高中数学常用结论(新课标理科版)
- 格式:doc
- 大小:1.88 MB
- 文档页数:11
一、公式和结论1,指数运算性质:aa anm n m+=∙;()a amn nm =;()b a ab nnn= (R n m b a ∈>>.,0,0)2,对数运算性质:log a M +log a N =log a MN ;log a M - log a N =log a NM;a log a N=N ;log a M =a b Mb log log ;M aMa=l o g (0,0,1,1,0,0>>≠≠>>N M b a b a )。
3,等差数列:1(1)n a a n d =+- ; ()n m a a n m d =+- ;n ma a d n m-=-()m n ≠;若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 11()(1)22n n n a a n n S na d +-==+ 。
{}a n是等差数列d a an n =⇔+_1(d 为常数) a a a n n n 212+++=⇔q pn a n +=⇔(p,q 为常数)Bn A n S n +=⇔2(A ,B 为常数)4,等比数列:qa a n n 11-= ;qa a mn m n -= (0,,≠∈+q N n m ) ;若m ,n ,p ,q N +∈且m n p q +=+,则aa a a qpnm=qq a S nn --=1)1(1 ;qa a Snn--=11(1≠q );a Sn n1∙= (q=1);{}a n是等比数列q aann =⇔+1(q 为常数) a a a n n n 221+=+⇔ a a a n n n 21,,(++不等于0) q a nn c =⇔(c,q 为非0常数)B A q S nn +=⇔(A,B 为常数,A+B= -1)5, 绝对值不等式定理: b a b a b a +≤±≤-。
高中数学常用公式及结论大全(新课标)1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
2.重难点及考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算必修11、集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
1. 德摩根公式C u(AClB) =C u AUC u B;C u(AUB)=C u AriC u B.2. A D B二A= A U B=B=A;=B = C U B^C U A U AgB = C U AU B二R3. 若A ={ a1,a2,a^Ha n},则A的子集有2n个,真子集有(2n- 1)个,非空真子集有(2n- 2) 个4. 二次函数的解析式的三种形式①一般式f (x)二ax2• bx • c( a = 0);② 顶点式f (x)二a(x-h)2k(a =0);③零点式f (x)二a(x「x j(x-x2)(a = 0).三次函数的解析式的三种形式①一般式 f (x)二ax3• bx2cx d(^^ 0)②零点式 f (x) = a(x -xj(x -x2)(x -x3)(a = 0)5. 设x, x2E a,b[x「x2 那么(x, -x2)〔f (N) - f (%)丨0 = f (x J - f区)0 = f (x)在a,b ]上是增函数;x, -x2(x, -x2)〔f (为)- f (x2)丨:::0= f (x i)- f区):::0= f (x)在|a,b 上是减函数.x, _x2设函数y = f(x)在某个区间内可导,如果f (x) • 0,则f(x)为增函数;如果f(x):::0,则 f (x)为减函数.6. 函数y = f(X)的图象的对称性:①函数y 二f(x)的图象关于直线X 二a对称=f (a • x) = f (a-x):= f(2a-x)=f(x)a + b②函数y = f (x)的图象关于直x 二一 -对称=f(a x) = f(b-x) := f (a b-x)二f(x).2③函数y = f(x)的图象关于点(a,0)对称u f(x) - -f(2a-x)函数y = f(x)的图象关于点(a,b)对称=f(x) =2b-f(2a-x)7. 两个函数图象的对称性:①函数y = f (x)与函数y = f ( -x)的图象关于直线x =0(即y轴)对称.a + b②函数y二f (mx -a)与函数y二f (b -mx)的图象关于直线x -对称.2m特殊地:y = f(x-a)与函数y = f(a-x)的图象关于直线x=a对称③函数y = f(x)的图象关于直线x=a对称的解析式为y = f(2a-x)④函数y = f(x)的图象关于点(a,0)对称的解析式为y--f(2a-x)⑤函数y二f(x)和y二f 4(x)的图象关于直线y=x对称.m8. 分数指数幕a n=n a m( a 0, m,n,N ,且n 1).(a 0,m, n N,且n .1 )9. log a N=b= a b=N(a 0,a 严1,N 0)log a M log a N = log a MN (a 0.a = 1,M 0, N 0)Mlog a M - log a N = log a (a 0.a = 1,M 0, N 0)N10. 对数的换底公式log a N =log m N.推论log m b n=丄log a b . log m a 一m对数恒等式a log a N= N ( a 0,a")11. a n =《s‘n 1(数列g}的前n项的和为S n = a1 + a?+川+ a n).I S n —S n_!, n^212. 等差数列S n』的通项公式a n = q • (n - 1)d = dn • a^j - d(n・N );13. 等差数列的变通项公式a^ a m ' (n-m)d对于等差数列"却,若n • m二p • q , (m,n,p,q为正整数)则a n ■ a^ a p - a q。
