中提供的单调区间,分析参数的取值范围【详解】根据题意:二次函数f (x )=x 2-2ax +1,单调递增区间:(,)a +¥;单调减区间(,)a -¥ 因此:(1)二次函数f (x )=x 2-2ax +1在区间(2,3)内为单调增函数,则a ≤2(2)二次函数f (x )=x 2-2ax +1在区间(2,3)内为单调减函数,则a ≥3故选:A【点睛】考查根据二次函数的单调区间,求解析中的参数6.B【分析】A.其值域为[0,2],故不符合题意;B.符合题意;CD 是函数图象,值域为{1,2},故不符合题意.【详解】解:A 是函数图象,其值域为[0,2],与已知函数的值域为{|12}B y y =……不符,故不符合题意;B 是函数的图象,定义域为[0,2],值域为[1,2],故符合题意;C 是函数图象,值域为{1,2},与已知函数的值域为{|12}B y y =……不符,故不符合题意;D 是函数图象,值域为{1,2},故不符合题意.故选:B 7.D【分析】命题“[]01,1x $Î-,20030x x a -++>”为真命题等价于23a x x >-在[]1,1x Î-上有解,构造函数()23f x x x =-求最大值代入即可.【详解】命题“[]01,1x $Î-,20030x x a -++>”为真命题等价于23a x x >-在[]1,1x Î-上有解,令()23f x x x =-,[]1,1x Î-,则等价于()()12min a f x f >==-,2a \>-,故选D .【点睛】本题考查了存在量词和特称命题,属中档题.8.A【解析】根据题意作出()M x 的函数图象,根据函数图象求解出()M x 的最小值.【详解】令221x x x +=--,解得=1x -或3x =,作出()M x 的图象如下图所示:由图象可知:当=1x -时,()M x 有最小值,此时()min121M x =-+=,故选:A.【点睛】思路点睛:求解形如()(){}max ,y f x g x =(或()(){}min ,y f x g x =)的函数的最小值(或最大值)的步骤:(1)根据()()f x g x =,先求解出两个图象交点的横坐标;(2)根据()(),f x g x 图象的相对位置对图象进行取舍,由此得到()(){}max ,y f x g x =。
广东省佛山市第一中学2021-2023学年高一下学期第一次段考试题及答案(3月)语文试题及答案统编版高一必修下佛山一中2022-2023学年第二学期高一级第一次段考试题语文命题人、审题人:苏立媛司徒美2023年3月本试卷共11页,共30小题,满分150分,考试时间150分钟。
注意事项:1.答题前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上。
2.每小题选出答案后,用2B铅笔把答题卷上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
3.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
第一部分现代文阅读(共16分)一、非连续性文本阅读(本题共5小题,16分)阅读下面的文字,完成下面的小题。
材料一:人物视角叙事是古代小说常用的叙事观点,《红楼梦》可以从每个章节的不同人物视角来读,对同一件事也可以从不同人眼中写出。
黛玉进府,是贵族少女兼伶仃孤女角度;刘姥姥进大观园是穷人兼世故老妪角度;查抄大观园是从权力顶峰跌落的王熙凤角度。
这是作者熟谙人物视角叙事的结果。
曹雪芹善于使用人物视角叙事,喜欢变换视角,目标却始终围绕着贾宝玉和贾府盛衰。
《红楼梦》人物视角叙事既考究且华丽,站在叙事视角的人物一定有特别深刻的叙事角度,他(或她)和所叙之事或人又肯定有重要联系。
在《红楼梦》前三回中得到详尽外貌描写的依次是熙凤、宝玉、黛玉。
熙凤和宝玉都映现在黛玉眼中,黛玉到荣国府,王熙凤说:“天下真有这样标致的人物,我今儿才算见了。
”她夸黛玉长得好,主要为逗老祖宗开心,所以还有下边的话:“这通身的气派,倒不像老祖宗的外孙女儿,竟是嫡亲的孙女。
高中数学资料大全尊敬的读者朋友们:本文档内容是我们精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为资料分析笔记整理的全部内容。
注:资料封面,下载即可删除2020-2021学年广东省佛山市第一中学高一上学期期中考试 数学命题、审题人说明:1.本试题共4页,共22题.全卷满分150分,考试用时120分.2.请将答案填写在答题卡上相应位置.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =A.[1,2]-B. [1,2]C. [2,3)D. [2,)+∞2. 命题“0,1x x e x ∀>>+ ”的否定形式是(其中 2.718e =为常数) A .0,1x x e x ∀><+ B. 0,1x x e x ∀>≤+C. 0,1x x e x ∃><+D. 0,1x x e x ∃>≤+3. 若函数21()(22)m f x m m x -=--是幂函数,且()y f x = 在(0,)+∞上单调递增,则(2)f = A. 14 B.12 C. 2 D. 44. “1a =-”是“方程2210a x x +-=只有一个解”的A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 非充分必要条件5. 设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A. 3-B. 1-C. 1D. 36. 已知120.50.620.30.3,,5a b c ⎛⎫=== ⎪⎝⎭,则a b c 、、的大小关系为A. a b c <<B.c a b <<C. b a c <<D. c b a << 7. 已知()f x 是定义在[2,2]b - 上的偶函数,且在[2,0]b -上为增函数,则不等式(21)(1)f x f +≤ 的解集为A. (1,0)-B. 31,10,22⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦C. (,1][0,)-∞-+∞D. 31,22⎡⎤-⎢⎥⎣⎦ 8. 已知0ax b -> 的解集为{|2}x x >,关于x 的不等式2056ax b x x +≥-- 的解集为 A .[2,1)(6,)--+∞ B. [2,6)(1,)--+∞ C. (,1)(6,)-∞-+∞ D. (,2](6,)-∞-+∞二、不定项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题为真命题的是A .若0a b >>,则22a c b c >B .若0a b <<,则22a ab b >>C .若00a b c >><且,则22c c a b >D .若a b >且,则11a b< 10.某食品的保鲜时间错误!未找到引用源。
