南通市七校联合调研考试初二数学试卷_8
- 格式:doc
- 大小:875.50 KB
- 文档页数:10
2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是( )A .B .C .D . 2.下列式子中正确的是( )A .B .C .D . 3.已知a=3,b=4,若a ,b ,c 能组成直角三角形,则c=( )A .5B .C .5或D .5或64.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .75.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A .4B .3C .2D .16.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A .16B .17C .18D .197.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较9.若点A (2,4)在函数y=kx ﹣2的图象上,则下列各点在函数图象上的是( )A .(0,﹣2)B .(,0)C .(8,20)D .(,) 10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x ﹣5的图象交于点M ,则点M 的坐标为( )A . C .二、填空(每小题3分,共24分)11.要使代数式有意义,则x 的取值范围是 .12.如右图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .13.直角三角形两直角边长分别为5和12,则它斜边上的高为 .14.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB= .15.当直线y=kx+b 与直线y=﹣2x+1平行,且y=kx+b 与y=x+4和x 轴交于一点,则y=kx+b 的解析式为 .16.如图,正方形ABCD 的对角线长为8,E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD 于G ,则EF+EG= .17.如图,已知函数y 1=k 1x+b 1和y 2=k 2x+b 2交于点(﹣3,1),k 1>0,k 2<0,如k 1x+b 1<k 2x+b 2,则x 的范围为 .18.如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是 .三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y (米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷参考答案与试题解析一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、符合最简二次根式的定义,故A选项正确;B、二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、二次根式的被开方数中含有没开的尽方的数,故C选项错误;D、被开方数中含有分母,故D选项错误;故选:A.【点评】此题考查最简根式问题,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.下列式子中正确的是()A.B.C.D.【考点】二次根式的加减法.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、不是同类二次根式,不能合并,故错误;B、D、开平方是错误的;C、符合合并同类二次根式的法则,正确.故选C.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.3.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A .5B .C .5或D .5或6 【考点】勾股定理的逆定理.【分析】注意有两种情况一是所求边为斜边,二所求边位短边.【解答】解:分两种情况:当c 为斜边时,c==5;当长4的边为斜边时,c==(根据勾股定理列出算式).故选C .【点评】本题利用了勾股定理求解,注意要讨论c 为斜边或是直角边的情况.4.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .7【考点】含30度角的直角三角形;垂线段最短.【分析】利用垂线段最短分析AP 最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP 最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP 的长不可小于3;∵△ABC 中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP 的长不能大于6.故选:D .【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.5.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A .4B .3C .2D .1【考点】命题与定理.【分析】根据平行四边形、矩形、菱形、以及正方形的判定方法逐一判定即可.【解答】解:①两条对角线互相平分的四边形是平行四边形;正确;②一条对角线平分一个内角的平行四边形是菱形;正确;③两条对角线互相垂直的平行四边形是矩形;错误;④两条对角线相等且互相垂直的四边形是正方形;错误;正确的个数为2个;故选:C .【点评】本题考查了命题与定理、平行四边形、矩形、菱形、以及正方形的判定方法;熟记平行四边形、矩形、菱形、以及正方形的判定方法是解决问题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A .16B .17C .18D .19 【考点】勾股定理.【分析】由图可得,S 2的边长为3,由AC=BC ,BC=CE=CD ,可得AC=2CD ,CD=2,EC=2;然后,分别算出S 1、S 2的面积,即可解答.【解答】解:如图,设正方形S 1的边长为x ,∵△ABC 和△CDE 都为等腰直角三角形,∴AB=BC ,DE=DC ,∠ABC=∠D=90°,∴sin ∠CAB=sin45°==,即AC=BC ,同理可得:BC=CE=CD ,∴AC=BC=2CD ,又∵AD=AC+CD=6,∴CD==2,∴EC 2=22+22,即EC=2;∴S 1的面积为EC 2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO ,∵MO=MN ,∴AM=MN ,∴M 为AN 的中点,∴S 2的边长为3,∴S 2的面积为3×3=9,∴S 1+S 2=8+9=17.故选B .【点评】本题考查了勾股定理,要充分利用正方形的性质,找到相等的量,再结合三角函数进行解答.7.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如右图,四边形EFGH 是矩形,且E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,求证:四边形ABCD 是对角线垂直的四边形.证明:由于E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,根据三角形中位线定理得:EH ∥FG ∥BD ,EF ∥AC ∥HG ;∵四边形EFGH 是矩形,即EF ⊥FG ,∴AC ⊥BD ;故选B .【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较【考点】一次函数图象上点的坐标特征.【分析】根据一次函数中,当k <0时,y 随x 的增大而减小可以解答本题.【解答】解:∵y=﹣x ﹣6,k=﹣<0,∴在y=﹣x ﹣6的图象上y 随x 的增大而减小,∵点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,x 1>x 2, ∴y 1<y 2.故选C .【点评】本题考查一次函数图象上点的坐标特征,解题的关键是明确一次函数中,当k <0时,y 随x 的增大而减小.9.若点A (2,4)在函数y=kx ﹣2的图象上,则下列各点在函数图象上的是( )A .(0,﹣2)B .(,0)C .(8,20)D .(,)【考点】一次函数图象上点的坐标特征.【分析】将点A (2,4)代入函数解析式求k ,再把点的坐标代入解析式,逐一检验.【解答】解:把点A (2,4)代入y=kx ﹣2中,得2k ﹣2=4,解得k=3;所以,y=3x ﹣2,四个选项中,只有A 符合y=3×0﹣2=﹣2.故选A .【点评】用待定系数法求函数解析式是确定解析式常用的方法.10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x ﹣5的图象交于点M ,则点M 的坐标为( )A . C .【考点】两条直线相交或平行问题.【分析】联立两直线解析式,解方程组即可.【解答】解:联立,解得, 所以,点M 的坐标为(2,1).故选D .【点评】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.二、填空(每小题3分,共24分)11.要使代数式有意义,则x的取值范围是x.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x≥.故答案是:x≥.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为20cm2.【考点】勾股定理.【分析】根据阴影部分的面积等于以AC、CB为直径的两个半圆的面积加上△ABC的面积再减去以AB为直径的半圆的面积列式并整理,再利用勾股定理解答.﹣π(AB)2,【解答】解:由图可知,阴影部分的面积=π(AC)2+π(BC)2+S△ABC=(AC2+BC2﹣AB2)+S,△ABC在Rt△ABC中,AC2+BC2=AB2,=20cm2.∴阴影部分的面积=S△ABC故答案为:20cm2.【点评】本题考查了勾股定理,阴影部分的面积表示,观察图形,准确表示出阴影部分的面积是解题的关键.13.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= 15°.【考点】正方形的性质;等边三角形的性质.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.15.当直线y=kx+b与直线y=﹣2x+1平行,且y=kx+b与y=x+4和x轴交于一点,则y=kx+b的解析式为y=﹣2x﹣8 .【考点】两条直线相交或平行问题.【分析】根据平行k相同可以求出k,求出直线y=x+4和x轴交点代入y=kx+b可以求出b,由此即可解决问题.【解答】解:∵直线y=kx+b与直线y=﹣2x+1平行,∴k=﹣2,∵y=kx+b与y=x+4和x轴交于一点,∴经过点(﹣4,0),∴0=﹣2×(﹣4)+b,∴b=﹣8,∴y=kx+b的解析式为y=﹣2x﹣8,故答案为y=﹣2x﹣8.【点评】本题考查两直线平行或相交问题,记住两直线平行k相同,灵活应用待定系数法求函数解析式,属于中考常考题型.16.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于F,EG⊥BD于G,则EF+EG= 4.【考点】正方形的性质.【分析】正方形ABCD的对角线交于点O,连接0E,由正方形的性质和对角线长为8,得出OA=OB=4;进一步利用S△ABO =S△AEO+S△EBO,整理得出答案解决问题.【解答】解:如图:∵四边形ABCD 是正方形,∴OA=OB=4,又∵S △ABO =S △AEO +S △EBO ,∴OAOB=OAEF+OBEG ,即×4×4=×4×(EF+EG )∴EF+EG=4.故答案为:4.【点评】此题考查正方形的性质,三角形的面积计算公式;利用三角形的面积巧妙建立所求线段与已知线段的关系,进一步解决问题.17.如图,已知函数y 1=k 1x+b 1和y 2=k 2x+b 2交于点(﹣3,1),k 1>0,k 2<0,如k 1x+b 1<k 2x+b 2,则x 的范围为 x <﹣3 .【考点】一次函数与一元一次不等式.【分析】k 1x+b 1<k 2x+b 2就是y 1=k 1x+b 1的图象在y 2=k 2x+b 2的图象的下边时对应的x 的范围,根据图象即可判断.【解答】解:根据图象可得x 的范围是x <﹣3.故答案是:x <﹣3.【点评】本题考查了利用一次函数图象解不等式以及一次函数的性质,确定两个函数的解析式与图象的对应关系是关键.18.如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是 ()n ﹣1 .【考点】菱形的性质.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.【点评】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.【考点】二次根式的混合运算.【分析】(1)先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)先利用分母有理化化简x和y,再计算x+y与xy的值,然后利用完全平方公式把原式变形为(x+y)2﹣2xy,再利用整体代入的方法计算.【解答】解:(1)原式=(8﹣9)÷=﹣÷=﹣=﹣;(2)原式=4+2﹣﹣=2;(3)x=﹣1,y=﹣(+1)=﹣﹣1,所以x+y=﹣2,xy=﹣2,所以原式=(x+y)2﹣2xy=(﹣2)2﹣2×(﹣2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.【考点】矩形的性质;翻折变换(折叠问题).【分析】作EM⊥CD,垂足为点M设DE=x,由折叠的性质得出∠DEF=∠BEF,BE=DE=x,得出AE=8﹣x,再由矩形的性质得出∠DEF=∠DFE,证出DE=DF,在Rt△ADE中,由勾股定理得出方程,解方程求出DE,得出AE、MF,由勾股定理求出EF即可.【解答】解:作EM⊥CD,垂足为点M,如图所示:设DE=x,由折叠的性质得:∠DEF=∠BEF,BE=DE=x,∴AE=8﹣x,∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,∴∠DFE=∠BEF,∴∠DEF=∠DFE,∴DE=DF,在Rt△ADE中,由勾股定理得:(8﹣x)2+62=x2,解得:x=,∴AE=DM=8﹣=,又∵DF=DE=,∴MF=DF﹣DM=﹣=,又∵ME=AD=6,∴EF===.【点评】此题主要考查了翻折变换的性质矩形的性质、勾股定理、等腰三角形的判定;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程求出BE是解决问题的关键.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.【考点】矩形的性质;菱形的判定.【分析】(1)先根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)作DM⊥OC,垂足为点M,证明△COD为等边三角形,得出OC=CD=OD=2,得出CM=1,DM=CM=,菱形OCED面积=OCDM,即可得出结果.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,∵四边形ABCD为矩形,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED为菱形;(2)解:作DM⊥OC,垂足为点M,∵OC=OD,∠COD=60°,∴△COD为等边三角形,∴OC=CD=OD,∵AB=2,四边形ABCD是矩形,∴CD=AB=2,∴OC=CD=OD=2,∵DM⊥OC,∴CM=1,∴DM=CM=,∴菱形OCED面积=OCDM=2.【点评】本题主要考查矩形的性质,平行四边形的判定、菱形的判定、等边三角形的判定与性质;熟练掌握矩形的性质和菱形的判定,证明三角形是等边三角形是解决问题(2)的关键.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.【考点】正方形的判定;矩形的判定.【分析】(1)利用角平分线的性质以及平行线的性质得出OE=OF,即可得出结论;(2)证出EF⊥AC,即可得出结论.【解答】(1)证明:当点O运动到AC的中点位置时,四边形AECF为矩形;理由如下:∵O为AC中点,∴OA=OC,∵EF∥BD,∴∠CEO=∠ECB,∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠CEO=∠ECO,∴OE=OC,同理可证,OC=OF,∴OE=OF,∴四边形AECF为平行四边形,又∵EF=2OE,AC=2OC,∴EF=AC,∴四边形AECF为矩形;(2)解:当∠ACB=90°时,四边形AECF为正方形;理由如下:∵EF∥BD,∠ACB=90°,∴∠AOE=90°,∴EF⊥AC,∵四边形AECF为矩形,∴四边形AECF为正方形.【点评】本题考查了正方形的判定、矩形的判定、平行四边形的判定、等腰三角形的判定;熟练掌握平行四边形的判定方法,证出OE=OF是解决问题的关键.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.【考点】待定系数法求一次函数解析式.【分析】进行分类讨论k大于0还是小于0,列出二元一次方程组求出k和b的值即可.【解答】解:设y=k(x﹣1)+b(k≠0),依题意得:当k>0时,2=﹣3k+b①,4=2k+b②,由①②得:k=,B=,∴y=x+;当k<0时,4=﹣3k+b①,2=2k+b②,由①②得:k=﹣,b=,∴y=﹣x+;综上所述:y与x的函数解析式为y=x+或y=﹣x+.【点评】本题主要考查待定系数法求一次函数的解析式的知识,解答本题的关键是熟练掌握一次函数的性质,注意分类讨论.25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.【考点】一次函数图象与几何变换.【分析】(1)根据图象平移的规律:左加右减,上加下减,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据解方程组,可得交点坐标,根据三角形的面积公式,可得答案.【解答】解:(1)直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度得y=﹣(x﹣1)+2+1,化简得y=﹣x+.(2)当y=0时,0=﹣x+.解得x=7,即A(7,0);当x=0时,y=,B(0,);(3)将y=﹣x+和y=x+1联成方程组解得两直线交点为(,).再求出两直线与y轴交点分别为(0,)和(0,1),所以三角形面积为××(﹣1)=.【点评】本题考查了一次函数图象与几何变换,利用图象平移的规律是解题关键.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y (米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为y=14x ;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为y=35x﹣85 ;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.【考点】一次函数的应用.【分析】(1)甲的图象是过原点的直线,过(5,70),乙队在3≤x≤5的时间段内是一次函数,可以利用待定系数法求得函数的解析式;(2)根据图象,可分两种情况:①3≤x≤5;②x>5.分别根据乙队修的长度超过甲队10米列出方程,求解即可;(3)设乙队从开修到完工所修水渠的长度为m米,乙队在修筑5小时后,甲剩余(m﹣70)米,乙剩余(m﹣90)米,根据两队同时完成任务,即时间相等,即可列方程求解.【解答】解:(1)设甲队在0≤x≤5时间段内,y与x的函数的解析式是y=kx,根据题意得:5k=70,解得:k=14,则甲的函数解析式是:y=14x.②设乙队在3≤x≤5时间段内,y与x的函数的解析式是:y=mx+b,根据题意得:,解得:.则函数解析式是:y=35x﹣85.故答案为y=14x;y=35x﹣85;(2)分两种情况:①当3≤x≤5时,由题意得35x﹣85﹣14x=10,解得x=;②当x>5时,乙队y与x的函数的解析式是:y=5(x﹣5)+90.由题意得5(x﹣5)+90﹣14x=10,解得x=.答:开修或小时后,乙队修的长度超过甲队10米;(3)由图象得,甲队的速度是70÷5=14(米/时).设乙队从开修到完工所修长度为m米.根据题意得: =,解得m=.答:乙队从开修到完工所修的长度为米.【点评】本题考查的是用一次函数解决实际问题,待定系数法求函数的解析式,以及列方程解应用题,此类题是近年中考中的热点问题.。