高中高考数学所有二级结论《[完整版]》一、几何结论1、关于点1.1 同一直线上三点,若其中两点间距相等,则三点共线;1.2 直线平分线定理:若直线Ⅰ平分线段AB,则AM/MB=1;1.3 直线的垂直平分线定理:若直线Ⅰ对AB的垂直平分线,则M是A、B中点;1.4 同一直线出发点,夹萝卜角度相等,终足点也在同一直线上;1.5 同一直线上三点,至少有2点共线;1.6 若任意一点位于AB的延长线上,则距AB同侧的距离相等;2、关于直线2.1 齐次直线:若直线上所有点满足y=ax+b,则直线称为齐次直线;2.2 相交线定理:若两条直线相交,则它们的夹角一定是锐角;2.3 相等的夹角可以定位:若两条直线的夹角为有限尺寸夹角,则它们可以定位;2.4 两平行线定理:若两条直线平行,则它们过同一直线上的任意一点都相等;2.5 同一实轴向非相交点所在直线定理:由两条实轴向非相交的直线,所形成的不规则四边形,相较相邻的两边的夹角度数之和为180°;3、关于三角形3.1 相等的边角定理:若两角的大小相等,则它们两理封闭的边也相等;3.2 对角线定理:若一个多边形的对角线相交,则其论线的和为360°;3.3 相等的三角形定理:若三角形的两边和它们之间的夹角相等,则三角形中的任何一点到另外两点的距离也相等;3.4 含有相同角的三角形定理:若两个三角形包含有相同大小的角,则其面积之比,与相应边的比值的平方成正比;3.5 三角形角度和定理:若三角形的三边的长度都不相等,那么它的三内角之和等于180°;3.6 斜边长度定理:若一个三角形的两边长度相等,那么它们所构成的内角一定是锐角;4、关于圆4.1 直径定理:若任意直线与圆相交,则此直线必经过圆心;4.2 垂足定理:若圆上存在一点,使得其到圆心的距离(即圆上点P到垂足M)尽可能的小,则M为圆上某一点P的垂足;4.3 旋转定理:把椭圆上的任意一点A旋转一定的角度,得到的椭圆上的点B,满足AB距离的平方等于AB分别到圆点的距离的积;二、代数结论1、关于一元二次方程1.1 一元二次方程的解:解一元二次方程ax2+bx+c=0(a≠0)的两个解是:x1=(-b+√(b2-4ac))/2a,x2=(-b-√(b2-4ac))/2a;1.2 求解实数解:若b2-4ac>0,那么它有实数解,若b2-4ac=0,那么它有重根,若b2-4ac<0,则无实数解;2、关于一元三次方程2.1 三次方程的解:一元三次方程ax3+bx2+cx+d=0(a ≠ 0)的三个实数解为:x1 = [-b + √(b2-3ac)]/3ax2 = [-b - √(b2-3ac)]/6a + i√3/6ax3 = [-b - √(b2-3ac)]/6a - i√3/6a;2.2 求解实数解:若b2-3ac>0,它有三个不同的实数解;若b2-3ac=0,它有重根;若b2-3ac<0,它有三个不同的实数解;3、关于系数代数方程3.1 二次代数方程:若一个二次代数方程ax2+bx+c=0有实数解,则它的解为x1=(-b+√(b2-4ac)/2a,x2=(-b-√(b2-4ac)/2a;3.2 三次代数方程:若一个三次代数方程ax3+bx2+cx+d=0有实数解,则它的解为x1=(-b+√(b2-3ac)/3a,x2=(-b-√(b2-3ac)/6a + i√3/6a,x3=(-b-√(b2-3ac)/6a - i√3/6a;4、关于函数4.1 闭区间:函数定义域上下端点其值皆有效,叫闭区间;4.2 周期:当变量满足周期函数关系,即变量与函数之间存在正反循环吻合关系时,称其为“周期函数”;4.3 偶函数:若变量x在定义域内变换了一倍角度,f(x)应等于自己,叫作偶函数;4.4 奇函数:若变量x在定义域内变换了一倍定义域,而f(x)值改变了符号,叫作奇函数;5、关于初等函数5.1 线性函数的定义:当关系式为y=ax+b,a、b为有理常数,b≠0时,它称为“线性函数”;5.2 二次曲线的定义:当关系式为y=ax2+bx+c(a≠0),a、b、c 为有理常数时,它称为“二次曲线”;5.3 对称性:定义域内一点同它的对称点在函数图像上所对应的点总是具有相同的函数值,称为函数具有“对称性”;5.4 反函数定义:当函数f(x)在它的定义域内是一一對應的,可以反求f(x)的值的函数,称为“反函数”;。
新课标高考数学常考高频核心考点重要结论汇总(word版)一、三角函数部分1、同角三角函数的基本关系:sin2α+cos2α=1、sinαcosα=tanα、 tanα∙cotα=12、两角和与差的正弦、余弦、正切公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ+sinαsinβtan(α±β)=tanα±tanβ1∓tanαtanβ3、降幂公式:sinxcosx=12sin2x; sin2x=12(1−cos2x); cos2x=12(1+cos2x)4、asinωx+bcosωx=√a2+b2sin(ωx+φ) (辅助角φ由(a,b)所在象限决定tanφ=ba)5、二倍角的正弦、余弦、正切公式:sin2α=2sinαcosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²αtan2α=2tanα1−tan2α6、正弦定理:asinA =bsinB=csinC=2R (R是△ABC外接圆的半径)7、余弦定理:a²=b²+c²-2bccosA; b²=a²+c²-2accosB; c²=b²+a²-2bacosC.8、三角形面积公式:① S =12a ℎa =12b ℎb =12c ℎc② S =12bcsinA =12acsinB =12absinC ③S =abc 4R (R 为△ABC 外接圆半径)④ S =12(a +b +c )r (r 为△ABC 内切圆半径)⑤海伦-秦九韶公式: S =√p (p −a )(p −b )(p −c ) (其中 p =12(a +b +c )) ⑥坐标表示: AB ⃗⃗⃗⃗⃗ =(x₁,,y₁) ,AC⃗⃗⃗⃗⃗ =(x₂,,y₂), 则 S =12|x 1y 2−x 2y 1|9、常用名称和术语:坡角、仰角、俯角、方位角、方向角二、数列10、a n 与s n 的关系:a n ={S 1 (n =1)S n −S n−1(n ≥2)11、等差数列:①定义:a n −a n−1=d (n ∈N ₊, n ≥2) 或 a n+1−a n =d (n ∈N ₊) ②等差数列的通项公式及其变形:a n =a 1+(n −1)d =dn +a 1−d (n ∈N ₊); a