高一数学(必修2)百所名校速递分项汇编专题04 空间几何体的外接球与内切球一、选择题1.【2017-2018学年辽宁省抚顺二中高一(上)期末】在三棱锥中,,,则该三棱锥的外接球的表面积为A.B.C.D.【答案】D∴外接球的表面积为S=4π×DG2=43π.故选:D.2.【黑龙江省实验中学2017-2018学年高一下学期期末】四面体中,,,,则此四面体外接球的表面积为A.B.C.D.【答案】A【解析】由题意,△BCD中,CB=DB=2,∠CBD=60°,可知△BCD是等边三角形,BF=∴△BCD的外接圆半径r==BE,FE=∵∠ABC=∠ABD=60°,可得AD=AC=,可得AF=∴AF⊥FB∴AF⊥BCD,∴四面体A﹣BCD高为AF=.设:外接球R,O为球心,OE=m可得:r2+m2=R2……①,()2+EF2=R2……②由①②解得:R=.四面体外接球的表面积:S=4πR2=.故选:A.3.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的表面积为( )A.4πB.6πC.8πD.10π【答案】C【解析】由题意得三棱柱为直三棱柱,且正好是长方体切出的一半,所以外接球半径为,,选C.4.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的体积( )A.B.C.D.【答案】B【解析】为直角三角形,斜边为,球心与该斜边的中点的连线垂直于平面,故球的半径,故球的体积为,故选B.5.【2018年人教A版数学必修二】棱长分别为2、、的长方体的外接球的表面积为()A.B.C.D.【答案】B【解析】设长方体的外接球半径为,由题意可知:,则:,该长方体的外接球的表面积为.本题选择B选项.6.【浙江省嘉兴市第一中学2018-2019学年高二上学期期中】在四面体中,,二面角的余弦值是,则该四面体外接球的表面积是()A.B.C.D.【答案】C【解析】取中点,连接,,平面,为二面角,在中,,,取等边的中心,作平面,过作平面,(交于),因为二面角的余弦值是,,,点为四面体的外接球球心,其半径为,表面积为,故选C.7.【安徽省黄山市屯溪第一中学2018-2019学年高二上学期期中考试】三棱锥P ABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】三棱锥P﹣ABC中,PA⊥平面ABC,直线PQ与平面ABC所成角为θ,如图所示;则sinθ==,且sinθ的最大值是,∴(PQ)min=2,∴AQ的最小值是,即A到BC的距离为,∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;取△ABC的外接圆圆心为O′,作OO′∥PA,∴=2r,解得r=2;∴O′A=2,取H为PA的中点,∴OH=O′A=2,PH=,由勾股定理得OP=R==,∴三棱锥P﹣ABC的外接球的表面积是S=4πR2=4×=57π.故答案为:C8.【广东省佛山市第一中学2018-2019学年高二上学期第一次段考】三棱锥的三视图如图所示,则该三棱锥外接球的体积为()A.B.C.D.【答案】A则球的半径R为,所以球的体积为.本题选择A选项.9.【内蒙古鄂尔多斯市第一中学2018-2019学年高二上学期期中考试】已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为()A.B.C.D.【答案】C【解析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,其直径为,半径为三棱锥的外接球体积为故选10.【四川省遂宁市2017-2018学年高二上学期教学水平监测】已知长方体中,,则长方体外接球的表面积为A.B.C.D.【答案】C11.【山西省朔州市应县第一中学2018-2019学年高二上学期期中考试】在三棱锥中,三侧面两两互相垂直,侧面的面积分别为,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】A【解析】由题意得,侧棱两两垂直,设,则都是以为直角顶点的直角三角形,得,解之得,即,侧棱两两垂直,以为过同一顶点的三条棱作长方体,该长方体的对角线长为,恰好等于三棱锥外接球的直径,由此可得外接球的半径,可得此三棱锥外接球表面积为,故选A.12.【重庆市铜梁一中2018-2019学年高二10月月考】棱长分别为2,,的长方体的外接球的表面积为( )A.B.C.D.【答案】B13.【黑龙江省大庆中学2018-2019学年高二10月月考】长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为A.B.C.D.【答案】C【解析】设长方体的棱长分别为,则,所以,于是,设球的半径为,则,所以这个球面的表面积为.本题选择C选项.14.【重庆市万州三中2018-2019学年高二上学期第一次月考】已知一个表面积为44的长方体,且它的长、宽、高的比为3 21,则此长方体的外接球的体积为()A.B.C.D.【答案】D【解析】设长方体的长、宽、高分别为,则,解得,即,即长方体的棱长分别为,所以长方体的对角线长为,所以球的半径为,即,所以球的体积为,故选D.二、填空题15.【江西省赣州市十四县(市)2018-2019学年高二上学期期中联考】在三棱锥中,,,,,,则三棱锥的外接球的表面积为_______________.【答案】【解析】由题意,在三棱锥中,平面,以为长宽高构建长方体,则长方体的外接球是三棱锥的外接球,所以三棱锥的外接球的半径为,所以三棱锥的外接球的表面积为.16.【贵州省遵义市南白中学2018-2019学年高二上学期第一次月考】正四面体内切球半径与外接球半径之比为__________.【答案】【解析】由正四面体的对称性可得正四面体的内切球与外接球球心重合且在正四面体的高上,设正四面体的内切球与外接球球心为,正四面体的高为,将正四面体分成以为顶点,以四面体的四个面为底面的四个正四棱锥,这四个正四棱锥的底面积是正四面体的底面积,高为内切球的半径,设四面体外接球半径为,则,由四个正四棱锥的体积和等于正四面体的体积可得,故答案为.17.【山西省长治市第二中学2017-2018学年高二下学期期末考试】已知三棱锥中,,,则三棱锥的外接球的表面积为________________.【答案】【解析】如图:∵AD=2,AB=1,BD=,满足AD2+AB2=SD2∴AD⊥AB,又AD⊥BC,BC∩AB=B,∴AD⊥平面ABC,∵AB=BC=1,AC=,∴AB⊥BC,∴BC⊥平面DAB,∴CD是三棱锥的外接球的直径,∵AD=2,AC=,∴CD=,∴三棱锥的外接球的表面积为4π()2=6π.故答案为:6π18.【高二人教版必修2 第一章本章能力测评】已知正六棱柱的底面边长为4,高为6,则它的外接球的表面积为__________.【答案】【解析】根据正六棱柱的对称性可得,正六棱柱的体对角线就是球的直径,由高为,底面边长为,结合正六边形的性质,可得,即,所以外接球的表面积为,故答案为.19.【江西省南昌市第十中学2017-2018学年高二下学期期末考试】在三棱锥中,,,,,且三棱锥的体积为,则该三棱锥的外接球半径是_________【答案】3【解析】取的中点,连接,因为,,,,所以,且,所以平面,且是外接球的直径,设,所以为正三角形,则,则,解得.20.【山东省潍坊市2017-2018学年高二5月份统一检测】如图,在三棱锥中,平面,,,,则三棱锥外接球的表面积为__________.【答案】。