2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷一、单项选择题(每小题2分,共20分)1.(2分)下列根式中是最简二次根式的是()A.B.C.D.2.(2分)下列式子中正确的是()A.B.C.D.3.(2分)已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5B.C.5或D.5或64.(2分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5B.4.2C.5.8D.75.(2分)有下列四个命题,其中正确的个数为()①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A.4B.3C.2D.16.(2分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.197.(2分)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD 必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形8.(2分)已知点(x1,y1),(x2,y2)都在直线y=﹣x﹣6上,如x1>x2,则y1和y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较9.(2分)若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在函数图象上的是()A.(0,﹣2)B.(,0)C.(8,20)D.(,)10.(2分)在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M的坐标为()A.(﹣1,4)B.(﹣1,2)C.(2,﹣1)D.(2,1)二、填空(每小题3分,共24分)11.(3分)要使代数式有意义,则x的取值范围是.12.(3分)如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为.13.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.14.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.15.(3分)当直线y=kx+b与直线y=﹣2x+1平行,且y=kx+b与y=x+4和x轴交于一点,则y=kx+b的解析式为.16.(3分)如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC 于F,EG⊥BD于G,则EF+EG=.17.(3分)如图,已知函数y1=k1x+b1和y2=k2x+b2交于点(﹣3,1),k1>0,k2<0,如k1x+b1<k2x+b2,则x的范围为.18.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.(9分)计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.20.(6分)如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.21.(5分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.22.(7分)如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.23.(7分)如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.24.(6分)已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y 与x的函数解析式.25.(7分)将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.26.(9分)甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y(米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷参考答案与试题解析一、单项选择题(每小题2分,共20分)1.(2分)下列根式中是最简二次根式的是()A.B.C.D.【解答】解:A、符合最简二次根式的定义,故A选项正确;B、二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、二次根式的被开方数中含有没开的尽方的数,故C选项错误;D、被开方数中含有分母,故D选项错误;故选:A.2.(2分)下列式子中正确的是()A.B.C.D.【解答】解:A、不是同类二次根式,不能合并,故错误;B、D、开平方是错误的;C、符合合并同类二次根式的法则,正确.故选:C.3.(2分)已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5B.C.5或D.5或6【解答】解:分两种情况:当c为斜边时,c==5;当长4的边为斜边时,c==(根据勾股定理列出算式).故选:C.4.(2分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5B.4.2C.5.8D.7【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.5.(2分)有下列四个命题,其中正确的个数为()①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A.4B.3C.2D.1【解答】解:①两条对角线互相平分的四边形是平行四边形;正确;②一条对角线平分一个内角的平行四边形是菱形;正确;③两条对角线互相垂直的平行四边形是矩形;错误;④两条对角线相等且互相垂直的四边形是正方形;错误;正确的个数为2个;故选:C.6.(2分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.19【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选:B.7.(2分)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD 必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.8.(2分)已知点(x1,y1),(x2,y2)都在直线y=﹣x﹣6上,如x1>x2,则y1和y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【解答】解:∵y=﹣x﹣6,k=﹣<0,∴在y=﹣x﹣6的图象上y随x的增大而减小,∵点(x1,y1),(x2,y2)都在直线y=﹣x﹣6上,x1>x2,∴y1<y2.故选:C.9.(2分)若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在函数图象上的是()A.(0,﹣2)B.(,0)C.(8,20)D.(,)【解答】解:把点A(2,4)代入y=kx﹣2中,得2k﹣2=4,解得k=3;所以,y=3x﹣2,四个选项中,只有A符合y=3×0﹣2=﹣2.故选:A.10.(2分)在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M的坐标为()A.(﹣1,4)B.(﹣1,2)C.(2,﹣1)D.(2,1)【解答】解:联立,解得,所以,点M的坐标为(2,1).故选:D.二、填空(每小题3分,共24分)11.(3分)要使代数式有意义,则x的取值范围是x.【解答】解:根据题意得:,解得:x≥.故答案是:x≥.12.(3分)如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为20cm2.﹣π【解答】解:由图可知,阴影部分的面积=π(AC)2+π(BC)2+S△ABC (AB)2,=(AC2+BC2﹣AB2)+S△ABC,在Rt△ABC中,AC2+BC2=AB2,∴阴影部分的面积=S=20cm2.△ABC故答案为:20cm2.13.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.14.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.15.(3分)当直线y=kx+b与直线y=﹣2x+1平行,且y=kx+b与y=x+4和x轴交于一点,则y=kx+b的解析式为y=﹣2x﹣8.【解答】解:∵直线y=kx+b与直线y=﹣2x+1平行,∴k=﹣2,∵y=kx+b与y=x+4和x轴交于一点,∴经过点(﹣4,0),∴0=﹣2×(﹣4)+b,∴b=﹣8,∴y=kx+b的解析式为y=﹣2x﹣8,故答案为y=﹣2x﹣8.16.(3分)如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC 于F,EG⊥BD于G,则EF+EG=4.【解答】解:如图:∵四边形ABCD是正方形,∴OA=OB=4,=S△AEO+S△EBO,又∵S△ABO∴OA•OB=OA•EF+OB•EG,即×4×4=×4×(EF+EG)∴EF+EG=4.故答案为:4.17.(3分)如图,已知函数y1=k1x+b1和y2=k2x+b2交于点(﹣3,1),k1>0,k2<0,如k1x+b1<k2x+b2,则x的范围为x<﹣3.【解答】解:根据图象可得x的范围是x<﹣3.故答案是:x<﹣3.18.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是()n﹣1.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.(9分)计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.【解答】解:(1)原式=(8﹣9)÷=﹣÷=﹣=﹣;(2)原式=4+2﹣﹣=2;(3)x=﹣1,y=﹣(+1)=﹣﹣1,所以x+y=﹣2,xy=﹣2,所以原式=(x+y)2﹣2xy=(﹣2)2﹣2×(﹣2)=8.20.(6分)如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.【解答】解:作EM⊥CD,垂足为点M,如图所示:设DE=x,由折叠的性质得:∠DEF=∠BEF,BE=DE=x,∴AE=8﹣x,∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,∴∠DFE=∠BEF,∴∠DEF=∠DFE,∴DE=DF,在Rt△ADE中,由勾股定理得:(8﹣x)2+62=x2,解得:x=,∴AE=DM=8﹣=,又∵DF=DE=,∴MF=DF﹣DM=﹣=,又∵ME=AD=6,∴EF===.21.(5分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.22.(7分)如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,∵四边形ABCD为矩形,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED为菱形;(2)解:作DM⊥OC,垂足为点M,∵OC=OD,∠COD=60°,∴△COD为等边三角形,∴OC=CD=OD,∵AB=2,四边形ABCD是矩形,∴CD=AB=2,∴OC=CD=OD=2,∵DM⊥OC,∴CM=1,∴DM=CM=,∴菱形OCED面积=OC•DM=2.23.(7分)如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.【解答】(1)证明:当点O运动到AC的中点位置时,四边形AECF为矩形;理由如下:∵O为AC中点,∴OA=OC,∵EF∥BD,∴∠CEO=∠ECB,∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠CEO=∠ECO,∴OE=OC,同理可证,OC=OF,∴OE=OF,∴四边形AECF为平行四边形,又∵EF=2OE,AC=2OC,∴EF=AC,∴四边形AECF为矩形;(2)解:当∠ACB=90°时,四边形AECF为正方形;理由如下:∵EF∥BD,∠ACB=90°,∴∠AOE=90°,∴EF⊥AC,∵四边形AECF为矩形,∴四边形AECF为正方形.24.(6分)已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y 与x的函数解析式.【解答】解:设y=k(x﹣1)+b(k≠0),依题意得:当k>0时,2=﹣3k+b①,4=2k+b②,由①②得:k=,b=,∴y=x+;当k<0时,4=﹣3k+b①,2=2k+b②,由①②得:k=﹣,b=,∴y=﹣x+;综上所述:y与x的函数解析式为y=x+或y=﹣x+.25.(7分)将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.【解答】解:(1)直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度得y=﹣(x﹣1)+2+1,化简得y=﹣x+.(2)当y=0时,0=﹣x+.解得x=7,即A(7,0);当x=0时,y=,B(0,);(3)将y=﹣x+和y=x+1联成方程组解得两直线交点为(,).再求出两直线与y轴交点分别为(0,)和(0,1),所以三角形面积为××(﹣1)=.26.(9分)甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y(米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为y=14x;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为y=35x﹣85;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.【解答】解:(1)设甲队在0≤x≤5时间段内,y与x的函数的解析式是y=kx,根据题意得:5k=70,解得:k=14,则甲的函数解析式是:y=14x.②设乙队在3≤x≤5时间段内,y与x的函数的解析式是:y=mx+b,根据题意得:,解得:.则函数解析式是:y=35x﹣85.故答案为y=14x;y=35x﹣85;(2)分两种情况:①当3≤x≤5时,由题意得35x﹣85﹣14x=10,解得x=;②当x>5时,乙队y与x的函数的解析式是:y=5(x﹣5)+90.由题意得5(x﹣5)+90﹣14x=10,解得x=.答:开修或小时后,乙队修的长度超过甲队10米;(3)由图象得,甲队的速度是70÷5=14(米/时).设乙队从开修到完工所修长度为m米.根据题意得:=,解得m=.答:乙队从开修到完工所修的长度为米.。
江苏南通海安市2024—2025学年上学期第一阶段学业质量联合测试八年级数学试题一、单选题1.以下是清华大学、北京大学、中国人民大学、浙江大学的校徽,其中是轴对称图形的是()A .B .C .D .2.如图的两个三角形全等,则1∠的度数为()A .50°B .58°C .60°D .62°3.在直角坐标系中,点()2,1P 关于x 轴对称的点的坐标是()A .()2,1B .()2,1-C .()2,1-D .()2,1--4.如图,已知AB 与CD 相交于点O ,AC BD ∥.只添加一个条件,能判定AOC BOD △△≌的是()A .AO DO =B .AO BO =C .A B∠=∠D .AOC BOD ∠∠=5.下列条件中,不能判定ABC V 是等腰三角形的是()A .334a b c ===,,B .::2:2:4a b c =C .5080B C ∠=︒∠=︒,D .::1:1:2A B C ∠∠∠=6.如图,在ABC V 中,AB AC =,130BAC ∠=︒,DA AC ⊥,则ADB =∠()A .100︒B .115︒C .130︒D .145︒7.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,AB 的垂直平分线交BC 于点D ,连接AD ,则△ACD 的周长是()A .7B .8C .9D .108.如图,在ABC V 中,90C ∠=︒,6AC =,30B ∠=︒,点P 是BC 边上的动点,则AP 的长不可能是()A .6B .8C .10D .139.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .310.如图,在等腰△ABC 中,AB =AC ,∠A =20°,AB 上一点D ,且AD =BC ,过点D 作DE ∥BC 且DE =AB ,连接EC ,则∠DCE 的度数为()A .80°B .70°C .60°D .45°二、填空题11.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是.12.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为.13.如图,已知20BD BC AD DBC ==∠=︒,,则A ∠=.14.如图,射线OC 是AOB ∠的角平分线,D 是射线OC 上一点,DP OA ⊥于点P ,5DP =,若点Q 是射线OB 上一点,4OQ =,则ODQ 的面积是.15.如图,已知135BAC ∠=︒,若PM 和QN 分别垂直平分AB 和AC ,则PAQ ∠=︒.16.如图,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则B 点的坐标是.17.如图,已知D 点为BC 中点,BED CAD ∠=∠,过点C 作CF AD ⊥,垂足为点F ,若2AE =,则DF =.18.如图,在ABC V 中,AB AC =,65BAC ∠=︒,BD 是AC 边上的高,点E ,F 分别在AB BD ,上,且AE BF =,当AF CE +的值最小时,AFD ∠的度数是°.三、解答题19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC V 的顶点均在格点上,点C 的坐标为()41-,.(1)请以x 轴为对称轴,画出与ABC V 对称的111A B C △,并直接写出点1A 、1B 、1C 的坐标;(2)ABC V 的面积是______;(3)点()1,1P a b +-与点C 关于y 轴对称,则a =______,b =______.20.在学习了几何证明之后,老师给出了下面的题目.已知:如图,D 是ABC V 中BC 边上的一点,E 是AD 上的一点,,EB EC ABE ACE =∠=∠.求证:AD 平分BAC ∠.小亮给出了下面的证明过程.证明:在AEB 和AEC △中,因为,,EB EC ABE ACE AE AE =∠=∠=,所以AEB AEC ≌V V 第一步所以BAE CAE ∠=∠第二步所以AD 平分BAC ∠第三步小亮的证明过程是否正确?如果正确,请写出每一步的推理依据;如果不正确,请指出错在哪一步?并写出你认为正确的证明过程.21.如图,已知点D 在△ABC 的边AB 上,且AD =CD ,(1)用直尺和圆规作∠BDC 的平分线DE ,交BC 于点E (不写作法,保留作图痕迹);(2)在(1)的条件下,判断DE 与AC 的位置关系,并写出证明过程.22.如图,在ABC V 中,BD 是高,点D 是AC 边的中点,点E 在BC 边的延长线上,ED 的延长线交AB 于点F ,且EF AB ⊥,若30E ∠=︒.(1)求证:ABC V 是等边三角形;(2)请判断线段AD 与CE 的大小关系,并说明理由.23.如图,在ABC V 中,2ABC ACB ∠=∠,BD 为ABC V 的角平分线.(1)若AB BD =,则A ∠的度数为°(直接写出结果);(2)若E 为线段BC 上一点,DEC A ∠=∠;求证:AB EC =.24.如图,ABC V 中,AC AB >,D 是BA 延长线上一点,点E 是CAD ∠的平分线上一点,过点E 作EF AC ⊥于F ,EG AD ⊥于G .(1)求证:EGA EFA ≌△△;(2)若2BEC GEA ∠=∠,3AB =,5AC =,求AF 的长.25.【探究与发现】(1)如图1,AD 是ABC V 的中线,延长AD 至点E ,使ED AD =,连接BE ,写出图中全等的两个三角形.【理解与应用】(2)填空:如图2,EP 是DEF 的中线,若5EF =,3DE =,设EP x =,则x 的取值范围是.(3)已知:如图3,AD 是ABC V 的中线,BAC ACB ∠=∠,点Q 在BC 的延长线上,QC BC =,求证:2AQ AD =.26.如图,在ABC V 中,90ABC ∠=︒,AB BC =,作直线AP ,使得4590PAC ︒<∠<︒.过点B 作BD AP ⊥于D ,在DA 的延长线上取点E ,使DE BD =.连接BE ,CE .(1)依题意补全图形;(2)若ABD α∠=,求CBE ∠(用含α的式子表示);(3)用等式表示线段AE CE DE ,,之间的数量关系,并证明.。