n =a m +(n −m )d (m ,,n ∈N ₊) d =a n −a m n−m(n ≠m,, m 、n ∈N +)③等差数列的前n 项和s n ; S n =n (a 1+a n )2=na; S n =na 1+n (n−1)2d12、等比数列: ①定义: a nan+1=q (q ≠0, n ∈N +,n ≥2) 或a n+1a n=q (q ≠0, n ∈N +)②等比数列的通项公式及其变形:a n =a 1q n−1=(a 1q)q n (q ≠0, n ∈N +)a n=a mq n−m (q ≠0, m , ,n ∈N ₊)a m+n =a m q ⁿ=a n qᵐ (q ≠0, m , ,n ∈N ₊)S m+n =S m +S n qᵐ=S n +S m q ⁿ③等比数列的前n 项和S nS n ={na 1 (q =1)a 1(1−q n )1−q =a 1−a n q 1−q(q ≠1)13、求数列的通项公式a n 的方法 ①公式法:若数列a n 是等差数列:找a 1和d ,再利用公式a n =a 1+(n −1)d (n ∈N ₊) 若数列a n 是等差数列:找a 1和q ,再利用公式 a n =a 1q ⁿ⁻¹ (n ∈N ₊). ②知S n 求a n 法:利用a n ={S 1 (n =1)S n −S n−1 (n ≥2);③叠加法:形如:a n =a n−1+f (n ) (n ∈N ₊,n ≥2) 或 a n+1=a n +g (n ) (n ∈N ₊); ④构造法:形如: a n =ka n−1+b (k 、b 均为常数,且k ≠1,b ≠0,n ∈N ₊,n ≥2); 构造一:设 (a n +λ)=k (a n−1+λ)⇒{a n +λ} 是等比数列构造二:由 a n =ka n−1+b ⇒a n+1=ka n +b, 相减整理得: an+1−a na n−a n−1=k ⇒{a n −a n−1}是等比数列⑤广义叠加法:形如:a n =ka n−1+f (n ) (k 为常数,且 k ≠1,n ∈N₊,n ≥2) 或 a n+1=ka n +g (n ) (k 为常数,且k ≠1,n ∈N₊)构造一:a n =ka n−1+f (n )⇒a n k n =a n−1k n−1+f (n )k n , 令b n =an k n ,转化成b n =b n−1+g (n )再叠加;构造二:a n+1=ka n +g (n )⇒a n+1k n+1=an k n +g (n )k n+1,令 b n+1=an+1k n+1,转化成b n+1=b n +ℎ(n )再叠加;⑥叠乘法:形如: a na n−1=f (n )(n ∈N +,n ≥2) 或a n+1a n=g (n )(n ∈N +);⑦对数变换法:形如:a n =ba n−1k (b >0,a n >0,n ∈N +,n ≥2)或a n+1=ba n k(b >0,a >0,n ∈N₊,n ≥2); 构造一: a n =ba n−1k ⇒lga n =klga n−1+lgb, 令 b n =lga n , 化成 b n =kb n−1+m 再用构造法即可构造二:a n+1=ba n k ⇒lga n+1=klga n +lgb, 令b n+1=lga n+1,化成b n+1=kb n +m 再用构造法即可注意:底数不一定要取10,可根据题意选择。
高中数学必背公式与结论一、集合:1.元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个. 3.集合的运算:(1)交集:由所有属于A 且属于B 的元素组成的集合,}|{B x A x x B A ∈∈=⋂且。
(2)并集:由所有属于A 或属于B 的元素组成的集合,}|{B x A x x B A ∈∈=⋃或。
(3)补集:若S A ⊆,S 中所有不属于A 的元素组成的集合,}|{A x S x x A C S ∉∈=且。
4.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.5.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=二、简易逻辑:1.一个命题的逆命题、否命题、逆否命题:(1)原命题:若p 则q ; (2)逆命题:若q 则p ;(3)否命题:若p ⌝则q ⌝; (4)逆否命题:若q ⌝则p ⌝。
2.两个命题的等价关系:(1)原命题与其逆否命题同真同假; (2)逆命题与原命题的否命题同真同假. 四个命题中,真命题的个数要么是0,要么是2,要么是4. 3.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.利用真值表判断复合命题的真假:5.命题的否定:对命题的结论否定。
全称命题的否定是特称命题;特称命题的否定是全称命题。
三、函数:1.判断同一函数的依据:两个函数当且仅当定义域和对应关系完全相同时为同一函数。
2.函数的定义域:即求使函数式)(x f 有意义的一切实数x 的集合,主要依据有:(1)分式的分母不能为零: (2)偶次根式被开方数非负:(3)0的0次幂无意义,0的负实数次幂无意义:(4)在对数形式中,真数大于0,底数大于0且不等于1(指数类似): (5)正切函数定义域不能取2ππ+k (Z ∈k ),余切函数定义域不能取πk (Z ∈k )。
高中数学所有常用公式结论高中数学中常用的公式和结论是指在课程中经常出现的公式和结论。
这些公式和结论在高中数学的学习和应用中起着重要的作用。