2024届高三级11月四校联考数学试题 佛山市第一中学、广州市第六中学 汕头市金山中学、中山市第一中学试卷总分:150分,考试时间:120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.本次考试采用特殊编排考号,请考生正确填涂.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}lg 0A x x =≤,{}11B x x =−≤,则A B = ( )A. AB. BC. R AD. B R【答案】A 【解析】【分析】根据对数函数的性质、绝对值的性质确定集合,A B ,再由交集定义计算.【详解】由已知{|01}A x x =<≤,02{}|B x x ≤≤=, 所以{|01}A B x x =< ≤=A , 故选:A2. 已知向量()3,a m =−,()1,2b =− ,若()//b a b −,则m 的值为( )A. 6−B. 4−C. 0D. 6【答案】D 【解析】【分析】根据向量的坐标运算结合向量平行的坐标表示运算求解.【详解】由题意可得:()4,2−=−+a b m,若()//b a b −,则28m +=,解得6m =. 故选:D.3. 若函数 ()3,4,4,4x a x f x ax x − ≥= −+< (0,1a a >≠)是R 上的单调函数, 则a 的取值范围为( )A. ()50,11,4 ∪B. 51,4C. 4,15D. 40,5【答案】D 【解析】【分析】根据指数函数和一次函数的单调性,结合分割点处函数值的大小关系,列出不等式,求解即可.【详解】因为 4y ax =−+是减函数,且()f x 是R 上的单调函数, 根据题意,()f x 为R 上的单调减函数;故可得 01,,44a a a <<≤−+ 解得405a <≤,即a 的取值范围为40,5 . 故选:D .4. 若复数z 满足()1i 1i z +=+,则z 的虚部为 ( )A. B. C.D.【答案】D 【解析】【分析】先根据复数的模及除法运算求出复数z ,进而得到z ,从而求解.【详解】由()1i 1i z +=+=得z =,所以z=,即z 故选:D .5. 数列{}n a 满足12019a =,且对*n ∀∈N ,恒有32n n n a a +=+,则7a =( ) A. 2021 B. 2023C. 2035D. 2037【答案】D【解析】【分析】由已知可依次求出47,a a 的值,即可得出答案.【详解】由已知可得,14112202a a =+=,47472203a a =+=. 故选:D.6. 如图,已知圆锥的顶点为S ,AB 为底面圆的直径,点M ,C 为底面圆周上的点,并将弧AB 三等分,过AC 作平面α,使SB α∥,设α与SM 交于点N ,则SMSN的值为( )A.43B.32C.23D.34【答案】B 【解析】【分析】连接MB 交AC 于点D ,连接,,ND NA NC ,根据线面平行得性质证明SB DN ∥,再根据MC AB ∥可得DM MCDB AB=,进而可得出答案. 【详解】连接MB 交AC 于点D ,连接,,ND NA NC ,则平面NAC 即为平面α,因为SB α∥,平面SMB DN α∩=,SB ⊂平面SMB ,所以SB DN ∥, 因为AB 为底面圆的直径,点M ,C 将弧AB 三等分,所以30ABM BMC MBC BAC ∠=∠=∠=∠=°,12MCBC AB ==,所以MC AB ∥且12MC AB =,所以12DM MC DB AB ==, 又SB DN ∥,所以12MNDM SNDB ==,所以32SM SN =. 故选:B .7. 已知函数()f x 及其导函数()f x ′的定义域均为ππ,22 − ,且()f x 为偶函数,π26f =−,()()3cos sin 0f x x f x x ′+>,则不等式3π1cos 024f x x+−>的解集为( )A. π,03−B. ππ,32C. 2ππ,33−D. 2π,03−【答案】D 【解析】【分析】构建()()3ππsin ,,22=∈− g x f x x x ,求导,利用导数判断原函数单调性,结合单调性解不等式.【详解】令()()3ππsin ,,22=∈−g x f x x x ,则()()()()()2323sin co 3cos s sin si sin n ′′=+=′+ g x f x x x f x x f x x f x x x ,因为ππ,22x∈−,则sin 0x >,且()()3cos sin 0f x x f x x ′+>, 可知()0g x ′>,则()g x 在ππ,22−上单调递增, 又因为()f x 为偶函数,ππ266f f −==−, 可得3πππ1sin 6664−=−−= g f 令()1π46>=−g x g ,可得ππ62x −<<, 注意到33ππππsin cos 2222g x f x x f x x+=++=+,不等式3π1cos 024f x x +−>,等价于ππ26+>−g x g , 可得πππ622−<+<x ,解得2π03−<<x , 所以不等式3π1cos 024f x x+−>的解集为2π,03 −. 故选:D.【点睛】关键点睛:构建函数()()3ππsin ,,22 =∈−g x f x x x ,利用单调性解不等式()14g x >,利用诱导公式可得3π1cos 024f x x +−>,等价于ππ26+>− g x g ,即可得结果. 8.已知函数21()sin 0)22xf x x ωωω=+>,若()f x 在3,22ππ上无零点,则ω的取值范围是( )A. 280,,99+∞B. 228(0,][,]939C. 28(0,][,1]99D. [)28,991,∞+ 【答案】B 【解析】【分析】先结合二倍角公式和辅助角公式将函数进行化简,得到 ()sin 3f x x πω=−,由题可得323232T ωππωπππω −−−≤=和233(1)23k k ωπππωπππ ≤− +≥−,结合0ω>即可得解.【详解】因为211()sin 0)cos )sin 222xf x x x x ωωωωω+>−+−1sin sin 23x x x πωωω==−若322x ππ<<,则323323x ωπππωππω−<−<−,∴323232T ωππωπππω −−−≤=, 则21ω≤,又0ω>,解得01ω<≤.又233(1)23k k ωπππωπππ ≤−+≥− ,解得2282()339k k k Z ω+≤≤+∈. 228233928039k k k +≤+ +> ,解得4132k −<≤,k Z ∈ ,0k ∴=或1−.当0k =时,2839ω≤≤;当1k =−时,01ω<≤,可得209ω<≤.∴2280,,939ω∈. 故选B.【点睛】本题主要考查三角函数的图象与性质,还涉及二倍角公式和辅助角公式,考查学生数形结合的思想、逻辑推理能力和运算能力,属于中档题.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有至少两项符合题目要求.全部选对的得2分,有选错的得0分)9. 若{}n a 是公比为q 的等比数列,记n S 为{}n a 的前n 项和,则下列说法正确的是( ) A. 若{}n a 是递增数列,则1q > B. 若10a >,01q <<,则{}n a 是递减数列 C. 若0q >,则4652S S S +> D. 若1n nb a =,则{}n b 是等比数列 【答案】BD 【解析】【分析】对于AC :举反例分析判断;对于B :根据数列单调性的定义结合等比数列通项公式分析判断;对于D :根据等比数列定义分析判断.【详解】对于选项A :例如111,2a q =−=,则112n n a − =−,可知数列{}n a 是递增数列,但1q <,故A 错误;对于选项B :因为()1111111n n n n n a a a q a qa q q −−+−=−=−,若10a >,01q <<,则110,0,10−>>−<n a q q ,可得10n n a a +−<,即1n n a a +<, 所以数列{}n a 是递减数列,故B 正确;对于选项C :例如1q =,则11461541026=++==a a S S a S , 即4652S S S +=,故C 错误; 对于选项D :因为{}n a 是公比为q 的等比数列,则0n a ≠,则111111n n n n n nb a a b a q a +++===,所以数列{}n b 是以公比为1q 的等比数列,故D 正确; 故选:BD.10.已知(a = ,若1b = ,且π6,a b = ,则( )A. a b b −=B. b 在a方向上投影向量的坐标为 C. ()2a a b ⊥−D. ()23b a b ⊥−【答案】ACD 【解析】【分析】根据模长公式判断A 选项,根据投影向量公式判断B 选项,根据数量积公式结合向量垂直计算判断C,D 选项.