苏科版南通市八年级上学期期末调研监测数学试题一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2) 2.4的平方根是( )A .2B .2±C .2D .2± 3.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130°4.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒5.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 6.下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,13 7.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形; 命题4:直角三角形中斜边最长;以上真命题的个数是( )A .1B .2C .3D .4 8.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对9.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .210.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-11.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.512.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=13.下列各数中,无理数是( )A .πB .C .D .14.满足下列条件的△ABC 是直角三角形的是( )A .∠A :∠B :∠C =3:4:5B .a :b :c =1:2:3C .∠A =∠B =2∠CD .a =1,b =2,c =315.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .12二、填空题16.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)17.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.18.2x -x 可以取的最小整数为______.19.计算:32()x y -=__________.20.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.21.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.22.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.23.在第二象限内的点P 到x 轴的距离是1,到y 轴的距离是4,则点P 的坐标是_________.24.点P (3,-4)到 x 轴的距离是_____________.25.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
2024届江苏省南通市区直属中学数学八下期末联考试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A .(2,4)B .(1,5)C .(1,-3)D .(-5,5)2.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是153.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,四边形ABCD 是菱形B .当AC ⊥BD 时,四边形ABCD 是菱形 C .当AC=BD 时,四边形ABCD 是矩形 D .当∠ABC=90°时,四边形ABCD 是正方形4.如图,梯形 ABCD 中,AD ∥BC ,AD =CD ,BC =AC ,∠BAD =110°,则∠D =()A .140°B .120°C .110°D .100°5.用公式解方程﹣3x 2+5x ﹣1=0,正确的是( )A .x 513-±B .x 513-±C .x 513±D .x 513± 6.对于函数34y x =-+,下列结论正确的是( )A .它的图象必经过点(-1,1)B .它的图象不经过第三象限C .当0x >时,0y >D .y 的值随x 值的增大而增大7.如图,ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则:EF FC 等于( )A .11:B .12:C .13:D .23:8.如图,经过多边形一个角的两边剪掉这个角,则新多边形的内角和( )A .比原多边形多180°B .比原多边形多360°C .与原多边形相等D .比原多边形少180°9.如图,在Rt ABC ∆中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若2BD =,则AB 的长是( )A .23B .4C .43D .610.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是( ) A .8 B .5 C .22 D .3二、填空题(每小题3分,共24分)11.在直角坐标系中,直线与y 轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x 轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为______用含n 的代数式表示,n 为正整数.12.如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD 的面积是1.(1)格点△PMN 的面积是_____;(2)格点四边形EFGH 的面积是_____.13.若关于x 的方程x 2+mx-3=0有一根是1,则它的另一根为________.14.若51x =+,51y =-,则代数式222x xy y ++=__________.15.如图,已知直线////a b c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 和B 、D 、F ,如果3AC =,5CE =,4DF =,那么BD =______.16.计算:23⨯=______.17.如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A ,B 点构成直角三角形ABC 的顶点C 的位置有___________个.18.张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x ,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .三、解答题(共66分)19.(10分)如图,直线11:21l y x =+与直线22:4l y mx =+相交于点(1,)P b .(1)求b ,m 的值;(2)根据图像直接写出12y y >时x 的取值范围;(3)垂直于x 轴的直线x a =与直线1l ,2l 分别交于点C ,D ,若线段CD 长为2,求a 的值.20.(6分)如图,A ,B 是直线y =x +4与坐标轴的交点,直线y =-2x +b 过点B ,与x 轴交于点C .(1)求A ,B ,C 三点的坐标;(2)点D 是折线A —B —C 上一动点.①当点D 是AB 的中点时,在x 轴上找一点E ,使ED +EB 的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E 点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由21.(6分)如图,在正方形ABCD 中,已知CE DF ⊥于H .(1)求证:BCE CDF ≌;(2)若6,2AB BE ==,求HF 的长.22.(8分)因式分解:(1)322x x x -+-;(2)32231212x x y xy -+.23.(8分)对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.对于分段函数,在自变量x 不同的取值范围内,对应的函数表达式也不同.例如:1(0){1(0)x x y x x -+=+<是分段函数,当0x 时,函数的表达式为1y x =-+;当0x <时,函数表达式为1y x =+.(1)请在平面直角坐标系中画出函数1(0){1(0)x x y x x -+=+<的图象; (2)当2x =-时,求y 的值;(3)当4y -时,求自变量x 的取值范围. 24.(8分)先化简,再求值:2221a a a a +++÷(a -1+11a +),其中a =3. 25.(10分)如图1,为美化校园环境,某校计划在一块长为20m ,宽为15m 的长方形空地上修建一条宽为a (m )的甬道,余下的部分铺设草坪建成绿地.(1)甬道的面积为 m 2,绿地的面积为 m 2(用含a 的代数式表示);(2)已知某公园公司修建甬道,绿地的造价W 1(元),W 2(元)与修建面积S 之间的函数关系如图2所示.①园林公司修建一平方米的甬道,绿地的造价分别为 元, 元.②直接写出修建甬道的造价W 1(元),修建绿地的造价W 2(元)与a (m )的关系式;③如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于2m 且不超过5m ,那么甬道宽为多少时,修建的甬道和绿地的总造价最低,最低总造价为多少元?26.(10分)在平面直角坐标系xoy 中,直线26y x =-+与x 轴、y 轴分别相交于A 、B 两点,求AB 的长及△OAB 的面积.参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.2、C【解题分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【题目详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.3、D【解题分析】根据邻边相等的平行四边形是菱形;根据对角线互相垂直的平行四边形是菱形;根据对角线相等的平行四边形是矩形;根据有一个角是直角的平行四边形是矩形.【题目详解】解:∵四边形ABCD是平行四边形,则A、当AB=BC时,四边形ABCD是菱形,正确;B、当AC⊥BD时,四边形ABCD是菱形,正确;C、当AC=BD时,四边形ABCD是矩形,正确;D、当∠ABC=90°时,四边形ABCD是矩形,故D错误;故选:D.【题目点拨】本题考查了菱形的判定和矩形的判定,解题的关键是熟练掌握菱形和矩形的判定定理.4、D【解题分析】根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.【题目详解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠BAD=110°∴∠B=70°,∵AC=BC,∴∠B=∠BAC=70°,∴∠DAC=110°-70°=40°,∵AD=DC,∴∠DAC=∠DCA=40°,∴∠D=180°-∠DAC-∠DCA=100°,故选:D.【题目点拨】本题考查了梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.5、C【解题分析】求出b2-4ac的值,再代入公式求出即可.【题目详解】解:-3x2+5x-1=0,b2-4ac=52-4×(-3)×(-1)=13,故选C.【题目点拨】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.6、B【解题分析】将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B 正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.【题目详解】A 、令y=-3x+4中x=-1,则y=8,∴该函数的图象不经过点(-1,1),即A 错误;B 、∵在y=-3x+4中k=-3<0,b=4>0,∴该函数图象经过第一、二、四象限,即B 正确;C 、令y=-3x+4中y=0,则-3x+4=0,解得:x=43, ∴该函数的图象与x 轴的交点坐标为(43,0), ∴当x <43时,y >0,故C 错误; D 、∵在y=-3x+4中k=-3<0,∴y 的值随x 的值的增大而减小,即D 不正确.故选:B .【题目点拨】本题考查了一次函数的性质以及一次函数图象与系数的关系,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.7、B【解题分析】如图,证明AD ∥BC ,AD=BC ;得到△DEF ∽△BCF ,进而得到EF DE FC BC=;证明BC=AD=2DE ,即可解决问题. 【题目详解】四边形ABCD 为平行四边形, //,AD BC AD BC ∴=;DEF BCF ∴∆∆∽,EF DE FC BC∴=; 点E 是边AD 的中点,2BC AD DE ∴==,12EF FC ∴=.故选B . 【题目点拨】该题主要考查了平行四边形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握平行四边形的性质、相似三角形的判定及其性质是关键.8、A【解题分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【题目详解】因为n 边形的内角和是:(n-2)180°由图可知,新图形多了一边,所以,新多边形的内角和比原多边形多180°.【题目点拨】本题考查了多边形内角与外角,掌握多边形的内角和公式是解题关键.9、D【解题分析】由垂直平分线的性质可得AD CD =,260CDB A ∠=∠=︒,在Rt BCD 中可求出CD 的长,则可得到AB 的长.【题目详解】 DE 垂直平分斜边ACAD CD ∴=,30A ∠=︒,260BDC A ∴∠=∠=︒,30DCB ∴∠=︒,24CD AD BD ∴===,426AB AD BD ∴=+=+=.故选:D .【题目点拨】本题主要考查垂直平分线的性质以及含30角的直角三角形的性质,由条件得到30DCB ∠=︒是解题的关键. 10、A【解题分析】本题可先求出a 的值,再代入方差的公式即可.【题目详解】∵3、6、a 、4、2的平均数是5,∴a=10, ∴方差22222211[35651054525]40855S =-+-+-+-+-=⨯=()()()()(). 故选A .【题目点拨】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.二、填空题(每小题3分,共24分)11、【解题分析】结合正方形的性质结合直线的解析式可得出:,,,,结合三角形的面积公式即可得出:,,,,根据面积的变化可找出变化规律“为正整数”,依此规律即可得出结论.【题目详解】解:令一次函数中,则,点的坐标为,.四边形为正整数均为正方形,,,,.令一次函数中,则,即,,.轴,.,,,.,,,,为正整数.故答案为:.【题目点拨】本题考查一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,解题关键在于找到规律,此题属规律性题目,比较复杂.12、1 2【解题分析】解:(1)如图,S △PMN =12•S 平行四边形MNEF =12×12=1.故答案为1. (2)S 四边形EFGH =S 平行四边形L J KT ﹣S △LEH ﹣S △HTG ﹣S △FKG ﹣S △EF J =10﹣2﹣9﹣1﹣15=2.故答案为2.故答案为1,2.点睛:本题考查了菱形的性质、平行四边形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.13、-1【解题分析】设方程x 2+mx -1=0的两根为x 1、x 2,根据根与系数的关系可得出x 1•x 2=﹣1,结合x 1=1即可求出x 2,此题得解.【题目详解】解:设方程x 2+mx -1=0的两根为x 1、x 2,则:x 1•x 2=﹣1.∵x 1=1,∴x 2=﹣1.故答案为:﹣1.【题目点拨】本题考查了根与系数的关系,熟练掌握两根之积等于c a 是解题的关键. 14、20【解题分析】根据完全平方公式变形后计算,可得答案.【题目详解】解:222x xy y ++222()5151)(25)20x y =+=+==故答案为:20【题目点拨】本题考查了二次根式的运算,能利用完全平方公式变形计算是解题关键.15、125【解题分析】由直线a ∥b ∥c,根据平行线分线段成比例定理,即可得AC BD CE DF=,又由AC =3,CE =5,DF =4,即可求得BD 的长.【题目详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BD CE DF=,又由AC=3,CE=5,DF=4可得:354BD =解得:BD=12 5.故答案为12 5.【题目点拨】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.16、6.【解题分析】解:23⨯=6;故答案为:6.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则a b ab⋅=是本题的关键.17、1【解题分析】根据题意画出图形,根据勾股定理的逆定理进行判断即可.【题目详解】如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C1两点,综上所述,共有1个点,故答案为1.【题目点拨】本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.18、1.【解题分析】∵100,80,x ,1,1,这组数据的众数与平均数相等,∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.∴(100+80+x +1+1)÷5=1,解得,x=1.∵当x=1时,数据为80,1,1,1,100,∴中位数是1.三、解答题(共66分)19、(1)3b =,1m =-;(2)1x >;(3)13a =或53 【解题分析】(1)将点(1,)P b 代入到直线11:21l y x =+中,即可求出b 的值,然后将点P 的坐标代入直线22:4l y mx =+中即可求出m 的值;(2)根据图象即可得出结论;(3)分别用含a 的式子表示出点C 和点D 的纵坐标,再根据CD 的长和两点之间的距离公式列出方程即可求出a .【题目详解】解:(1)∵点(1,)P b 在直线1:21l y x =+上∴2113b =⨯+=∵点(1,3)P 在直线2:4l y mx =+上,∴34m =+∴1m =-(2)由图象可知:当12y y >时,1x >;(3)当x a =时,21C y a =+,当x a =时,4D y a =-∵2CD = ∴21(4)2a a +--= 解得13a =或53【题目点拨】此题考查的是一次函数的图象及性质,掌握根据直线上的点求直线的解析式、一次函数与一元一次不等式的关系和直角坐标系中两点之间的距离公式是解决此题的关键.20、(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E的位置见解析,E(43-,0);②D点的坐标为(-1,3)或(45,125)【解题分析】(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF与△BOC全等,得OF=2,点F的坐标为(0,2),求得直线AD的解析式为122y x=+,与y=−2x+4组成方程组,求得交点D的坐标为(45,125).【题目详解】(1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b,得b =4,∴直线BC为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为y kx b=+,把D(-2,2),B1(0,-4)代入,得224k bb-+=⎧⎨=-⎩,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43 -,∴E点的坐标为(43-,0).②存在,D点的坐标为(-1,3)或(45,125).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为421 2,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为y mx n=+,将A (-4,0)与F (0,2)代入得402m n n -+=⎧⎨=⎩, 解得1,22m n ==, ∴122y x =+, 联立12224y x y x ⎧=+⎪⎨⎪=-+⎩,解得:45125x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴D 的坐标为(45,125). 