下面是一些高中数学中常用的公式和结论的例子:1.二项式定理:$(a+b)^n=C^n_0a^nb^0+C^n_1a^{n-1}b^1+C^n_2a^{n-2}b^2+...+C^n_na^0b^n$2.三角函数的和差公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$3.三角函数的倍角公式:$\sin 2A = 2 \sin A \cos A$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2\sin^2 A$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$4.三角函数的半角公式:$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$$\cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$$\tan \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{1 + \cos A}}$5.三角函数的和化积公式:$\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$6. 余弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$c^2 = a^2 + b^2 - 2ab \cos C$7. 正弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$8.直角三角形中的勾股定理:在直角三角形ABC中,AB是斜边,AC和BC是两条直角边,则有$AB^2=AC^2+BC^2$9.关于数列和数列的常用公式:*等差数列的通项公式:$a_n=a_1+(n-1)d$*等差数列的前n项和公式:$S_n = \frac{n}{2}(a_1 + a_n)$*等比数列的通项公式:$a_n = a_1 \cdot q^{n-1}$*等比数列的前n项和公式(当$q \neq 1$):$S_n =\frac{a_1(q^n-1)}{q-1}$以上只是一些高中数学中常用的公式和结论的例子,还有很多其他的公式和结论没有一一列举。
高三数学常用结论总结1、常用抽象函数()f x 的“原型”(函数)(1)、()()()f x y f x f y +=+——y kx =(2)、()()()f xy f xf y +=——y =xa (a >0且a ≠1) (3)、()()()f x y f x f y =+——log a y x = (4)、()()()f xy f x f y =——n y x =(n 为常数)2、奇偶性与对称性结论(1)奇函数在对称区间同增同减,偶函数在对称区间增减性相反;(2) 若函数()f x 是偶函数,则()()()f x f x f x =-=;若函数()f x 是奇函数,且()f x 在0x =处有定义,则(0)0f =。
(3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点 对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. (4)对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. (5)若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;(6)若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.(7)、点(,)x y 关于直线y x a =±+的对称点为((),)y a x a ±-±+;曲线(,)0f x y =关于直线y x a=±+的对称曲线的方程为((),)0f y a x a ±-±+=。
3、几个等价关系:方程()0f x =有实根⇔函数()y f x =()x D ∈的图象与x 轴有交点⇔函数()y f x =()x D ∈有零点4.(1)若a b > ab>0,则11ab<。
高中数学常用的42个结论1.并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.2.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.3.补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A;∁U(A∩B)=(∁UA)∪(∁UB);∁U(A∪B)=(∁UA)∩(∁UB).4.改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.5.否定结论:对原命题的结论进行否定.6.倒数性质(1)a>b,ab>0⇒;(2)a<0<b⇒;(3)a>b>0,d>c>0⇒.7.有关分数的性质若a>b>0,m>0,则8.分式不等式的解法9.两个恒成立的充要条件(1)一元二次不等式ax2+bx+c>0对任意实数x恒成立⇔(2)一元二次不等式ax2+bx+c<0对任意实数x恒成立⇔10.几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)(a,b∈R),当且仅当a=b时取等号.(3)(a,b∈R),当且仅当a=b时取等号.(4)(a,b同号),当且仅当a=b时取等号.11.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.12.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.13.函数单调性的两个等价结论设∀x1,x2∈D(x1≠x2),则(1)(或(x1-x2)[f(x1)-f(x2)]>0)⇔f(x)在D上单调递增.(2)(或(x1-x2)[f(x1)-f(x2)]<0)⇔f(x)在D上单调递减.14.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.15.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.16.函数周期性的常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=,则T=2a(a>0).(3)若f(x+a)=,则T=2a(a>0).17.幂函数的图象和性质指数函数图象的特点18.指数函数的图象恒过点(0,1),(1,a),,依据这三点的坐标可得到指数函数的大致图象.19.函数y=ax与y=(a>0,且a≠1)的图象关于y轴对称.20.指数函数y=ax与y=bx的图象特征:在第一象限内,图象越高,底数越大;在第二象限内,图象越高,底数越小.21.