【详解】(,a a =∴=,1a b −=, A 选项正确;b 在a方向上投影向量的坐标为π1cos 162a b a ⋅=×=, B 选项错误;()22π2=22cos 32106a a b a a b a a b ⋅−−⋅=−⋅=−×= ,()2a a b ∴⊥− ,C 选项正确;()22π23=232cos 321306b a b a b b a b b ⋅−⋅−=⋅−=×−= ,D 选项正确; 故选:ACD.11. 定义{}max ,a b 为a ,b 中较大的数,已知函数(){}max sin ,cos f x x x =,则下列结论中正确的有( )A. ()f x 的值域为[]1,1−B. ()f x 是周期函数C. ()f x 图像既有对称轴又有对称中心D. 不等式()0f x >的解集为π2π2ππ,2x k x k k−+<<+∈Z 【答案】BD 【解析】【分析】做出函数()f x 的图像,利用图像确定出值域,周期,单调区间,即可求解.【详解】做出函数()f x 的图像,如图所示:令sin cos x x =π04x−=,则ππ4x k −=,k ∈Z ,解得ππ4x k =+,k ∈Z ,当5π2π4xk =+,k ∈Z 时,()f x =由图可知,()f x 的值域为,故A 错误; 且()f x 是以2π为最小正周期的周期函数,故B 正确;由图可知函数()f x 有对称轴,但是没有对称中心,故C 错误; 由图可知,()π2π2ππ2k x k k −+<<+∈Z 时,()0f x >,故D 正确. 故选:BD.12. 定义在()1,1−上的函数()f x 满足()()1x y f x f y f xy−−=−,且当()1,0x ∈−时,()0f x <,则下列结论中正确的有( ) A. ()f x 奇函数 B. ()f x 是增函数 C. 112243f f f+=D. 111342f f f+<【答案】ABC 【解析】【分析】对于A :根据题意结合奇函数的定义分析判断;对于B :根据题意结合函数单调性分析判断;对于C :根据题意令21,34==xy 代入运算即可;对于D :令11,24x y ==,结合函数单调性分析判断. 【详解】对于选项A :因为()()1x y f x f y f xy −−=−,令0xy ==,则()()()000f f f −=,可得()00f =, 令y x =−得:22()()1x f x f x f x −−= +,再以x −代x ,得:22()()1x f x f x f x −−−=+,两式相加得:2222011x x f f x x −+=++,即222211x x f f x x −=− ++ , 令()()22,1,11=∈−+x g x x x ,则()()()2222101−′=>+x g x x 对任意()1,1x ∈−恒成立, 可知()g x 在()1,1−上单调递增,且()()11,11g g −=−=, 所以()g x 在()1,1−内的值域为()1,1−, 由222211x x f f x x −=−++,()1,1x ∈−,即()()f x f x −=−,()1,1x ∈−, 是所以定义在(1,1)−上的函数()f x 为奇函数,故A 正确;对于选项B :因为函数()f x 为定义在(1,1)−上的奇函数,且当(1,0)x ∈−时,()0f x <,不妨设1211x x −<<<,则121212()()1x x f x f x f x x−−=−,因为1211x x −<<<,则121201x x x x −<−且12121212(1)(1)1011x x x x x x x x −+−+=>−− 可知1212101x x x x −−<<−,所以121201x x f x x−< −, 则12())0(f x f x −<,即12()()f x f x <, 故函数()f x 在(1,1)−上为增函数,B 正确;对于选项C ,令21,34==x y ,且()()1x y f x f y f xy −−=−, 则211342−=f f f ,即112243f f f+=,故C 正确; 对于选项D :令11,24x y ==,且()()1x y f x f y f xy −−= −, 则112247−=f f f , 因为2173<,且函数()f x 在(1,1)−上为增函数,可得2173<f f , 即111243−<f f f ,所以111342+>f f f ,故D 错误. 故选:ABC.【点睛】方法点睛:函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.第二部分 非选择题(共90分)三、填空题(本大题共4小题,每小题5分,共20分)13. 已知()2y f x x =−为奇函数,且()13f =,则()1f −=________.【答案】1− 【解析】【分析】由题意()()2y g x f x x ==−为奇函数,所以由奇函数的性质有()()()()111120g g f f +−=+−−=,结合()13f =即可求解. 【详解】由题意()()2y g x f x x ==−为奇函数,所以由奇函数的性质可得()()()()()()()221111111120g g f f f f +−=−+−−−=+−−=,又因为()13f =,所以解得()11f −=−. 故答案为:1−.14. 设n S 是数列{}n a 的前n 项和,且2cos π3=−nnS n ,则6a =________. 【答案】212##10.5 【解析】【分析】根据n a 与n S 之间的关系,结合诱导公式运算求解.【详解】因为2cos π3=−n n S n ,则255ππ15cos π25cos 2π25cos 253332 =−=−−=−=−S , 266cos 2π36135−−S ,所以665121352522=−=−−=a S S 故答案为:212. 15. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .120ABC ∠=°,ABC ∠的平分线交AC 于点D ,且1BD =,则43a c +的最小值为________.【答案】7+【解析】【分析】利用等面积法可得ac a c =+,从而111a c+=,再利用乘“1”法及基本不等式可求解. 【详解】因为ABCABD BCD S S S =+△△△, 所以111sin1201sin 601sin 60222ac c a ⋅°=××°+××°,所以ac a c =+,可得111a c+=. 所以()41134773437a c a c c a a c a c=+=+++≥+=++ .(当且仅当34c a a c=,即1a =+,1c =+.故答案为:7+16. 设()()ln ,024,24x x f x f x x <≤= −<<,若方程() f x m =恰有三个不相等的实根,则这三个根之和为________;若方程() f x m =有四个不相等的实根()1,2,3,4i x i =,且1234x x x x <<<,则()2221234x x x x +++的取值范围为______. 【答案】 ①. 6 ②. 45(22,)2【解析】【分析】由函数解析式知函数图象关于直线2x =对称,作出图象,可知212x <<,234x x +=,144x x +=,即可求得12348x x x x +++=,同时把()2221234x x x x +++用2x 表示,利用换元法,函数的单调性求得其范围.