综上所述:D 点的坐标为(-1,3)或(45,125) 【题目点拨】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.21、(1)见解析;(2)5 【解题分析】(1)由正方形的性质可得BC=CD ,∠B=∠BCD=90°,利用直角三角形中两个锐角互余以及垂直的定义证明∠BEC=∠CFD 即可证明:△BCE ≌△CDF ;(2)由(1)可知:△BCE ≌△CDF ,所以CF=BE=2,由相似三角形的判定方法可知:△BCE ∽HCF ,利用相似三角形的性质:对应边的比值相等即可求出HF 的长.【题目详解】(1)证明:在正方形ABCD 中,∴,90BC CD B BCD =∠=∠=︒,∵CE DF ⊥,∴90BCE CFH ∠+∠=︒,又∵90BCE BEC ∠+∠=︒,∴BEC CFD ∠=∠,∴()BCE CDF AAS △≌△;(2)解:∵,BCE CDF △≌△∴2CF BE ==,∵90,B CHF BCE HCF ︒∠=∠=∠=∠,∴BCE HCF △∽△, ∴CE BE CF HF=, 在Rt △BCE 中,BC=AB=6,BE=2,∴CE =∴25210BE CF HF CE ⨯===; 【题目点拨】本题考查了正方形的性质、相似三角形的判定和性质以及全等三角形的判定和性质,题目的综合性很强,但难度不大.22、(1)()21x x --;(2)()232x x y -【解题分析】(1)先提取公因式-x ,再用完全平方公式分解即可;(2)先提取公因式3x ,再用完全平方公式分解即可.【题目详解】解:(1)322x x x -+-=()221x x x --+ =()21x x --;(2)32231212x x y xy -+=()22344x x xy y -+ =()232x x y -【题目点拨】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23、 (1)见解析;(2)y=-1;(3) 55x -.【解题分析】(1)当0x 时,1y x =-+,为一次函数,可以画出其图象,当0x <,1y x =+,也为一次函数,同理可以画出其图象即可;(2)当2x =-时,代入1y x =+,求解y 值即可;(3)4y =-时,分别代入两个表达式,求解x 即可.【题目详解】(1)图象如图所示:(2)当x 2=-时,y x 1211=+=-+=-;(3)y 4=-时,y x 14=-+=-,解得:x 5=,x 14+=-,x 5=-,故5x 5-.【题目点拨】本题考查的是一次函数的性质,涉及了函数图象的画法、函数值的计算等,正确把握相关知识是解题的关键.24、1a 3【解题分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【题目详解】 解:221(1)211a a a a a a +÷-++++, 2(1)(1)(1)1(1)1a a a a a a +-++=÷++, 21·1a a a a +=+, 1a=, 当3a =333==. 【题目点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25、(1)15a 、(300﹣15a );(2)①①80、70;;②W 1=80×15a =1200a ,W 2=70(300﹣15a )=﹣1050a+21000;③甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;【解题分析】(1)根据图形即可求解;(2)①园林公司修建一平方米的甬道,绿地的造价分别为480060=80元,420060=70元②根据题意即可列出关系式;③W =W 1+W 2=1200a+(﹣1050a+21000)=150a+21000,再根据2≤a≤5,即可进行求解.【题目详解】解:(1)甬道的面积为15am 2,绿地的面积为(300﹣15a )m 2;故答案为:15a 、(300﹣15a );(2)①园林公司修建一平方米的甬道,绿地的造价分别为480060=80元,420060=70元. ②W 1=80×15a =1200a , W 2=70(300﹣15a )=﹣1050a+21000;③设此项修建项目的总费用为W 元,则W =W 1+W 2=1200a+(﹣1050a+21000)=150a+21000,∵k >0,∴W 随a 的增大而增大,∵2≤a≤5,∴当a =2时,W 有最小值,W 最小值=150×2+21000=21300, 答:甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;故答案为:①80、70;【题目点拨】此题主要考查一次函数的应用,解题的关键是根据题意得到关系式进行求解.26、AB =,1【解题分析】根据两点距离公式、三角形的面积公式求解即可.【题目详解】解:令y=0,026x =-+解得3x =令x=0,()206y=-⨯+解得6y=∴A、B两点坐标为(3,0)、(0,6)∴223635AB∴13692S=⨯⨯=故答案为:AB=1.【题目点拨】本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.。
南通市八年级上学期期末学业水平调研数学卷(含答案)一、选择题1.已知点(,21)P a a-在一、三象限的角平分线上,则a的值为()A.1-B.0 C.1 D.22.如图,矩形ABCD中,AB=6,BC=12,如果将该矩形沿对角线BD折叠,那么图中阴影部分△BED的面积是()A.18 B.22.5 C.36 D.453.下列有关一次函数y=-3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为C.当时,D.函数图象经过第一、二、四象限4.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或275.用科学记数法表示0.000031,结果是()A.53.110-⨯B.63.110-⨯C.60.3110-⨯D.73110-⨯6.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 7.下列式子中,属于最简二次根式的是()A.12B.0.5C.5D.128.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C9.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 10.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm二、填空题11.2(5)-=_____.12.若3a 的整数部分为2,则满足条件的奇数a 有_______个.13.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___.14.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.15.2,227,2543.14,这些数中,无理数有__________个. 16.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.17.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)18.分解因式:12a 2-3b 2=____.19.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.20.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.三、解答题 21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A 、B 、C 是小正方形的顶点,求∠ABC 的度数.22.(1)计算:3168--;(2)求x 的值:2(2)90x .23.(1)计算:32216-(3)(3)8+--(2)化简:22x 9x 31-69x 4x x -+÷-++ 24.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.25.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.四、压轴题26.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.27.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S最大值. 28.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B 点坐标为(12,0),直线y =38x 与直线AB 相交于点C .(1)求点A 的坐标.(2)求△BOC 的面积.(3)点D 为直线AB 上的一个动点,过点D 作y 轴的平行线DE ,DE 与直线OC 交于点E (点D 与点E 不重合).设点D 的横坐标为t ,线段DE 长度为d .①求d 与t 的函数解析式(写出自变量的取值范围).②当动点D 在线段AC 上运动时,以DE 为边在DE 的左侧作正方形DEPQ ,若以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的取值范围.29.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.30.如图,直线l1的表达式为:y=-3x+3,且直线l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.B解析:B【解析】【分析】易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD=∠DBC.又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,∴S△EDB=12×7.5×6=22.5.故选B.【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.3.C解析:C【解析】【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】A 、∵k=-3<0,∴当x 值增大时,y 的值随着x 增大而减小,正确;B 、函数图象与y 轴的交点坐标为(0,2),正确;C 、当x >0时,y <2,错误;D 、∵k <0,b >0,图象经过第一、二、四象限,正确;故选C .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4.C解析:C【解析】【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在; 当腰取11,则底边为5,则三角形的周长=11+11+5=27.故选C .【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.5.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)n a a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键.解析:B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.7.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;2D.故选C.8.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.10.C解析:C【解析】【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.二、填空题11.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.12.9【解析】【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围 8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a的取值范围,即可得到答案.【详解】2,则a的取值范围 8<a<27所以得到奇数a有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.13.k<1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k解析:k<1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k<1,故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b ,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.14.【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED,GF 分别是AB ,AC 的垂直平分线,∴AE=BE,AG=GC ,∴△AEG 的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.15.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义.16.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 17.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y 轴对称,故答案为:y 轴.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x 轴对称;横坐标互为相反数,纵坐标相等的两点关于y 轴对称”是解题的关键. 18.3(2a +b)(2a -b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a +b)(2a -b)。
2019-2020学年江苏省南通市海安县七校联考八年级(下)期中数学试卷一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是( )A .B .C .D .2.下列式子中正确的是( )A .B . C.D .3.已知a=3,b=4,若a ,b ,c 能组成直角三角形,则c=( )A .5B .C .5或D .5或64.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .7 5.有下列四个命题,其中正确的个数为( ) ①两条对角线互相平分的四边形是平行四边形; ②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形; ④两条对角线相等且互相垂直的四边形是正方形.A .4B .3C .2D .16.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A .16B .17C .18D .197.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较9.若点A (2,4)在函数y=kx ﹣2的图象上,则下列各点在函数图象上的是( )A .(0,﹣2)B .(,0)C .(8,20)D .(,)10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x ﹣5的图象交于点M ,则点M 的坐标为( )A . C .二、填空(每小题3分,共24分)11.要使代数式有意义,则x 的取值范围是 .12.如右图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .13.直角三角形两直角边长分别为5和12,则它斜边上的高为 .14.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB= .15.当直线y=kx+b 与直线y=﹣2x+1平行,且y=kx+b 与y=x+4和x 轴交于一点,则y=kx+b 的解析式为 .16.如图,正方形ABCD 的对角线长为8,E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD 于G ,则EF+EG= .17.如图,已知函数y1=k1x+b1和y2=k2x+b2交于点(﹣3,1),k1>0,k2<0,如k1x+b1<k2x+b2,则x的范围为.18.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O 作BD的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y(米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为;直接写出乙队在3≤x ≤5时间段内,y与x的函数关系式为;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.2019-2020学年江苏省南通市海安县七校联考八年级(下)期中数学试卷参考答案与试题解析一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、符合最简二次根式的定义,故A选项正确;B、二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、二次根式的被开方数中含有没开的尽方的数,故C选项错误;D、被开方数中含有分母,故D选项错误;故选:A.【点评】此题考查最简根式问题,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.下列式子中正确的是()A.B.C.D.【考点】二次根式的加减法.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、不是同类二次根式,不能合并,故错误;B、D、开平方是错误的;C、符合合并同类二次根式的法则,正确.故选C.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.3.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5 B.C.5或D.5或6【考点】勾股定理的逆定理.【分析】注意有两种情况一是所求边为斜边,二所求边位短边.【解答】解:分两种情况:当c为斜边时,c==5;当长4的边为斜边时,c==(根据勾股定理列出算式).故选C.【点评】本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.4.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【考点】含30度角的直角三角形;垂线段最短.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.5.有下列四个命题,其中正确的个数为()①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A.4 B.3 C.2 D.1【考点】命题与定理.【分析】根据平行四边形、矩形、菱形、以及正方形的判定方法逐一判定即可.【解答】解:①两条对角线互相平分的四边形是平行四边形;正确;②一条对角线平分一个内角的平行四边形是菱形;正确;③两条对角线互相垂直的平行四边形是矩形;错误;④两条对角线相等且互相垂直的四边形是正方形;错误;正确的个数为2个;故选:C.【点评】本题考查了命题与定理、平行四边形、矩形、菱形、以及正方形的判定方法;熟记平行四边形、矩形、菱形、以及正方形的判定方法是解决问题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A .16B .17C .18D .19 【考点】勾股定理.【分析】由图可得,S 2的边长为3,由AC=BC ,BC=CE=CD ,可得AC=2CD ,CD=2,EC=2;然后,分别算出S 1、S 2的面积,即可解答.【解答】解:如图, 设正方形S 1的边长为x ,∵△ABC 和△CDE 都为等腰直角三角形, ∴AB=BC ,DE=DC ,∠ABC=∠D=90°,∴sin ∠CAB=sin45°==,即AC=BC ,同理可得:BC=CE=CD ,∴AC=BC=2CD ,又∵AD=AC+CD=6,∴CD==2,∴EC 2=22+22,即EC=2;∴S 1的面积为EC 2=2×2=8;∵∠MAO=∠MOA=45°, ∴AM=MO , ∵MO=MN , ∴AM=MN , ∴M 为AN 的中点, ∴S 2的边长为3,∴S 2的面积为3×3=9, ∴S 1+S 2=8+9=17. 