换底公式的三个重要结论①logab=;②logambn=logab;③logab·logbc·logcd=logad.22.对数函数图象的特点(1)对数函数y=logax(a>0且a≠1)的图象过定点(1,0),且过点(a,1),,函数图象只在第一、四象限.(2)函数y=logax与y=log1ax(a>0且a≠1)的图象关于x轴对称.(3)在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.23.函数图象平移变换的八字方针(1)“左加右减”,要注意加减指的是自变量.(2)“上加下减”,要注意加减指的是函数值.24.函数图象自身的轴对称(1)f(-x)=f(x)⇔函数y=f(x)的图象关于y轴对称.(2)函数y=f(x)的图象关于x=a对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x)⇔f(-x)=f(2a+x).(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=对称.25.函数图象自身的中心对称(1)f(-x)=-f(x)⇔函数y=f(x)的图象关于原点对称.(2)函数y=f(x)的图象关于(a,0)对称⇔f(a+x)=-f(a-x)⇔f(x)=-f(2a-x)⇔f(-x)=-f(2a+x).(3)函数y=f(x)的图象关于点(a,b)成中心对称⇔f(a+x)=2b-f(a-x)⇔f(x)=2b-f(2a-x).26.两个函数图象之间的对称关系(1)函数y=f(a+x)与y=f(b-x)的图象关于直线x=对称(由a+x=b-x得对称轴方程);(2)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称;(3)函数y=f(x)与y=2b-f(-x)的图象关于点(0,b)对称.27.有关函数零点的三个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.28.“对勾”函数f(x)=x+(a>0)的性质(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0, ]上单调递减.(2)当x>0时,x=时取最小值2;当x<0时,x=-时取最大值-2.29.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.30.象限角31.轴线角32.三角函数定义的推广设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=,cos α=,tan α=.33.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化.34.同角三角函数的基本关系式的几种变形(1)sin2α=1-cos2α=(1+cos α)(1-cos α);cos2α=1-sin2α=(1+sin α)(1-sin α);(sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α.35.四个必备结论(1)降幂公式:cos2α=,sin2α=.(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.(3)tan α±tan β=tan(α±β)(1∓tan αtan β),1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=.(4)辅助角公式asin x+bcos x=,其中tan φ=.36.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.37.与三角函数的奇偶性相关的结论(1)若y=Asin(ωx+φ)为偶函数,则有φ=kπ+(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=Acos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+(k∈Z).(3)若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).38.对称中心与零点相联系,对称轴与最值点相联系.y=Asin(ωx+φ)的图象有无数条对称轴,可由方程ωx+φ=kπ+(k∈Z)解出;它还有无数个对称中心,即图象与x 轴的交点,可由ωx+φ=kπ(k∈Z)解出.39.相邻两条对称轴间的距离为,相邻两对称中心间的距离也为,函数的对称轴一定经过图象的最高点或最低点.40.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.41.三角形中的三角函数关系(1)sin(A+B)=sin C.(2)cos(A+B)=-cos C.(3)sin +B=cos.(4)cos=sin. 42.三角形中的射影定理在△ABC中,a=bcos C+ccos B;b=acos C+ccos A;c=bcos A+acos B.。
1高中数学常用结论1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == .2.U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆ U A C B ⇔=Φ U C A B R ⇔=3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠. 三次函数的解析式的三种形式①一般式32()(0)f x ax bx cx d a =+++≠ ②零点式123()()()()(0)f x a x x x x x x a =---≠ 5.设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数.