【详解】()(4)f x f x =−,因此()f x 的图象关于直线2x =对称,作出函数()f x 的图象,如图,作直线y m =,若是三个根,则1m =,12317,2,22x x x ===,1236x x x ++=, 若是四个根,由图可知212x <<,234x x +=,144x x +=,所以12348x x x x +++=, 12ln ln x x -=,因此121=x x ,()222222222123422222221121()(4)(4)28()34x x x x x x x x x x x x =++−+−=+−+++++22222112()8()30x x x x =+−++,令221t x x =+,则()222123422(2)22t x x x x +=+−++, 对函数1(12)y m m m=+<<,设1212m m <<<,1212121212111()(1)y y m m m m m m m m −=+−−=−−, 因为1212m m <<<,所以120m m −<,12110m m −>,所以120y y −<,即12y y <, 即1(12)y m m m=+<<是增函数,所以522y <<,因素2215(2,)2t x x =+∈,22(2)22y t =−+在5(2,)2t ∈时递增, 所以2452(2)22(22,)2y t =−+∈. 故答案为:6;45(22,)2.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 若()()πsin 0,0,2y f x A x A ωϕωϕ+>><的部分图象如图所示.(1)求函数()y f x =的解析式;(2)将()y f x =图象上所有点向左平行移动(0)θθ>个单位长度,得到()y g x =的图象;若()y g x =图象的一个对称中心为5π06,,求θ的最小值. 【答案】(1)()π2sin 26f x x=+(2)π12【解析】【分析】(1)由函数的图象的顶点坐标求出A ,由周期求出ω,由代入点法求出ϕ的值,从而可得函数的解析式. (2)根据函数sin()yA x ωϕ+的图象变换规律求得()g x 的解析式,再利用整体代换法与正弦函数的对称性得到θ关于k 的表达式,从而求得θ的最小值. 【小问1详解】根据()f x 的部分图象易知其最大值为2,又0A >,故2A =,周期11πππ1212T=−−=,则2ππω=,又0ω>,所以2ω=, 所以()()2sin 2f x x ϕ=+, 又π,012−在图象上,所以π2sin 06ϕ −+=,故11π2π,6k k ϕ−+=∈Z ,则11π2π,6k k ϕ=+∈Z , 又π2ϕ<,所以π6ϕ=, 所以()π2sin 26f x x=+. 【小问2详解】 将()y f x =图象上所有点向左平行移动(0)θθ>个单位长度,得到()()ππ2sin 22sin 2266y g x x x θθ==++=++的图象, 因为()y g x =图象的一个对称中心为5π06,,所以5ππ22π,66k k θ×++=∈Z ,即π11π,212k k θ=−∈Z , 因为0θ>,所以π11π0212k −>,则116k >,又k ∈Z ,所以当2k =时,θ取得最小值为π12. 18. 已知数列{}n a 是公差不为零的等差数列,12a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)数列{}n b 满足11111,2n n n b a b b −−,求数列{}n b 的前n 项和n S . 【答案】(1)2n a n =;(2)1n n S n =+. 【解析】【分析】(1)设{}n a 的公差为d ,由等比中项的性质有()2(22)228d d +=+可求d ,进而写出{}n a 的通项公式;(2)应用累加法求{}n b 的通项公式,再由裂项相消法求{}n b 的前n 项和n S .【详解】(1)设数列{}n a 的公差为d ,由12a =,2319a a a =有:()2(22)228d d +=+,解得2d =或0d =(舍去)∴2n a n =. (2)1112n n n b b −−=, ∴()112211111112,21,,22n n n n n n b b b b b b −−−−=−=−−=× ,将它们累加得:2111 2.n n n b b −=+− ∴21n b n n=+,则()111111223111n n S n n n n =+++=−=××+++ . 19. 如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的菱形,60BAD ∠=°,侧面PAD 为等边三角形.(1)求证:AD PB ⊥;(2)若P AD B −−的大小为120°,求A PB C −−的正弦值.【答案】(1)证明见解析;(2. 【解析】【分析】(1)取AD 的中点O ,连接OB ,OP ,BD ,证明AD ⊥平面POB 即得;(2)在平面POB 内过O 作Oz OB ⊥,以射线OA ,OB ,Oz 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,借助空间向量推理计算即可得解.【详解】(1)取AD 的中点O ,连接OB ,OP ,BD ,如图,因PAD 为正三角形,则OP AD ⊥,又底面ABCD 是菱形,且60BAD ∠=°,则ABD △是正三角形,于是得OB AD ⊥,而OP OB O = ,,OP OB ⊂平面POB ,则AD ⊥平面POB ,又PB ⊂平面POB , 所以AD PB ⊥;(2)由(1)知P AD B −−的平面角为POB ∠,即120POB ∠=°,==OP OB ,显然平面POB ⊥平面ABD POB 内过O 作Oz OB ⊥,平面POB 平面ABD OB =,则Oz ⊥平面ABD ,如图,以O 为原点建立空间直角坐标系,则(0,0,0)O ,(1,0,0)A ,B ,(C −,3(0,)2P ,(AB − ,3)2PB =− ,(2,0,0)CB = ,设平面PAB 的法向量为1111(,,)n x y z =,则1111113020n PB y z n AB x ⋅=−= ⋅=−+= ,令11y =,得1n =,设平面PBC 的法向量为2222(,,)n x y z =,则2222220302n CB x n PBz ⋅==⋅=−=,令21y =,得2n =,121212cos ||||n n n n n n ⋅〈⋅〉==⋅,设A PB C −−的大小为θ,从而得sin θ=, 所以A PB C −−. 20. 已知()()1ln 0f x x ax a x=−≥,e 为自然对数的底数. (1)若函数()f x 在e x =处的切线平行于x 轴,求函数()f x 的单调区间; (2)若函数()f x 在1,e e上有且仅有两个零点,求实数a 的取值范围. 【答案】(1)()f x 的单调递增区间为()0,e ,单调递减区间为()e,+∞(2)211e 2ea << 【解析】【分析】(1)求出()f x ′,利用导数的几何意义得到0a =,再利用导数与函数性质的关系即可得解; (2)构造函数()2ln xF x x=,将问题转化为()F x 与y a =的图象有两个交点,利用导数分析()F x 的性质,结合图象即可得解. 【小问1详解】 因为()()1ln 0f x x ax a x=−≥,所以()21ln x f x a x −′=−, 的又函数()f x 在e x =处的切线平行于x 轴,则()e 0f ′=,即21ln e0ea −−=,解得0a =, 此时()21ln xf x x−′=,令()0f x ′=,解得e x =, 当0e x <<时,()0f x '>,()f x 单调递增, 当e x >时,()0f x ′<,()f x 单调递减,所以()f x 的单调递增区间为()0,e ,单调递减区间为()e,+∞. 