故选B .【点评】本题考查了勾股定理,要充分利用正方形的性质,找到相等的量,再结合三角函数进行解答.7.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如右图,四边形EFGH 是矩形,且E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,求证:四边形ABCD 是对角线垂直的四边形.证明:由于E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点, 根据三角形中位线定理得:EH ∥FG ∥BD ,EF ∥AC ∥HG ;∵四边形EFGH 是矩形,即EF ⊥FG ,∴AC ⊥BD ;故选B .【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较 【考点】一次函数图象上点的坐标特征.【分析】根据一次函数中,当k <0时,y 随x 的增大而减小可以解答本题.【解答】解:∵y=﹣x﹣6,k=﹣<0,∴在y=﹣x﹣6的图象上y随x的增大而减小,∵点(x1,y1),(x2,y2)都在直线y=﹣x﹣6上,x1>x2,∴y1<y2.故选C.【点评】本题考查一次函数图象上点的坐标特征,解题的关键是明确一次函数中,当k<0时,y随x 的增大而减小.9.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在函数图象上的是()A.(0,﹣2)B.(,0)C.(8,20)D.(,)【考点】一次函数图象上点的坐标特征.【分析】将点A(2,4)代入函数解析式求k,再把点的坐标代入解析式,逐一检验.【解答】解:把点A(2,4)代入y=kx﹣2中,得2k﹣2=4,解得k=3;所以,y=3x﹣2,四个选项中,只有A符合y=3×0﹣2=﹣2.故选A.【点评】用待定系数法求函数解析式是确定解析式常用的方法.10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M的坐标为()A.C.【考点】两条直线相交或平行问题.【分析】联立两直线解析式,解方程组即可.【解答】解:联立,解得,所以,点M的坐标为(2,1).故选D.【点评】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.二、填空(每小题3分,共24分)11.要使代数式有意义,则x 的取值范围是 x.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x ≥.故答案是:x ≥.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.如右图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 20cm 2 .【考点】勾股定理.【分析】根据阴影部分的面积等于以AC 、CB 为直径的两个半圆的面积加上△ABC 的面积再减去以AB 为直径的半圆的面积列式并整理,再利用勾股定理解答.【解答】解:由图可知,阴影部分的面积=π(AC )2+π(BC )2+S △ABC ﹣π(AB )2,=(AC 2+BC 2﹣AB 2)+S △ABC ,在Rt △ABC 中,AC 2+BC 2=AB 2, ∴阴影部分的面积=S △ABC =20cm 2.故答案为:20cm 2.【点评】本题考查了勾股定理,阴影部分的面积表示,观察图形,准确表示出阴影部分的面积是解题的关键.13.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= 15°.【考点】正方形的性质;等边三角形的性质.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.15.当直线y=kx+b与直线y=﹣2x+1平行,且y=kx+b与y=x+4和x轴交于一点,则y=kx+b的解析式为y=﹣2x﹣8 .【考点】两条直线相交或平行问题.【分析】根据平行k相同可以求出k,求出直线y=x+4和x轴交点代入y=kx+b可以求出b,由此即可解决问题.【解答】解:∵直线y=kx+b与直线y=﹣2x+1平行,∴k=﹣2,∵y=kx+b与y=x+4和x轴交于一点,∴经过点(﹣4,0),∴0=﹣2×(﹣4)+b,∴b=﹣8,∴y=kx+b的解析式为y=﹣2x﹣8,故答案为y=﹣2x﹣8.【点评】本题考查两直线平行或相交问题,记住两直线平行k相同,灵活应用待定系数法求函数解析式,属于中考常考题型.16.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于F,EG⊥BD于G,则EF+EG=4.【考点】正方形的性质.【分析】正方形ABCD的对角线交于点O,连接0E,由正方形的性质和对角线长为8,得出OA=OB=4;进一步利用S△ABO =S△AEO+S△EBO,整理得出答案解决问题.【解答】解:如图:∵四边形ABCD 是正方形,∴OA=OB=4,又∵S △ABO =S △AEO +S △EBO ,∴OAOB=OAEF+OBEG ,即×4×4=×4×(EF+EG )∴EF+EG=4.故答案为:4.【点评】此题考查正方形的性质,三角形的面积计算公式;利用三角形的面积巧妙建立所求线段与已知线段的关系,进一步解决问题.17.如图,已知函数y 1=k 1x+b 1和y 2=k 2x+b 2交于点(﹣3,1),k 1>0,k 2<0,如k 1x+b 1<k 2x+b 2,则x 的范围为 x <﹣3 .【考点】一次函数与一元一次不等式.【分析】k 1x+b 1<k 2x+b 2就是y 1=k 1x+b 1的图象在y 2=k 2x+b 2的图象的下边时对应的x 的范围,根据图象即可判断.【解答】解:根据图象可得x 的范围是x <﹣3.故答案是:x <﹣3.【点评】本题考查了利用一次函数图象解不等式以及一次函数的性质,确定两个函数的解析式与图象的对应关系是关键.18.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是()n﹣1.【考点】菱形的性质.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.【点评】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.【考点】二次根式的混合运算.【分析】(1)先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)先利用分母有理化化简x和y,再计算x+y与xy的值,然后利用完全平方公式把原式变形为(x+y)2﹣2xy,再利用整体代入的方法计算.【解答】解:(1)原式=(8﹣9)÷=﹣÷=﹣=﹣;(2)原式=4+2﹣﹣=2;(3)x=﹣1,y=﹣(+1)=﹣﹣1,所以x+y=﹣2,xy=﹣2,所以原式=(x+y)2﹣2xy=(﹣2)2﹣2×(﹣2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.【考点】矩形的性质;翻折变换(折叠问题).【分析】作EM⊥CD,垂足为点M设DE=x,由折叠的性质得出∠DEF=∠BEF,BE=DE=x,得出AE=8﹣x,再由矩形的性质得出∠DEF=∠DFE,证出DE=DF,在Rt△ADE中,由勾股定理得出方程,解方程求出DE,得出AE、MF,由勾股定理求出EF即可.【解答】解:作EM⊥CD,垂足为点M,如图所示:设DE=x,由折叠的性质得:∠DEF=∠BEF,BE=DE=x,∴AE=8﹣x,∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,∴∠DFE=∠BEF,∴∠DEF=∠DFE,∴DE=DF,在Rt△ADE中,由勾股定理得:(8﹣x)2+62=x2,解得:x=,∴AE=DM=8﹣=,又∵DF=DE=,∴MF=DF﹣DM=﹣=,又∵ME=AD=6,∴EF===.【点评】此题主要考查了翻折变换的性质矩形的性质、勾股定理、等腰三角形的判定;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程求出BE是解决问题的关键.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.【考点】矩形的性质;菱形的判定.【分析】(1)先根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)作DM⊥OC,垂足为点M,证明△COD为等边三角形,得出OC=CD=OD=2,得出CM=1,DM=CM=,菱形OCED面积=OCDM,即可得出结果.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,∵四边形ABCD为矩形,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED为菱形;(2)解:作DM⊥OC,垂足为点M,∵OC=OD,∠COD=60°,∴△COD为等边三角形,∴OC=CD=OD,∵AB=2,四边形ABCD是矩形,∴CD=AB=2,∴OC=CD=OD=2,∵DM⊥OC,∴CM=1,∴DM=CM=,∴菱形OCED面积=OCDM=2.【点评】本题主要考查矩形的性质,平行四边形的判定、菱形的判定、等边三角形的判定与性质;熟练掌握矩形的性质和菱形的判定,证明三角形是等边三角形是解决问题(2)的关键.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O 作BD的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.【考点】正方形的判定;矩形的判定.【分析】(1)利用角平分线的性质以及平行线的性质得出OE=OF,即可得出结论;(2)证出EF⊥AC,即可得出结论.【解答】(1)证明:当点O运动到AC的中点位置时,四边形AECF为矩形;理由如下:∵O为AC中点,∴OA=OC,∵EF∥BD,∴∠CEO=∠ECB,∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠CEO=∠ECO,∴OE=OC,同理可证,OC=OF,∴OE=OF,∴四边形AECF为平行四边形,又∵EF=2OE,AC=2OC,∴EF=AC,∴四边形AECF为矩形;(2)解:当∠ACB=90°时,四边形AECF为正方形;理由如下:∵EF∥BD,∠ACB=90°,∴∠AOE=90°,∴EF⊥AC,∵四边形AECF为矩形,∴四边形AECF为正方形.【点评】本题考查了正方形的判定、矩形的判定、平行四边形的判定、等腰三角形的判定;熟练掌握平行四边形的判定方法,证出OE=OF是解决问题的关键.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.【考点】待定系数法求一次函数解析式.【分析】进行分类讨论k大于0还是小于0,列出二元一次方程组求出k和b的值即可.【解答】解:设y=k(x﹣1)+b(k≠0),依题意得:当k>0时,2=﹣3k+b①,4=2k+b②,由①②得:k=,B=,∴y=x+;当k<0时,4=﹣3k+b①,2=2k+b②,由①②得:k=﹣,b=,∴y=﹣x+;综上所述:y与x的函数解析式为y=x+或y=﹣x+.【点评】本题主要考查待定系数法求一次函数的解析式的知识,解答本题的关键是熟练掌握一次函数的性质,注意分类讨论.25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.【考点】一次函数图象与几何变换.【分析】(1)根据图象平移的规律:左加右减,上加下减,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据解方程组,可得交点坐标,根据三角形的面积公式,可得答案.【解答】解:(1)直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度得y=﹣(x﹣1)+2+1,化简得y=﹣x+.(2)当y=0时,0=﹣x+.解得x=7,即A(7,0);当x=0时,y=,B(0,);(3)将y=﹣x+和y=x+1联成方程组解得两直线交点为(,).再求出两直线与y轴交点分别为(0,)和(0,1),所以三角形面积为××(﹣1)=.【点评】本题考查了一次函数图象与几何变换,利用图象平移的规律是解题关键.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y(米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为y=14x ;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为y=35x﹣85 ;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.【考点】一次函数的应用.【分析】(1)甲的图象是过原点的直线,过(5,70),乙队在3≤x≤5的时间段内是一次函数,可以利用待定系数法求得函数的解析式;(2)根据图象,可分两种情况:①3≤x≤5;②x>5.分别根据乙队修的长度超过甲队10米列出方程,求解即可;(3)设乙队从开修到完工所修水渠的长度为m米,乙队在修筑5小时后,甲剩余(m﹣70)米,乙剩余(m﹣90)米,根据两队同时完成任务,即时间相等,即可列方程求解.【解答】解:(1)设甲队在0≤x≤5时间段内,y与x的函数的解析式是y=kx,根据题意得:5k=70,解得:k=14,则甲的函数解析式是:y=14x.②设乙队在3≤x≤5时间段内,y与x的函数的解析式是:y=mx+b,根据题意得:,解得:.则函数解析式是:y=35x﹣85.故答案为y=14x;y=35x﹣85;(2)分两种情况:①当3≤x≤5时,由题意得35x﹣85﹣14x=10,解得x=;②当x>5时,乙队y与x的函数的解析式是:y=5(x﹣5)+90.由题意得5(x﹣5)+90﹣14x=10,解得x=.答:开修或小时后,乙队修的长度超过甲队10米;(3)由图象得,甲队的速度是70÷5=14(米/时).设乙队从开修到完工所修长度为m米.根据题意得: =,解得m=.答:乙队从开修到完工所修的长度为米.【点评】本题考查的是用一次函数解决实际问题,待定系数法求函数的解析式,以及列方程解应用题,此类题是近年中考中的热点问题.。
苏科版南通市八年级上学期期末学业水平调研数学卷(含答案) 一、选择题 1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .9 2.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A . B . C . D . 3.1(1)1a a --变形正确的是( ) A .1- B .1a - C .1a -- D .1a --4.下列标志中属于轴对称图形的是( )A .B .C .D .5.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =-6.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形; 命题4:直角三角形中斜边最长;以上真命题的个数是( )A .1B .2C .3D .47.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4) B .(2,4)C .(﹣2,﹣4)D .(8,1) 8.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA9.下列四个图标中,是轴对称图形的是( )A .B .C .D .10.在下列各数中,无理数有( )33224,3,,8,9,07 A .1个 B .2个 C .3个 D .4个11.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( )A .1个B .2个C .3个D .4个12.估算x =5值的大小正确的是( ) A .0<x <1 B .1<x <2 C .2<x <3D .3<x <4 13.满足下列条件的△ABC 是直角三角形的是( ) A .∠A :∠B :∠C =3:4:5 B .a :b :c =1:2:3C .∠A =∠B =2∠CD .a =1,b =2,c =3 14.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个B .2个C .3个D .4个 15.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( ) A . B . C .D .二、填空题16.17.85精确到十分位是_____.17.2(5)-=_____.18.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.19.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .20.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.21.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.22.若x ,y 都是实数,且338y x x =-+-+,则3x y +的立方根是______.23.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.24.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.25.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题26.如图所示,在ABC ∆中,BAC ∠的平分线AD 交BC 于点D ,DE 垂直平分AC ,垂足为点E .求证:BAD C ∠=∠.27.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.28.如图,在ABC ∆中,AD BC ⊥,15AB =,12AD =,13AC =.求BC 的长.29.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.30.如图(1)所示,在A ,B 两地间有一车站C ,甲汽车从A 地出发经C 站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?31.如图,在△ABC中,AD平分∠BAC,点E在BA的延长线上,且EC∥AD.证明:△ACE 是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得2+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.3.C解析:C【解析】【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】1有意义,-1aa∴->,10∴-<,10a∴-==(a故选C.【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选 C此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.5.C解析:C【解析】【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可.【详解】依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解,故选:C.【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键. 6.D解析:D【解析】【分析】根据三角形边与角的关系逐一分析即可得解.【详解】假设它们所对的边相等,则根据等腰三角形的性质定理,“等边对等角”知它们所对的角也相等,这就与题设两个角不等相矛盾,因此假设不成立,故原结论成立,同时根据三角形中大边对大角,大角对大边可知命题1,2正确;因为三角形中大边对大角,大角对大边,所以当最大边所对角是锐角时,可知另外两个角也为锐角,则命题3正确;因为直角三角形中,直角所对的边时斜边,而另外两个角为锐角,所以直角所对斜边最大,所以命题4正确,故选:D.【点睛】本题主要考查了三角形边与角的关系,熟练掌握相关知识点是解决本题的关键.7.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.8.B解析:B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.9.