设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-= ②函数()y f x =的图象关于直2a bx +=对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=-- 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ⇔=-- 7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m na =0,,a m n N *>∈,且1n >).1m nm naa-=(0,,a m n N *>∈,且1n >).9. log (0,1,0)b a N b a N a a N =⇔=>≠>.2log log log a a a M N MN +=(0.1,0,0)a a M N >≠>>log log log a a aMM N N-=(0.1,0,0)a a M N >≠>> 10.对数的换底公式 log log log m a m NN a =.推论 log log m n a a n b b m =.对数恒等式log a N a N =(0,1a a >≠)11.11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).12.等差数列{}n a 的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈; 13.等差数列{}n a 的变通项公式d m n a a m n )(-+=对于等差数列{}n a ,若q p m n +=+,(m,n,p,q 为正整数)则q p m n a a a a +=+。
14.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。
如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 15.数列{}n a 是等差数列⇔n a kn b =+,数列{}n a 是等差数列⇔n S =2An Bn +16.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:○1前n 项的和偶奇S S S n += ○2当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差; ○3当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S-+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S SS S S Sn (其中中a 是等差数列的中间一项)。
17.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S ,则'1212--=n n n n S S b a 。
18.等比数列{}n a 的通项公式1*11()n nn a a a q q n N q-==⋅∈; 等比数列{}n a 的变通项公式m n m n q a a -=3其前n 项的和公式11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.19. 对于等比数列{}n a ,若v u m n +=+(n,m,u,v 为正整数),则v u m n a a a a ⋅=⋅也就是: =⋅=⋅=⋅--23121n n n a a a a a a 。
如图所示:nn a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321 20. 数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列。
如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 21. 同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θθcos sin , tan 1cot θθ⋅=. 2211tan cos αα+=22. 正弦、余弦的诱导公式212(1)sin ,sin()2(1)cos ,nn n n n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数212(1)cos ,cos()2(1)sin ,nn n n n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数即:奇变偶不变,符号看象限,如cos()sin ,sin()cos 22sin()sin ,cos()cos ππααααπααπαα+=-+=-=-=- 23. 和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).424. 二倍角公式 sin 22sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.(升幂公式) 221cos 21cos 2cos ,sin 22αααα+-==(降幂公式) 22tan tan 21tan ααα=-.25.万能公式:22tan sin 21tan ααα=+, 221tan cos 21tan ααα-=+ * 26.半角公式:sin 1cos tan 21cos sin ααααα-==+27. 三角函数的周期公式函数sin()y A x ωϕ=+,x ∈R 及函数cos()y A x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;若ω未说明大于0,则2||T πω=函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 28. sin y x =的单调递增区间为2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴为()2x k k Z ππ=+∈,对称中心为(),0k π()k Z ∈ 29. cos y x =的单调递增区间为[]2,2k k k Z πππ-∈单调递减区间为[]2,2k k k Z πππ+∈,对称轴为()x k k Z π=∈,对称中心为,02k ππ⎛⎫+ ⎪⎝⎭()k Z ∈30. tan y x =的单调递增区间为,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对称中心为(,0)()2k k Z π∈31. 