【小问2详解】因()f x 在1,e e上有且仅有两个零点,令()0f x =,则1ln 0x ax x −=,即2ln x a x =在1,e e上有且仅有两个零点,令()2ln x F x x =,1,e e x∈,则问题转化为()F x 与y a =的图象有两个交点, 又()312ln xF x x−′=,当1ex ∈ 时,()0F x ′>,)F x 单调递增,当)x ∈时,()0F x ′<,()F x 单调递减,所以()F x在x =12eF=, 又201e e F =− <,()2e e 1F =, 作出()F x 与y a =的大致图象,如图,为结合图象可得211e 2ea <<, 所以实数a 的取值范围为211e 2ea <<. 21. 某单位为端正工作人员仪容,在单位设置一面平面镜.如图,平面镜宽BC 为2m ,某人在A 点处观察到自己在平面镜中所成的像为A ′.当且仅当线段AA ′与线段BC 有异于B ,C 的交点D 时,此人能在镜中看到自己的像.已知π3BAC ∠=.(1)若在A 点处能在镜中看到自己的像,求ACAB的取值范围; (2)求某人在A 处与其在平面镜中的像的距离AA ′的最大值. 【答案】(1)1,22(2) 【解析】【分析】(1)设ACB θ∠=,则ππ62θ<<,利用正弦定理结合三角恒等变换可得)sin AC θθ=+,AB θ=,进而整理可得12AC AB =,结合正切函数运算求解;(2)根据(1)中结果结合三角恒等变换整理得π26AA θ=−+′,结合正弦函数分析求解. 【小问1详解】设ACB θ∠=,由题意可知ABC 为锐角三角形,则π022ππ032θθ<<<−<,可得ππ62θ<<,由正弦定理sin sin sinAC AB BCABC ACB BAC===∠∠∠,可得)πsin3AC ABCθθθ=∠=+=+,AB ACBθ=∠=,则12ACAB=+,因为ππ62θ<<,则tanθ>,可得1tanθ<<,即32<<,所以1,22ACAB∈.【小问2详解】由(1)可知:)sinACθθ=+,ABθ=,由题意可知:A A BC′⊥,AD AA=′,利用等面积法可得)1112sin222AAθθθ××=+′整理得2π4sin cos2sin2226 AAθθθθθθ==−−′,因为ππ62θ<<,则ππ5π2,666θ−∈,当ππ262θ−=,即π3θ=时,AA′取到最大值.22. 设()2cos1f x ax x=+−,a∈R.(1)当1πa=时,求函数()f x的最小值;(2)当12a≥时,证明:()0f x≥;(3)证明:()*1114coscos cos ,1233+++>−∈>n n n nN . 【答案】22. π14− 23. 证明见解析 24. 证明见解析【解析】【分析】(1)由题意可知:()f x 为偶函数,所以仅需研究0x ≥的部分,求导,分π2x >和π02x ≤<两种情况,利用导数判断原函数的单调性和最值;(2)由题意可知:()f x 为偶函数,所以仅需研究0x ≥的部分,求导,利用导数判断原函数的单调性和最值,分析证明;(3)由(2)可得:()211cos12>−≥n n n ,分2n =和3n ≥两种情况,利用裂项相消法分析证明; 【小问1详解】因为()f x 的定义域为R ,且()()()()22cos 1cos 1−−+−−+−f x a x x ax x f x ,所以()f x 为偶函数,下取0x ≥, 当1πa =时,()21cos 1π=+−f x x x ,则()2sin π′=−f x x x , 当π2x >时,则()2sin 1sin 0π′=−>−≥f x x x x ,可知()f x 在π,2∞ +内单调递增, 当π02x ≤≤时,令()()g x f x ′=,则()2cos π′=−g x x , 可知()g x ′在π0,2内单调递增, 因为201π<<,则0π0,2x ∃∈ ,使得02cos πx =, 当[)00,x x ∈时,()0g x ′<;当0π,2x x ∈ 时,()0g x ′>; 所以()g x 在[)00,x 上单调递减,在0π,2x上单调递增,且()π002g g == ,则()()0f x g x ′=≤在π0,2 内恒成立,可知()f x 在π0,2内单调递减; 综上所述:()f x 在π0,2 内单调递减,在π,2∞ + 内单调递增, 所以()f x 在[)0,∞+内的最小值为ππ124f =−, 又因为()f x 为偶函数,所以()f x 在R 内的最小值为π14−. 【小问2详解】由(1)可知()f x 为定义在R 上的偶函数,下取0x ≥,可知()2sin f x ax x ′=−,令()()2sin ϕ′==−x f x ax x , 因12a ≥,则()2cos 1cos 0x a x x ϕ≥−′=−≥, 则()x ϕ在[)0,∞+内单调递增,可得()()00x ϕϕ≥=, 即()0f x ′≥在[)0,∞+内恒成立,可知()f x 在[)0,∞+内单调递增,所以()f x 在[)0,∞+内的最小值为()00f =,结合偶函数性质可知:()0f x ≥.【小问3详解】由(2)可得:当1a =时,()2cos 10=+−≥f x x x ,当且仅当0x =时,等号成立, 即2cos 1≥−x x ,令*1,2,=≥∈x n n nN ,则211cos 1>−n n , 当2n =时,211324cos 1222433>−=>=−,不等式成立; 当3n ≥时,222114411cos 111124412121 >−=−>−=−− −−+n n n n n n , 即111cos 122121 >−− −+n n n ,则有: 111cos 12235 >−− ,111cos 12357 >−− ,⋅⋅⋅,111cos 122121 >−− −+n n n , 相加可得:()()11111425cos cos cos 12233213321− +++>−−−=−− ++n n n n n n , 为因为3n ≥,则()250321−>+n n ,所以1114cos cos cos 233+++>− n n ; 综上所述:()*1114cos cos cos ,1233+++>−∈>n n n nN . 【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形;(2)构造新的函数()f x ;(3)利用导数研究()f x 的单调性或最值;(4)根据单调性及最值,得到所证不等式;特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.。