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.11.C解析:C【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.12.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.13.D解析:D【解析】【分析】根据三角形内角和定理判断A、C即可;根据勾股定理的逆定理判断B、D即可.【详解】A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;B、∵12+22≠32,∴△ABC不是直角三角形;C、∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=∠B=75°,∠C=37.5°,∴△ABC不是直角三角形;D、∵12+)2=22,∴△ABC是直角三角形.故选:D.【点睛】此题主要考查利用三角形内角和定理和勾股定理判定直角三角形,熟练掌握,即可解题. 14.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.15.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.17.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.18..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.解析:21 xy=⎧⎨=⎩.【解析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 19.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 20.a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.21.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.22.3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以解析:3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以x=3,y=8,x+3y=3+3×8=27,∴x+3y的立方根为3.故答案为:3.【点睛】本题考查二次根式的被开方数是非负数,立方根的定义,根据x的取值范围求出x的值是解题的关键.23..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.解析:21 xy=⎧⎨=⎩.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.24.或【解析】【分析】根据点到x 轴的距离等于纵坐标的长度求出点P 的纵坐标,然后代入函数解析式求出x 的值,即可得解.【详解】解:∵点P 到x 轴的距离等于3,∴点P 的纵坐标的绝对值为3, 解析:1,33⎛⎫ ⎪⎝⎭或533⎛⎫ ⎪⎝⎭,【解析】【分析】根据点到x 轴的距离等于纵坐标的长度求出点P 的纵坐标,然后代入函数解析式求出x 的值,即可得解.【详解】解:∵点P 到x 轴的距离等于3,∴点P 的纵坐标的绝对值为3,∴点P 的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13; 当y=﹣3时,﹣3x+2=﹣3,解得x=53; ∴点P 的坐标为(﹣13,3)或(53,﹣3). 故答案为(﹣13,3)或(53,﹣3). 【点睛】 本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.25.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题26.见解析【解析】【分析】利用角平分线的定义得到BAD DAE ∠=∠,然后利用垂直平分线的性质得到DA DC =,则DAE C ∠=∠,从而使问题得解.【详解】解:∵AD 平分BAC ∠∴BAD DAE ∠=∠,∵DE 垂直平分AC ,=,∴DA DC∠=∠,∴DAE C∠=∠∴BAD C【点睛】本题考查角平分线的定义和垂直平分线的性质,掌握相关性质正确推理论证是本题的解题关键.27.见详解.【解析】试题分析:按轴对称的特征进行添涂即可.试题解析:如图所示:28.BC=14.【解析】【分析】根据垂直的性质和勾股定理,先求出线段BD的长度,再求出线段CD的长度,最后求和即可.【详解】⊥,解:AD BC∴∠=∠=︒90ADB ADC∴在Rt ABD∆中,2222∴=-=-=BD AB AD15129∆中,在Rt ACD2222∴=--=CD AC AD13125∴=+=+=BC BD CD9514【点睛】本题考查了垂直的性质,勾股定理,解决本题的关键是正确理解垂直的性质,熟练掌握勾股定理中三边之间的关系.29.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴90 860 k bk b+⎧⎨+⎩==,解得:60540kb-⎧⎨⎩==.∴线段DE所表示的y与x之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E 点坐标是解题关键.30.(1)120,2,420;(2)线段PM所表示的y与x之间的函数表达式是y=﹣60x+300,线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.【解析】【分析】(1)根据题意和图象中的数据,可以求得a、b的值以及AB两地之间的距离;(2)根据(1)中的结果和函数图象中的数据,可以求得线段PM、MN所表示的y与x之间的函数表达式;(3)根据题意,可以写出甲、乙两车距离车站C的路程之和和s之间的函数关系式,然后利用一次函数的性质即可解答本题.【详解】(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=420.故答案为:120,2,420;(2)设线段PM 所表示的y 与x 之间的函数表达式是y =kx +b ,30050b k b =⎧⎨+=⎩,得60300k b =-⎧⎨=⎩, 即线段PM 所表示的y 与x 之间的函数表达式是y =﹣60x +300;设线段MN 所表示的y 与x 之间的函数表达式是y =mx +n ,507120m n m n +=⎧⎨+=⎩,得60300m n =⎧⎨=-⎩, 即线段MN 所表示的y 与x 之间的函数表达式是y =60x ﹣300;(3)设DE 对应的函数解析式为y =cx +d ,12020d c d =⎧⎨+=⎩,得60120c d =-⎧⎨=⎩, 即DE 对应的函数解析式为y =﹣60x +120,设EF 对应的函数解析式为y =ex +f ,207300e f c f +=⎧⎨+=⎩,得60120e f =⎧⎨=-⎩, 即EF 对应的函数解析式为y =60x ﹣120,设甲、乙两车距离车站C 的路程之和为skm ,当0≤x ≤2时,s =(﹣60x +300)+(﹣60x +120)=﹣120x +420,则当x =2时,s 取得最小值,此时s =180,当2<x ≤5时,s =(﹣60x +300)+(60x ﹣120)=180,当5≤x ≤7时,s =(60x ﹣300)+(60x ﹣120)=120x ﹣420,则当x =5时,s 取得最小值,此时s =180,由上可得:行驶时间x 满足2≤x ≤5时,甲、乙两车距离车站C 的路程之和最小.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.31.见解析.【解析】【分析】利用角平分线的性质及平行线的性质可得∠E =∠ACE ,根据等角对等边可得结论.【详解】证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵EC ∥AD ,∴∠BAD=∠E,∠CAD=∠ACE,∴∠E=∠ACE,∴△ACE是等腰三角形.【点睛】本题考查了等腰三角形的判定,即有两个角相等的三角形是等腰三角形,还涉及了两直线平行同位角相等,两直线平行内错角相等,灵活利用角平分线的性质及平行线的性质证明角相等是解题的关键.。
2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是( )A .B .C .D .2.下列式子中正确的是( )A .B .C .D .3.已知a=3,b=4,若a ,b ,c 能组成直角三角形,则c=( )A .5B .C .5或D .5或64.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .75.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A .4B .3C .2D .16.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A .16B .17C .18D .197.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较9.若点A (2,4)在函数y=kx ﹣2的图象上,则下列各点在函数图象上的是( )A .(0,﹣2)B .(,0)C .(8,20)D .(,)10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x ﹣5的图象交于点M ,则点M 的坐标为( )A . C .二、填空(每小题3分,共24分)11.要使代数式有意义,则x 的取值范围是 .12.如右图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .13.直角三角形两直角边长分别为5和12,则它斜边上的高为 .14.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB= .15.当直线y=kx+b 与直线y=﹣2x+1平行,且y=kx+b 与y=x+4和x 轴交于一点,则y=kx+b 的解析式为 .16.如图,正方形ABCD 的对角线长为8,E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD 于G ,则EF+EG= .17.如图,已知函数y 1=k 1x+b 1和y 2=k 2x+b 2交于点(﹣3,1),k 1>0,k 2<0,如k 1x+b 1<k 2x+b 2,则x 的范围为 .18.如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是 .三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD 的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y(米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷参考答案与试题解析一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、符合最简二次根式的定义,故A选项正确;B、二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、二次根式的被开方数中含有没开的尽方的数,故C选项错误;D、被开方数中含有分母,故D选项错误;故选:A.【点评】此题考查最简根式问题,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.下列式子中正确的是()A.B.C.D.【考点】二次根式的加减法.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、不是同类二次根式,不能合并,故错误;B、D、开平方是错误的;C、符合合并同类二次根式的法则,正确.故选C.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.3.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5 B.C.5或D.5或6【考点】勾股定理的逆定理.【分析】注意有两种情况一是所求边为斜边,二所求边位短边.【解答】解:分两种情况:当c为斜边时,c==5;当长4的边为斜边时,c==(根据勾股定理列出算式).故选C.【点评】本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.4.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【考点】含30度角的直角三角形;垂线段最短.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP 最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.5.有下列四个命题,其中正确的个数为()①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A.4 B.3 C.2 D.1【考点】命题与定理.【分析】根据平行四边形、矩形、菱形、以及正方形的判定方法逐一判定即可.【解答】解:①两条对角线互相平分的四边形是平行四边形;正确;②一条对角线平分一个内角的平行四边形是菱形;正确;③两条对角线互相垂直的平行四边形是矩形;错误;④两条对角线相等且互相垂直的四边形是正方形;错误;正确的个数为2个;故选:C.【点评】本题考查了命题与定理、平行四边形、矩形、菱形、以及正方形的判定方法;熟记平行四边形、矩形、菱形、以及正方形的判定方法是解决问题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】勾股定理.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.【点评】本题考查了勾股定理,要充分利用正方形的性质,找到相等的量,再结合三角函数进行解答.7.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH 是矩形,即EF ⊥FG ,∴AC ⊥BD ;故选B .【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较【考点】一次函数图象上点的坐标特征.【分析】根据一次函数中,当k <0时,y 随x 的增大而减小可以解答本题.【解答】解:∵y=﹣x ﹣6,k=﹣<0,∴在y=﹣x ﹣6的图象上y 随x 的增大而减小,∵点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,x 1>x 2,∴y 1<y 2.故选C .【点评】本题考查一次函数图象上点的坐标特征,解题的关键是明确一次函数中,当k <0时,y 随x 的增大而减小.9.若点A (2,4)在函数y=kx ﹣2的图象上,则下列各点在函数图象上的是( )A .(0,﹣2)B .(,0)C .(8,20)D .(,)【考点】一次函数图象上点的坐标特征.【分析】将点A (2,4)代入函数解析式求k ,再把点的坐标代入解析式,逐一检验.【解答】解:把点A (2,4)代入y=kx ﹣2中,得2k ﹣2=4,解得k=3;所以,y=3x ﹣2,四个选项中,只有A 符合y=3×0﹣2=﹣2.故选A .【点评】用待定系数法求函数解析式是确定解析式常用的方法.10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x ﹣5的图象交于点M ,则点M 的坐标为( )A . C .【考点】两条直线相交或平行问题.【分析】联立两直线解析式,解方程组即可.【解答】解:联立,解得, 所以,点M 的坐标为(2,1).故选D .【点评】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.二、填空(每小题3分,共24分)11.要使代数式有意义,则x的取值范围是x.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x≥.故答案是:x≥.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为20cm2.【考点】勾股定理.【分析】根据阴影部分的面积等于以AC、CB为直径的两个半圆的面积加上△ABC的面积再减去以AB为直径的半圆的面积列式并整理,再利用勾股定理解答.﹣π(AB)2,【解答】解:由图可知,阴影部分的面积=π(AC)2+π(BC)2+S△ABC=(AC2+BC2﹣AB2)+S,△ABC在Rt△ABC中,AC2+BC2=AB2,=20cm2.∴阴影部分的面积=S△ABC故答案为:20cm2.【点评】本题考查了勾股定理,阴影部分的面积表示,观察图形,准确表示出阴影部分的面积是解题的关键.13.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= 15°.【考点】正方形的性质;等边三角形的性质.【分析】由四边形ABCD 为正方形,三角形ADE 为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE ,且得到∠BAD 为直角,∠DAE 为60°,由∠BAD+∠DAE 求出∠BAE 的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB 的度数.【解答】解:∵四边形ABCD 为正方形,△ADE 为等边三角形,∴AB=BC=CD=AD=AE=DE ,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE ,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.15.当直线y=kx+b 与直线y=﹣2x+1平行,且y=kx+b 与y=x+4和x 轴交于一点,则y=kx+b 的解析式为 y=﹣2x ﹣8 .【考点】两条直线相交或平行问题.【分析】根据平行k 相同可以求出k ,求出直线y=x+4和x 轴交点代入y=kx+b 可以求出b ,由此即可解决问题.【解答】解:∵直线y=kx+b 与直线y=﹣2x+1平行,∴k=﹣2,∵y=kx+b 与y=x+4和x 轴交于一点,∴经过点(﹣4,0),∴0=﹣2×(﹣4)+b ,∴b=﹣8,∴y=kx+b 的解析式为y=﹣2x ﹣8,故答案为y=﹣2x ﹣8.【点评】本题考查两直线平行或相交问题,记住两直线平行k 相同,灵活应用待定系数法求函数解析式,属于中考常考题型.16.如图,正方形ABCD 的对角线长为8,E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD 于G ,则EF+EG= 4 .【考点】正方形的性质.【分析】正方形ABCD 的对角线交于点O ,连接0E ,由正方形的性质和对角线长为8,得出OA=OB=4;进一步利用S △ABO =S △AEO +S △EBO ,整理得出答案解决问题.【解答】解:如图:∵四边形ABCD 是正方形,∴OA=OB=4,又∵S △ABO =S △AEO +S △EBO ,∴OAOB=OAEF+OBEG ,即×4×4=×4×(EF+EG )∴EF+EG=4.故答案为:4.【点评】此题考查正方形的性质,三角形的面积计算公式;利用三角形的面积巧妙建立所求线段与已知线段的关系,进一步解决问题.17.如图,已知函数y 1=k 1x+b 1和y 2=k 2x+b 2交于点(﹣3,1),k 1>0,k 2<0,如k 1x+b 1<k 2x+b 2,则x 的范围为 x <﹣3 .【考点】一次函数与一元一次不等式.【分析】k 1x+b 1<k 2x+b 2就是y 1=k 1x+b 1的图象在y 2=k 2x+b 2的图象的下边时对应的x 的范围,根据图象即可判断.【解答】解:根据图象可得x 的范围是x <﹣3.故答案是:x <﹣3.【点评】本题考查了利用一次函数图象解不等式以及一次函数的性质,确定两个函数的解析式与图象的对应关系是关键.18.如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是()n ﹣1 .【考点】菱形的性质.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.【点评】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.【考点】二次根式的混合运算.【分析】(1)先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)先利用分母有理化化简x和y,再计算x+y与xy的值,然后利用完全平方公式把原式变形为(x+y)2﹣2xy,再利用整体代入的方法计算.