正弦定理2sin sin sin a b cR A B C=== 32. 余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.33.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.34.三角形内角和定理 在△ABC 中,有()222C A BA B C C A B πππ+++=⇔=-+⇔=-222()C A B π⇔=-+.35.平面两点间的距离公式5,A B d =||AB = =11(,)x y ,B 22(,)x y ).36.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa 12210x y x y ⇔-=. a ⊥b (a ≠0)⇔a ·b =012120x x y y ⇔+=.37.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ= ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 38.若OA xOB yOB =+则A,B,C 共线的充要条件是x+y=139. 三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,33x x x y y y G ++++. 40.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k ).41.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>> (4)b a b a b a+≤+≤-注意等号成立的条件(5)20,0)112a ba b a b+≤≤≤>>+ (6)∑∑∑===⋅≤ni i ni ni i i i b a b a 121122)()()(,等号当且仅当)21(n i kb a i i ,,, ==时成立 42.极值定理 已知y x ,都是正数,则有(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值241s .43.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之6外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或. 44.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 45.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪≥⎨⎪>⎩(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. * 46.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩47.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ) 直线的方向向量v=(a,b),则直线的斜率为k =(0)ba a≠48.直线方程的五种形式:(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1(,x ya b x y a b a b+=≠≠分别为轴轴上的截距,且0,0) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).749.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212,l l k k b b ⇔=≠ ;②12121l l k k ⊥⇔=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,①121221122100l l A B A B AC A C ⇔-=-≠ 且;②1212120l l A A B B ⊥⇔+=; 50.夹角公式 2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)12211212tan A B A B A A B B α-=+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 直线l 1到l 2的角是2121tan 1k k k k α-=+(111:l y k x b =+,222:l y k x b =+,121k k ≠-)51.点到直线的距离 d =(点00(,)P x y ,直线l:0Ax By C ++=).52.两条平行线的间距离d =直线l 1:122120,0,)Ax By C l Ax By C C C ++=++=≠).53. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).54.圆中有关重要结论:(1)若P(0x ,0y )是圆222x y r +=上的点,则过点P(0x ,0y )的切线方程为200xx yy r +=(2)若P(0x ,0y )是圆222()()x a y b r-+-=上的点,则过点P(0x ,0y )的切线方程为200()()()()x a x a y b y b r --+--=(3) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200xx yy r +=(4) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200()()()()x a x a y b y b r --+--=855.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.56.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(22x ca e PF -=.