顺德区第一中学2023-2024学年高一下学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 若复数为纯虚数,则实数的值为( )A. 2B. 2或C.D. 2. 在矩形ABCD 中,,,则( )A. 6B. 8C. 10D. 123. 为了得到图像,需要把函数的图象向右平移的单位数是( )A.B.C.D.4. 设,则=A. 2B.C.D. 15. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,,边,则( )A.B.C. D. 6化简( )A.B.C.D.7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知,,且,则b 的值为( )A. B. C.D.8. 已知向量均为单位向量,且.向量与向量的夹角为,则的最大值为( )A.B. 1C.D. 2的.()242iz aa =-+-a 2-2-4-3AB =4=AD AB AC AD ++=1πcos 227y x ⎛⎫=- ⎪⎝⎭21cos 2y x =-π14π76π713π143i12iz -=+z π6B ∠=BC cos A =1212-1︒=sin40cos10︒︒1cos40︒cos40sin10︒︒1sin80︒30B ∠=︒6ac =()sin sin 2sin A C A C +=+4+4-11+,a b12a b ⋅= - a c b c - π6a c -二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多个选项符合题目要求,全部选对得6分,部分选对按比例给分,错选不给分.9. 设复数,其中是虚数单位,下列判断中正确的是( )A. B. 在复平面内对应的点在第一象限C. 是方程一个根 D. 若复数z满足,则最大值为210. 已知,且,,则( )A. B. C. D. 11. 在中,角、、所对的边分别为、、,且,则下列说法正确是( )A. 若,则周长的最大值为B. 若,且只有一解,则的取值范围为C. 若为锐角三角形,且,则的取值范围为D. 若的外心为,则三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量,若,则_________.13. 在中,、、分别是角、、的对边,若,则___________.14. 函数()在上单调,且在上存在对称轴,则的取值范围是___________.四、解答题:本题共5小题,共77分,第15题13分,16、17题15分;18、19题17分.解答时应写出文字说明、解答过程或演算步骤.15. 如图,在方格纸(每个小方格边长为1)上有A ,B ,C 三点,已知向量以A 为始点.的的012z =+i 0012z z ⋅=-0z 0z 210x x -+=01z z -=z 0παβ<<<4cos 5α=()sin 1βα-=24sin 225α=4sin 5β=4cos 5β=-()24cos 25αβ+=-ABC V A B C a b c 2cos cos c B b C a +=π3A =ABC V 3π4A =ABC V b (]0,1ABC V 2C A =c ABC V O 12BC BO ⋅=()()2,5,,4a b λ== //a b r r λ=ABC V a b c A B C sin cos sin a b cA B B==A ∠=()πsin 3f x x ω⎛⎫=+ ⎪⎝⎭0ω>π,π2⎛⎫ ⎪⎝⎭π0,3⎛⎫⎪⎝⎭ωa(1)试以B 为始点画出向量,使在方向上的投影向量为,且的值(2)设点D 是线段上的动点,求的最大值.16. 已知,,(1)求的值;(2)若,且,求的值.17. 设函数,.(1)求函数单调递减区间;(2)若函数在区间上有最小值,求实数m 的取值范围.18. 如图,在中,内角A 、B 、C 的对边分别为a 、b 、c 已知,且为边上的中线,为的角平分线.(1)求线段的长;(2)求的面积.19. 如图,A 、B 是单位圆上的相异两定点(O 为圆心),且.点C 为单位圆上的动点,线段AC 交线段OB 于点M .的b b a 2ab = a b ⋅ AC BD CD ⋅()0,πα∈4sin 25α=-sin α<tan απ,π2β⎛⎫∈⎪⎝⎭cos β=αβ+()π2sin 3f x x ⎛⎫=-⎪⎝⎭()ππ66g x f x f x ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭()f x ()g x []0,m 1-ABC V 3,6,sin 2sin b c C B ===AD BC AE BAC ∠BC ADE V 60AOB ∠=︒(1)设,求的取值范围;(2)设(),求的取值范围.BOC α∠=CA CB ⋅OM tOB =01t <<COM BMAS S∆∆顺德区第一中学2023-2024学年高一下学期期中考试数学试题简要答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多个选项符合题目要求,全部选对得6分,部分选对按比例给分,错选不给分.【9题答案】【答案】BCD【10题答案】【答案】ABD【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】.四、解答题:本题共5小题,共77分,第15题13分,16、17题15分;18、19题17分.解答时应写出文字说明、解答过程或演算步骤.【15题答案】【答案】(1)作图略,; (2)4.【16题答案】【答案】(1); (2).【17题答案】【答案】(1);(2).【18题答案】【答案】(1)6 (2【19题答案】【答案】(1) (2)85π217,26⎛⎤⎥⎝⎦8a b ⋅=12-7π45π11π2π,2π,66k k k ⎡⎤++∈⎢⎥⎣⎦Z π,3∞⎡⎫+⎪⎢⎣⎭[]0,3()0,2。
佛山一中2020级高一上学期第一次段考科目:数学(试题总分:150分考试时间:120分钟)一、选择题(本大题共8小题,每小题5分,共40分,每小题只有一个正确答案)1.下列四组函数中,表示同一个函数的一组是A.,B.,C.,D.,2.若函数的定义域为,值域为,则函数的图像可能是A. B.C. D.3.已知a,且,则下列不等式中一定成立的是A.11a b< B.22a b< C.b aa b< D.2ab b<4.若集合,,且,则实数a取值的集合为()A.B. C.D.5. 若,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6. 已知00x y >>,,且,则的最小值是A.5B.6C.285D.2457.已知二次函数在区间内是单调函数,则实数a的取值范围是 A.B.C.或D.或8.已知关于x 的一元二次不等式的解集为,则的最小值是A.6B.C. D.3二、多项选择题(本大题共4小题,共20分,每小题有多个正确答案,全部选对得5分,部分选对得3分,有选错得0分) 9.下列各结论中正确的是A.“”是“”的充要条件B.“”的最小值为2C.命题“,”的否定是“,”D.“函数的图象过点”是“”的充要条件10.关于函数,下列说法正确的是A.在区间上单调递减B.单调减区间为C.最大值为2D.无最小值11.下列各函数中,最小值为2的是A. B.C. D.12.已知函数,关于的不等式的解集为,则A. B.设,则的最小值一定为C.不等式的解集为D.若,且,则x 的取值范围是三、填空题(本大题共4小题,每小题5分,共20分)13.不等式2131x x +<-的解集是________. 14.已知函数()()()()210,103,x x f x x x +≤⎧⎪=⎨-<<⎪⎩若()14f x =,则x 的值是 . 15.已知函数()()2311x f x x x +=<-,则()f x 的最大值是______________16.已知,若对任意,不等式恒成立,则实数t 的最大值为______.四、解答题(本大题共6小题,共60分) 17.(本小题满分10分)已知集合,.若,求,;若,求实数a的取值范围.18.(本小题满分12分)已知定义在上的函数.当时,判断函数的单调性,并证明你的结论;当时,求解关于x的不等式.19.(本小题满分12分)根据市场调查,某种商品在最近的40天内的售价(单位:百元/kg)与销售天数满足关系,日销售量(单位:kg/日)与销售天数t满足关系求这种商品的日销售获利金额的最大值.20.(本小题满分12分)已知函数.若,求在区间上的最小值;若在区间上有最大值3,求实数a的值.21.(本小题满分12分)设函数.(1)求不等式的解集;(2)设,设,为方程的两根,且,,试求实数的取值范围.22.