【解答】解:(1)原式=(8﹣9)÷=﹣÷=﹣=﹣;(2)原式=4+2﹣﹣=2;(3)x=﹣1,y=﹣(+1)=﹣﹣1,所以x+y=﹣2,xy=﹣2,所以原式=(x+y)2﹣2xy=(﹣2)2﹣2×(﹣2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.【考点】矩形的性质;翻折变换(折叠问题).【分析】作EM⊥CD,垂足为点M设DE=x,由折叠的性质得出∠DEF=∠BEF,BE=DE=x,得出AE=8﹣x,再由矩形的性质得出∠DEF=∠DFE,证出DE=DF,在Rt△ADE中,由勾股定理得出方程,解方程求出DE,得出AE、MF,由勾股定理求出EF即可.【解答】解:作EM⊥CD,垂足为点M,如图所示:设DE=x,由折叠的性质得:∠DEF=∠BEF,BE=DE=x,∴AE=8﹣x,∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,∴∠DFE=∠BEF,∴∠DEF=∠DFE,∴DE=DF,在Rt△ADE中,由勾股定理得:(8﹣x)2+62=x2,解得:x=,∴AE=DM=8﹣=,又∵DF=DE=,∴MF=DF﹣DM=﹣=,又∵ME=AD=6,∴EF===.【点评】此题主要考查了翻折变换的性质矩形的性质、勾股定理、等腰三角形的判定;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程求出BE是解决问题的关键.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.【考点】矩形的性质;菱形的判定.【分析】(1)先根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)作DM⊥OC,垂足为点M,证明△COD为等边三角形,得出OC=CD=OD=2,得出CM=1,DM=CM=,菱形OCED面积=OCDM,即可得出结果.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,∵四边形ABCD为矩形,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED为菱形;(2)解:作DM⊥OC,垂足为点M,∵OC=OD,∠COD=60°,∴△COD为等边三角形,∴OC=CD=OD,∵AB=2,四边形ABCD是矩形,∴CD=AB=2,∴OC=CD=OD=2,∵DM⊥OC,∴CM=1,∴DM=CM=,∴菱形OCED面积=OCDM=2.【点评】本题主要考查矩形的性质,平行四边形的判定、菱形的判定、等边三角形的判定与性质;熟练掌握矩形的性质和菱形的判定,证明三角形是等边三角形是解决问题(2)的关键.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD 的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.【考点】正方形的判定;矩形的判定.【分析】(1)利用角平分线的性质以及平行线的性质得出OE=OF,即可得出结论;(2)证出EF⊥AC,即可得出结论.【解答】(1)证明:当点O运动到AC的中点位置时,四边形AECF为矩形;理由如下:∵O为AC中点,∴OA=OC,∵EF∥BD,∴∠CEO=∠ECB,∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠CEO=∠ECO,∴OE=OC,同理可证,OC=OF,∴OE=OF,∴四边形AECF为平行四边形,又∵EF=2OE,AC=2OC,∴EF=AC,∴四边形AECF为矩形;(2)解:当∠ACB=90°时,四边形AECF为正方形;理由如下:∵EF∥BD,∠ACB=90°,∴∠AOE=90°,∴EF⊥AC,∵四边形AECF为矩形,∴四边形AECF为正方形.【点评】本题考查了正方形的判定、矩形的判定、平行四边形的判定、等腰三角形的判定;熟练掌握平行四边形的判定方法,证出OE=OF是解决问题的关键.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.【考点】待定系数法求一次函数解析式.【分析】进行分类讨论k大于0还是小于0,列出二元一次方程组求出k和b的值即可.【解答】解:设y=k(x﹣1)+b(k≠0),依题意得:当k >0时,2=﹣3k+b①,4=2k+b②,由①②得:k=,B=,∴y=x+;当k <0时,4=﹣3k+b①,2=2k+b②,由①②得:k=﹣,b=,∴y=﹣x+;综上所述:y 与x 的函数解析式为y=x+或y=﹣x+.【点评】本题主要考查待定系数法求一次函数的解析式的知识,解答本题的关键是熟练掌握一次函数的性质,注意分类讨论. 25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l 与x 轴、y 轴分别交于A 、B 两点,另有一条直线y=x+1. (1)求l 的解析式; (2)求点A 和点B 的坐标; (3)求直线y=x+1与直线l 以及y 轴所围成的三角形的面积. 【考点】一次函数图象与几何变换. 【分析】(1)根据图象平移的规律:左加右减,上加下减,可得答案; (2)根据自变量与函数值的对应关系,可得答案; (3)根据解方程组,可得交点坐标,根据三角形的面积公式,可得答案.【解答】解:(1)直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度得y=﹣(x ﹣1)+2+1,化简得y=﹣x+.(2)当y=0时,0=﹣x+.解得x=7,即A (7,0); 当x=0时,y=,B (0,);(3)将y=﹣x+和y=x+1联成方程组解得两直线交点为(,). 再求出两直线与y 轴交点分别为(0,)和(0,1),所以三角形面积为××(﹣1)=.【点评】本题考查了一次函数图象与几何变换,利用图象平移的规律是解题关键.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y (米)与所修时间x (小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x ≤5时间段内,y 与x 的函数关系式为 y=14x ;直接写出乙队在3≤x ≤5时间段内,y 与x 的函数关系式为 y=35x ﹣85 ; (2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.【考点】一次函数的应用.【分析】(1)甲的图象是过原点的直线,过(5,70),乙队在3≤x≤5的时间段内是一次函数,可以利用待定系数法求得函数的解析式;(2)根据图象,可分两种情况:①3≤x≤5;②x>5.分别根据乙队修的长度超过甲队10米列出方程,求解即可;(3)设乙队从开修到完工所修水渠的长度为m米,乙队在修筑5小时后,甲剩余(m﹣70)米,乙剩余(m ﹣90)米,根据两队同时完成任务,即时间相等,即可列方程求解.【解答】解:(1)设甲队在0≤x≤5时间段内,y与x的函数的解析式是y=kx,根据题意得:5k=70,解得:k=14,则甲的函数解析式是:y=14x.②设乙队在3≤x≤5时间段内,y与x的函数的解析式是:y=mx+b,根据题意得:,解得:.则函数解析式是:y=35x﹣85.故答案为y=14x;y=35x﹣85;(2)分两种情况:①当3≤x≤5时,由题意得35x﹣85﹣14x=10,解得x=;②当x>5时,乙队y与x的函数的解析式是:y=5(x﹣5)+90.由题意得5(x﹣5)+90﹣14x=10,解得x=.答:开修或小时后,乙队修的长度超过甲队10米;(3)由图象得,甲队的速度是70÷5=14(米/时).设乙队从开修到完工所修长度为m米.根据题意得: =,解得m=.答:乙队从开修到完工所修的长度为米.【点评】本题考查的是用一次函数解决实际问题,待定系数法求函数的解析式,以及列方程解应用题,此类题是近年中考中的热点问题.。
2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷一、单项选择题(每小题2分,共20分) 1.下列根式中是最简二次根式的是( )A .B .C .D . 2.下列式子中正确的是( )A .B .C .D .3.已知a=3,b=4,若a ,b ,c 能组成直角三角形,则c=( )A .5B .C .5或D .5或64.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .75.有下列四个命题,其中正确的个数为( ) ①两条对角线互相平分的四边形是平行四边形; ②一条对角线平分一个内角的平行四边形是菱形; ③两条对角线互相垂直的平行四边形是矩形; ④两条对角线相等且互相垂直的四边形是正方形.A .4B .3C .2D .16.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A .16B .17C .18D .197.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较9.若点A (2,4)在函数y=kx ﹣2的图象上,则下列各点在函数图象上的是( )A .(0,﹣2)B .(,0)C .(8,20)D .(,)10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x ﹣5的图象交于点M ,则点M 的坐标为( ) A . C .二、填空(每小题3分,共24分)11.要使代数式有意义,则x的取值范围是.12.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为.13.直角三角形两直角边长分别为5和12,则它斜边上的高为.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= .15.当直线y=kx+b与直线y=﹣2x+1平行,且y=kx+b与y=x+4和x轴交于一点,则y=kx+b的解析式为.16.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于F,EG⊥BD于G,则EF+EG= .17.如图,已知函数y1=k1x+b1和y2=k2x+b2交于点(﹣3,1),k1>0,k2<0,如k1x+b1<k2x+b2,则x的范围为.18.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD 的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y(米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.2015-2016学年江苏省南通市海安县七校联考八年级(下)期中数学试卷参考答案与试题解析一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、符合最简二次根式的定义,故A选项正确;B、二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、二次根式的被开方数中含有没开的尽方的数,故C选项错误;D、被开方数中含有分母,故D选项错误;故选:A.【点评】此题考查最简根式问题,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.下列式子中正确的是()A.B.C.D.【考点】二次根式的加减法.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、不是同类二次根式,不能合并,故错误;B、D、开平方是错误的;C、符合合并同类二次根式的法则,正确.故选C.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.3.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5 B.C.5或D.5或6【考点】勾股定理的逆定理.【分析】注意有两种情况一是所求边为斜边,二所求边位短边.【解答】解:分两种情况:当c为斜边时,c==5;当长4的边为斜边时,c==(根据勾股定理列出算式).故选C.【点评】本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.4.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【考点】含30度角的直角三角形;垂线段最短.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP 最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.5.有下列四个命题,其中正确的个数为( ) ①两条对角线互相平分的四边形是平行四边形; ②一条对角线平分一个内角的平行四边形是菱形; ③两条对角线互相垂直的平行四边形是矩形; ④两条对角线相等且互相垂直的四边形是正方形. A .4 B .3 C .2 D .1 【考点】命题与定理.【分析】根据平行四边形、矩形、菱形、以及正方形的判定方法逐一判定即可. 【解答】解:①两条对角线互相平分的四边形是平行四边形;正确; ②一条对角线平分一个内角的平行四边形是菱形;正确; ③两条对角线互相垂直的平行四边形是矩形;错误; ④两条对角线相等且互相垂直的四边形是正方形;错误; 正确的个数为2个; 故选:C .【点评】本题考查了命题与定理、平行四边形、矩形、菱形、以及正方形的判定方法;熟记平行四边形、矩形、菱形、以及正方形的判定方法是解决问题的关键. 6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A .16B .17C .18D .19 【考点】勾股定理.【分析】由图可得,S 2的边长为3,由AC=BC ,BC=CE=CD ,可得AC=2CD ,CD=2,EC=2;然后,分别算出S 1、S 2的面积,即可解答.【解答】解:如图, 设正方形S 1的边长为x ,∵△ABC 和△CDE 都为等腰直角三角形, ∴AB=BC ,DE=DC ,∠ABC=∠D=90°,∴sin ∠CAB=sin45°==,即AC=BC ,同理可得:BC=CE=CD ,∴AC=BC=2CD , 又∵AD=AC+CD=6,∴CD==2,∴EC 2=22+22,即EC=2;∴S 1的面积为EC 2=2×2=8;∵∠MAO=∠MOA=45°, ∴AM=MO , ∵MO=MN , ∴AM=MN , ∴M 为AN 的中点, ∴S 2的边长为3,∴S 2的面积为3×3=9,∴S 1+S 2=8+9=17. 故选B .【点评】本题考查了勾股定理,要充分利用正方形的性质,找到相等的量,再结合三角函数进行解答.7.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( ) A .菱形 B .对角线相互垂直的四边形 C .正方形 D .对角线相等的四边形 【考点】矩形的判定;三角形中位线定理.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如右图,四边形EFGH 是矩形,且E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,求证:四边形ABCD 是对角线垂直的四边形. 证明:由于E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点, 根据三角形中位线定理得:EH ∥FG ∥BD ,EF ∥AC ∥HG ; ∵四边形EFGH 是矩形,即EF ⊥FG , ∴AC ⊥BD ;故选B .【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.8.已知点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,如x 1>x 2,则y 1和y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较【考点】一次函数图象上点的坐标特征. 【分析】根据一次函数中,当k <0时,y 随x 的增大而减小可以解答本题.【解答】解:∵y=﹣x ﹣6,k=﹣<0,∴在y=﹣x ﹣6的图象上y 随x 的增大而减小,∵点(x 1,y 1),(x 2,y 2)都在直线y=﹣x ﹣6上,x 1>x 2,∴y 1<y 2.故选C .【点评】本题考查一次函数图象上点的坐标特征,解题的关键是明确一次函数中,当k <0时,y 随x 的增大而减小.9.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在函数图象上的是()A.(0,﹣2)B.(,0)C.(8,20)D.(,)【考点】一次函数图象上点的坐标特征.【分析】将点A(2,4)代入函数解析式求k,再把点的坐标代入解析式,逐一检验.【解答】解:把点A(2,4)代入y=kx﹣2中,得2k﹣2=4,解得k=3;所以,y=3x﹣2,四个选项中,只有A符合y=3×0﹣2=﹣2.故选A.【点评】用待定系数法求函数解析式是确定解析式常用的方法.10.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M的坐标为()A.C.【考点】两条直线相交或平行问题.【分析】联立两直线解析式,解方程组即可.【解答】解:联立,解得,所以,点M的坐标为(2,1).故选D.【点评】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.二、填空(每小题3分,共24分)11.要使代数式有意义,则x的取值范围是x.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x≥.故答案是:x≥.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为20cm2.【考点】勾股定理.【分析】根据阴影部分的面积等于以AC、CB为直径的两个半圆的面积加上△ABC的面积再减去以AB为直径的半圆的面积列式并整理,再利用勾股定理解答.﹣π(AB)2,【解答】解:由图可知,阴影部分的面积=π(AC)2+π(BC)2+S△ABC,=(AC2+BC2﹣AB2)+S△ABC在Rt△ABC中,AC2+BC2=AB2,=20cm2.∴阴影部分的面积=S△ABC故答案为:20cm2.【点评】本题考查了勾股定理,阴影部分的面积表示,观察图形,准确表示出阴影部分的面积是解题的关键.13.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= 15°.【考点】正方形的性质;等边三角形的性质.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.15.当直线y=kx+b 与直线y=﹣2x+1平行,且y=kx+b 与y=x+4和x 轴交于一点,则y=kx+b 的解析式为 y=﹣2x ﹣8 . 【考点】两条直线相交或平行问题.【分析】根据平行k 相同可以求出k ,求出直线y=x+4和x 轴交点代入y=kx+b 可以求出b ,由此即可解决问题. 【解答】解:∵直线y=kx+b 与直线y=﹣2x+1平行, ∴k=﹣2, ∵y=kx+b 与y=x+4和x 轴交于一点, ∴经过点(﹣4,0), ∴0=﹣2×(﹣4)+b , ∴b=﹣8, ∴y=kx+b 的解析式为y=﹣2x ﹣8, 故答案为y=﹣2x ﹣8.【点评】本题考查两直线平行或相交问题,记住两直线平行k 相同,灵活应用待定系数法求函数解析式,属于中考常考题型.16.如图,正方形ABCD 的对角线长为8,E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD 于G ,则EF+EG= 4 .【考点】正方形的性质.【分析】正方形ABCD 的对角线交于点O ,连接0E ,由正方形的性质和对角线长为8,得出OA=OB=4;进一步利用S △ABO =S △AEO +S △EBO ,整理得出答案解决问题. 【解答】解:如图:∵四边形ABCD 是正方形,∴OA=OB=4, 又∵S △ABO =S △AEO +S △EBO ,∴OAOB=OAEF+OBEG ,即×4×4=×4×(EF+EG )∴EF+EG=4.故答案为:4.【点评】此题考查正方形的性质,三角形的面积计算公式;利用三角形的面积巧妙建立所求线段与已知线段的关系,进一步解决问题. 17.如图,已知函数y 1=k 1x+b 1和y 2=k 2x+b 2交于点(﹣3,1),k 1>0,k 2<0,如k 1x+b 1<k 2x+b 2,则x 的范围为 x <﹣3 .【考点】一次函数与一元一次不等式.【分析】k1x+b1<k2x+b2就是y1=k1x+b1的图象在y2=k2x+b2的图象的下边时对应的x的范围,根据图象即可判断.【解答】解:根据图象可得x的范围是x<﹣3.故答案是:x<﹣3.【点评】本题考查了利用一次函数图象解不等式以及一次函数的性质,确定两个函数的解析式与图象的对应关系是关键.18.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是()n﹣1.