(本小题满分12分)对于定义域为D的函数,若同时满足下列两个条件:在D内单调递增或单调递减;存在区间,使在上的值域为;那么就把叫闭函数.求闭函数符合条件的区间;判断函数是否为闭函数并说明理由;若是闭函数,求实数k的范围.佛山一中2020级高一上学期第一次段考数学科试题参考答案一.选择题1.B2.B3.C4.D5.B6.A7.D8.C二.多项选择题9.AD10.AC11.CD12.ACD三.填空题13.;14.;15. 2- ;16. 6四.解答题17.解:因为,所以,,------2分所以---------3分因为----------4分所以,-----------5分(2)当时,时必有--------6分当时,则有,----------7分又,则有或,解得:或-------8分或.--------------------------9分综上实数a的取值范围为或---------------------------10分18.解:根据题意,设,--------------1分则,----------------2分又由,则,,,----------4分当时,,在上单调递减;-----------------5分当时,,在上单调递增;-----------------6分当时,由结论可知为减函数,---------------------------7分则,-----------------------10分解可得:,不等式的解集为.--------------------12分19.设日销售获利金额为(百元)当,时----------------------------------------1分则对称轴为,---------------------------------------3分故当时,.------------------------------------5分(说明:1分段写成等也算正确;3分段—5分段只要指出对称轴或者含有其他能直接或间接反映单调性的信息的文字都得满分)当时,时-------------------------------------------------------------6分则对称轴为-----------------------------------------8分故当时,.----------------------------------------10分(说明:6分段写成,等也算正确;8分段—10分段只要指出对称轴或者含有其他能直接或间接反映单调性的信息的文字都得满分)综合知,当时,日销售获利金额最大值为176(百元).------12分20.解:若,则所以函数在区间上递增,在区间上递减---------------------1分∵,----------------------------------------------2分,----------------------------------------------3分(说明:1分段只要有反映出二次函数单调性的信息(如对称轴)也得分,若最小值结果正确,2分段可省略)对称轴为------------------------------------------------4分当时,函数在在区间上递减,----5分即;---------------------------------------------------------6分当时,函数在区间上递增,在区间上递减则----------------------------7分所以或(舍去)-----------------------------------------9分当时,函数在区间上递增,则-----------------------10分解得;--------------------------------------------------11分综上所述,或.------------------------------------12分21.当时,得:,--------------1分当时,由得:,,-----------------2分当时原不等式的解集为----------------3分当,原不等式的解集为---------------4分当时,原不等式的解集为---------------------------5分当时,原不等式的解集为-----------------6分(本题由于参数分类中并无可合并的结果,所以不进行综述也不扣分,若结果正确但没写成集合或者区间形式则在本题最后总得分中扣1分瑕疵分)(2)由题意可得---------------------7分因为,为的两根,且,,所以-----------------------------------------9分解得-----------------------------------------------11分所以;-------------------------------------------------12分解法2:由可得-----------7分显然不是上述方程的根,则-------------------------8分令,则,则---------------------9分所以------------------------------------------10分因为,为的两根,且,所以有两根且,-----------------11分结合,所以-------------12分解法3:由可得,-------------------------7分所以--------------------------------------8分解得----------------------------------------11分所以--------------------------------------------12分22.解:由题意,在上递减-------------------------1分则,-------------------------------------------------2分解得,所以所求的区间为;---------------------3分,--------------------------------------4分则f(x)在上单调递增,在上单调递增即f(x)在定义域上不单调递增或单调递减,故该函数不是闭函数.------5分(本问通过如果通过取特殊值得出函数不单调也可得满分,若没有4分段的式子变形或者没有取值依据,但直接正确指出了单调性只给1分)在上单调递增--------------------------6分若是闭函数,则存在区间,在区间上,函数的值域为,即,b为方程的两个不等实数根---------------------7分即方程有两个不等的实根当时,有-------------------------------------8分解得,-------------------------------------------------9分当时,有--------------------------------------------10分该不等式组无解------------------------------------------------------11分综上所述,.------------------------------------------12分解法2:至7分段和解法1相同,以下为不同部分:∴函数与的图象在上有两个不同交点---------8分当直线与曲线相切时,由得即----------------------------------------9分由得,即------------10分当直线过时,-----------------------------------11分结合图可知:当,即时直线与曲线有两个交点.所以----------12分。