【考点】菱形的性质.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.【点评】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.三、解答(第19题9分,第20题,24题每题6分,第21题5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(1)(2﹣3)÷(2)2+3﹣﹣(3)已知x=,y=,求x2+y2.【考点】二次根式的混合运算.【分析】(1)先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)先利用分母有理化化简x和y,再计算x+y与xy的值,然后利用完全平方公式把原式变形为(x+y)2﹣2xy,再利用整体代入的方法计算.【解答】解:(1)原式=(8﹣9)÷=﹣÷=﹣=﹣;(2)原式=4+2﹣﹣=2;(3)x=﹣1,y=﹣(+1)=﹣﹣1,所以x+y=﹣2,xy=﹣2,所以原式=(x+y)2﹣2xy=(﹣2)2﹣2×(﹣2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.如图所示,矩形ABCD中,AB=8,AD=6,沿EF折叠,点B恰好与点D重合,点C落在点G处,求折痕EF的长度.【考点】矩形的性质;翻折变换(折叠问题).【分析】作EM⊥CD,垂足为点M设DE=x,由折叠的性质得出∠DEF=∠BEF,BE=DE=x,得出AE=8﹣x,再由矩形的性质得出∠DEF=∠DFE,证出DE=DF,在Rt△ADE中,由勾股定理得出方程,解方程求出DE,得出AE、MF,由勾股定理求出EF即可.【解答】解:作EM⊥CD,垂足为点M,如图所示:设DE=x,由折叠的性质得:∠DEF=∠BEF,BE=DE=x,∴AE=8﹣x,∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,∴∠DFE=∠BEF,∴∠DEF=∠DFE,∴DE=DF,在Rt△ADE中,由勾股定理得:(8﹣x)2+62=x2,解得:x=,∴AE=DM=8﹣=,又∵DF=DE=,∴MF=DF﹣DM=﹣=,又∵ME=AD=6,∴EF===.【点评】此题主要考查了翻折变换的性质矩形的性质、勾股定理、等腰三角形的判定;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程求出BE是解决问题的关键.21.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.如图,在矩形ABCD中,AC与BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)如AB=2,AC与BD所夹锐角为60°,求四边形OCED的面积.【考点】矩形的性质;菱形的判定.【分析】(1)先根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)作DM⊥OC,垂足为点M,证明△COD为等边三角形,得出OC=CD=OD=2,得出CM=1,DM=CM=,菱形OCED面积=OCDM,即可得出结果.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,∵四边形ABCD为矩形,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED为菱形;(2)解:作DM⊥OC,垂足为点M,∵OC=OD,∠COD=60°,∴△COD为等边三角形,∴OC=CD=OD,∵AB=2,四边形ABCD是矩形,∴CD=AB=2,∴OC=CD=OD=2,∵DM⊥OC,∴CM=1,∴DM=CM=,∴菱形OCED面积=OCDM=2.【点评】本题主要考查矩形的性质,平行四边形的判定、菱形的判定、等边三角形的判定与性质;熟练掌握矩形的性质和菱形的判定,证明三角形是等边三角形是解决问题(2)的关键.23.如图,△ABC中,CE和CF分别平分∠ACB和△ABC的外角∠ACD,一动点O在AC上运动,过点O作BD 的平行线与∠ACB和∠ACD的角平分线分别交于点E和点F.(1)求证:当点O运动到什么位置时,四边形AECF为矩形,说明理由;(2)在第(1)题的基础上,当△ABC满足什么条件时,四边形AECF为正方形,说明理由.【考点】正方形的判定;矩形的判定.【分析】(1)利用角平分线的性质以及平行线的性质得出OE=OF,即可得出结论;(2)证出EF⊥AC,即可得出结论.【解答】(1)证明:当点O运动到AC的中点位置时,四边形AECF为矩形;理由如下:∵O为AC中点,∴OA=OC,∵EF∥BD,∴∠CEO=∠ECB,∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠CEO=∠ECO,∴OE=OC,同理可证,OC=OF,∴OE=OF,∴四边形AECF为平行四边形,又∵EF=2OE,AC=2OC,∴EF=AC,∴四边形AECF为矩形;(2)解:当∠ACB=90°时,四边形AECF为正方形;理由如下:∵EF∥BD,∠ACB=90°,∴∠AOE=90°,∴EF⊥AC,∵四边形AECF为矩形,∴四边形AECF为正方形.【点评】本题考查了正方形的判定、矩形的判定、平行四边形的判定、等腰三角形的判定;熟练掌握平行四边形的判定方法,证出OE=OF是解决问题的关键.24.已知y与x﹣1成一次函数关系,且当﹣2<x<3时,2<y<4,求y与x的函数解析式.【考点】待定系数法求一次函数解析式.【分析】进行分类讨论k大于0还是小于0,列出二元一次方程组求出k和b的值即可.【解答】解:设y=k(x﹣1)+b(k≠0),依题意得:当k>0时,2=﹣3k+b①,4=2k+b②,由①②得:k=,B=,∴y=x+;当k<0时,4=﹣3k+b①,2=2k+b②,由①②得:k=﹣,b=,∴y=﹣x+;综上所述:y与x的函数解析式为y=x+或y=﹣x+.【点评】本题主要考查待定系数法求一次函数的解析式的知识,解答本题的关键是熟练掌握一次函数的性质,注意分类讨论.25.将直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.【考点】一次函数图象与几何变换.【分析】(1)根据图象平移的规律:左加右减,上加下减,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据解方程组,可得交点坐标,根据三角形的面积公式,可得答案.【解答】解:(1)直线y=﹣x+2先向右平移一个单位长度,再向上平移一个单位长度得y=﹣(x﹣1)+2+1,化简得y=﹣x+.(2)当y=0时,0=﹣x+.解得x=7,即A(7,0);当x=0时,y=,B(0,);(3)将y=﹣x+和y=x+1联成方程组解得两直线交点为(,).再求出两直线与y轴交点分别为(0,)和(0,1),所以三角形面积为××(﹣1)=.【点评】本题考查了一次函数图象与几何变换,利用图象平移的规律是解题关键.26.甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y(米)与所修时间x(小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x≤5时间段内,y与x的函数关系式为y=14x ;直接写出乙队在3≤x≤5时间段内,y与x的函数关系式为y=35x﹣85 ;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.【考点】一次函数的应用.【分析】(1)甲的图象是过原点的直线,过(5,70),乙队在3≤x≤5的时间段内是一次函数,可以利用待定系数法求得函数的解析式;(2)根据图象,可分两种情况:①3≤x≤5;②x>5.分别根据乙队修的长度超过甲队10米列出方程,求解即可;(3)设乙队从开修到完工所修水渠的长度为m米,乙队在修筑5小时后,甲剩余(m﹣70)米,乙剩余(m ﹣90)米,根据两队同时完成任务,即时间相等,即可列方程求解.【解答】解:(1)设甲队在0≤x≤5时间段内,y与x的函数的解析式是y=kx,根据题意得:5k=70,解得:k=14,则甲的函数解析式是:y=14x.②设乙队在3≤x≤5时间段内,y与x的函数的解析式是:y=mx+b,根据题意得:,解得:.则函数解析式是:y=35x﹣85.故答案为y=14x;y=35x﹣85;(2)分两种情况:①当3≤x≤5时,由题意得35x﹣85﹣14x=10,解得x=;②当x>5时,乙队y与x的函数的解析式是:y=5(x﹣5)+90.由题意得5(x﹣5)+90﹣14x=10,解得x=.答:开修或小时后,乙队修的长度超过甲队10米;(3)由图象得,甲队的速度是70÷5=14(米/时).设乙队从开修到完工所修长度为m米.根据题意得: =,解得m=.答:乙队从开修到完工所修的长度为米.【点评】本题考查的是用一次函数解决实际问题,待定系数法求函数的解析式,以及列方程解应用题,此类题是近年中考中的热点问题.。
南通市七校联合调研考试初二数学试卷(考试时间:120分钟 满分130分命题学校:海门市海南中学)一、细心填一填(本题共24分,每小题3分)1.函数1-=x y 中,自变量x 的取值范围为 . 2.因式分解:2363x x -+=____________.3.已知一组数据:8,6,10,13,15,8,7,10,11,12,10,8,9,11,9,12,10,12,11,9.如果取组距为2,这组数据应分 .4.若单项式122m x y -与22n x y +-是同类项,则nm -= . 5.如图,已知函数1y ax b =+和2y kx =的图象交于点P ,则根据图象可得,当x 时,12y y >.6.请你写出一个经过点(-1,2),且函数y 的值随自变量x 的增大而减小的一次函数关系式: .7.如图所示,A 、B 是4×5网格中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出....使以A 、B 、C 为顶点的三角形是等腰三角形的所有格点C的位置共 处.8.如果直线1l 、2l 相交成30°的角,交点为O ,P 为平面上任意一点,若作点P 关于1l 的对称点P 1是第1次,再作点P 1关于2l 的对称点P 2是第2次,以后继续轮流作关于1l 、2l 的对称点.那么经过 次后,能回到点P . 二、耐心选一选(本题共24分,每小题3分)9.小刚家的书架里,有12的书是爸爸的,13的书是妈妈的,剩下的书都是小刚的,根据这些信息所作的扇形统计图中,小刚的书所对应的圆心角是 ( )A .45°B .60°C .120°D .180° 10.等腰三角形的一个角是80°,则它的底角是 ( )A .50°B . 80°C .20°或80°D .50°或80° 11.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的平分线,若CD =2,那么BD 等于 ( )A .6B .4C .3D .2 12.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是 ( )A .30吨B .31吨C .32吨D .33吨 13.下面是两户居民家庭全年各项支出的统计图.BA根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是A .甲户比乙户小 B.乙户比甲户小 ( ) C .甲、乙两户一样大 D.无法确定哪一户大14.如图,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h ,注水时间为t ,则h 与t 之间的关系大致为下图中的 ( )A B C D 15.如图,在下列三角形中,若AB =AC ,则能被一条直线分成两个小等腰三角形的是( )A .(1)(2)(3)B .(1)(2)(4)C .(2)(3)(4)D .(1)(3)(4)16.若在△ABC 中,∠BAC 的平分线交BC 于D ,AC =AB +BD ,∠C =30°,则∠B 的度数为 ( )A .90°B .75°C .60°D .45° 三、用心做一做(本题共82分)17.计算(本题12分,每小题4分) (1)()()222341323x x x x x -+--; (2)23223(2)()ab c a b ---⋅;(3)()()()()252514x x x x +--+-; (4)222246⎪⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y .18.(本题6分)如图两条公路交汇于点O ,公路旁有两个小镇C 、D ,现修建一个加油站,使加油站到两条公路的距离相等,到两个小镇C 、D 距离也相等,请你设计一下加油站位置(要求用尺规作图,不写作法,保..............留作图痕迹,写出结论..........)19.(本题6分)用8cm 长的细铁丝围成一个等腰三角形,腰长为xcm ,底长为ycm (1)求y 关于x 的函数关系式; (2)求自变量x 的取值范围; (3)用描点法画出该函数的图象.20.(本题6分)观察下列有规律的数:4213012011216121,,,,,…… 根据其规律,则(1)第7个数是 ; (2)第n 个数是 ;(3)1561是第 个数;(4)计算:11111112612203042(1)n n ++++++⋯++.21.(本题7分)已知:如图,△ABC 中,AB =AC ,AD 和BE 是高,它们相交于点H ,且HE =CE . 求证:AH =2BD .22.(本题8分) 某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在读书月活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图1和图2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)填充图1频率分布表中的空格.频率分布表图2自然科学 文学艺术 社会百科 数学图书(2)在图2中,将表示“自然科学”的部分补充完整.(3)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.23.(本题9分)(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=C A,试求∠DAE的度数.(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?说明理由.(3)如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC 有怎样的大小关系?24.(本题8分)在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-l,0),C(-1,3),作出△ABC关于y轴的对称图形△A1B1C1,△A1B1C1关于直线l的对称图形△A2B2C2,并写出△A2B2C2的三个顶点的坐标;(2) 在直线l上是否存在一点P,使其到A2、C2两点的距离和最小.如果存在,请求出符合条件的点P的坐标;如果不存在,请说明理由.25.(本题10分)如图,直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 正半轴上一动点(OC >1),连结BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .(1)△OBC 与△ABD 全等吗?判断并证明你的结论;(2)当点C 运动到什么位置时,使得以A 、E 、C 为顶点的三角形是等腰三角形?xyEOBCDA初二数学月考试卷参考答案一、细心填一填(每小题3分)1.x ≥1 2.23(1)x - 3.5 4.-1 5.x <-4 6.1y x =-+(不唯一)7.3(图上标对才给分) 8.12 二、耐心选一选(每小题3分)9.B 10.D 11.B 12.C 13.D 14.C 15.A 16.B 17.D 18.C 三、用心做一做 19.计算 (1) 解: 原式323268269x x x x x =-+-+…2分22x x =+……………… 3分(3)解:原式2246632a b c a b ----=⋅…1分28162a b c ---=…………2分684c a b=………………..3分(2)解:原式22(425)(34)x x x =----…..1分2242534x x x =--++………2分23321x x =+-………………..3分(4)解:原式24423616y y x x =÷………1分 224422164369y x x y x y =⋅=…3分20.解:∵1a bP a b-==- …….. 1分 22(1)(2)132322a a a Q a a a a -+=⋅-+=+++………….. 3分∴222223122(21)1(1)10Q P a a a a a a a -=++-=++=+++=++>……5分∴Q P >……..……..6分21.作图4分,结论1分22.解:(1)82y x =-………2分 (2)24x <<………..4分 (3)画图………………6分 23.(1)156 (2)1(1)n n + (3)12(每空1分)(4)解:原式=111111111223344556671n n +++++++-⨯⨯⨯⨯⨯⨯+ 1111111111112233445111nn n n n =-+-+-+-++-=-=+++ (3分)24.证明:∵AB =AC ,AD 是高∴BC =2BD …………………..1分 ∵AD 、BE 是高 ∴∠ADC =90°∠AEH =∠BEC =90° ∴∠HAE +∠C =90° ∠CBE +∠C =90°∴∠HAE =∠CBE ……………2分 在△AHE 和△BCE 中 ∠HAE =∠CBE∠AEH =∠BEC HE =CE∴△AHE ≌△BCE (AAS )……4分 ∴AH =BC 又∵BC =2BD∴AH =2BD ……………………..6分 25. (1)频数100 频率0.05……. 2分(2)补图…………………….. 4分(3)100000.05500⨯=(册)……. 6分 (4)略………………………………….8分 26.解:(1)∵AB =AC ,∠BAC =90° ∴∠B =∠ACB =45° ∵BD =BA∴∠BAD =∠BDA =12(180°-∠B )=67.5° ∵CE =CA ∴∠CAE =∠E =12=∠ACB =22.5° 在△ABE 中,∠BAE =180°-∠B -∠E =112.5°∴∠DAE =∠BAE -∠BAD =112.5°-67.5°=45°……….3分 (2)不改变 设∠CAE =x ∵CA =CE∴∠E =∠CAE =x∴∠ACB =∠CAE +∠E =2x 在△ABC 中,∠BAC =90°∴∠B =90°-∠ACB =90°-2x∵BD =BA∴∠BAD =∠BDA =12(180°-∠B )=x +45° 在△ABE 中,∠BAE =180°-∠B -∠E =180°-(90°-2x )-x =90°+x ∴∠DAE =∠BAE -∠BAD=(90°+x )-(x +45°)=45° (6)(3)∠DAE =12∠BAC ……………………………………………..7分 理由:设∠CAE =x ,∠BAD =y则∠B =180°-2y ,∠E =∠CAE =x ∴∠BAE =180°-∠B -∠E =2y -x∴∠DAE =∠BAE -∠BAD =2y -x -y =y -x ∠BAC =∠BAE -∠CAE =2y -x -x =2y -2x∴∠DAE =12∠BAC (9)27.解:(1)作图,222(4,0)(5,0)(5,3)A B C ……………………….4分(2)连接12AC ,交直线l 于点P ,则点P 即为所求满足22PA PC +的和最小……………………………………..5分 设直线12AC 的解析式为:y k x b =+则由题意得:2053k b k b +=⎧⎨+=⎩ 解得12k b =⎧⎨=⎩-∴直线12AC 解析式为2y x =-………………………………7分当3x =时,y =1 ∴点P 坐标(3,1)………………….8分28.解:(1)△OBC ≌△ABD ……………………………………..1分 理由:∵△AOB 和△CBD 是等边三角形 ∴OB =AB ∠OBA =∠OAB =60° BC =BD ∠CBD =60°∴∠OBA +∠ABC =∠CBD +∠ABC …………….3分 即∠OBC =∠ABD 在△OBC 和△ABD 中OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩∴△OBC ≌△ABD (SAS )……………………….5分 (2)∵△OBC ≌△ABD∵∠BAD =∠BOC =60° 又∵∠OAB =60°∴∠OAE =180°-∠OAB -∠BAD =60°…….8分 ∴Rt △OEA 中,AE =2OA =2∴当AC =AE =2,即当点C 坐标为(3,0)时,符合要求.……10分。