椭圆22221(0)x y a b a b +=>>的准线方程为2a x c =±,椭圆22221(0)x y a b b a +=>>的准线方程为2a y c=±57.椭圆22221(0)x y a b a b +=>>的通径(过焦点且垂直于对称轴的弦)长为22b a58.双曲线22221(0,0)x y a b a b -=>>的准线方程为2a x c =±双曲线22221(0,0)x y a b b a -=>>的准线方程为2a y c =±59. 双曲线22221(0,0)x y a b a b -=>>的渐近线方程为b y x a =±双曲线22221(0,0)x y a b b a-=>>的的渐近线方程为a y x b =±60.抛物线px y 22=上的动点可设为P ),2(2y p y或或)2,2(2pt pt P P (,)x y ,其中 22y px = .61. P(0x ,0y )是抛物线px y 22=上的一点,F 是它的焦点,则|PF|=0x +2p 62. 抛物线px y 22=的焦点弦长22sin plθ=,其中θ是焦点弦与x 轴的夹角 63.直线与圆锥曲线相交的弦长公式AB =12||AB x x =-=A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,k 为直线的斜率).若(弦端点A ),(),,(2211y x B y x 由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去x 得到20ay by c ++=,0∆>,k 为直线的斜率).则12||AB y y =-=64.圆锥曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. 65.共线向量定理 对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .66.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++,9则四点P 、A 、B 、C 是共面⇔1x y z ++=. 67.空间两个向量的夹角公式 cos 〈a ,b 〉(a =123(,,)a a a ,b =123(,,)b b b ).68.直线AB 与平面所成角sin ||||AB m arc AB m β⋅= (m为平面α的法向量) . 69.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).70.设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.71.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =.72.异面直线间的距离 ||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).73.点B 到平面α的距离 ||||AB n d n ⋅= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).74. 面积射影定理 'cos S S θ=(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).75.球的半径是R ,则其体积是343V R π=,其表面积是24S R π=.1,3V Sh V Sh ==锥柱76.判定两线平行的方法:(1)平行于同一直线的两条直线互相平行(2)垂直于同一平面的两条直线互相平行(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行(4)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(5)在同一平面内的两条直线,可依据平面几何的定理证明77.判定线面平行的方法:(1)据定义:如果一条直线和一个平面没有公共点(2)如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行(3)两面平行,则其中一个平面内的直线必平行于另一个平面(4)平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面(5)平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面78.判定面面平行的方法:(1)定义:没有公共点(2)如果一个平面内有两条相交直线都平行于另一个平面,则两面平行(3)垂直于同一直线的两个平面平行(4)平行于同一平面的两个平面平行79.面面平行的性质:(1)两平行平面没有公共点(2)两平面平行,则一个平面上的任一直线平行于另一平面(3)两平行平面被第三个平面所截,则两交线平行(4)垂直于两平行平面中一个平面的直线,必垂直于另一个平面80.判定两线垂直的方法:(1)定义:成︒90角(2)直线和平面垂直,则该线与平面内任一直线垂直(3)在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直(4)在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直(5)一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直81.判定线面垂直的方法:(1)定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直(2)如果一条直线和一个平面内的两条相交线垂直,则线面垂直(3)如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面(5)如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面(6)如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 82.判定面面垂直的方法:(1)定义:两面成直二面角,则两面垂直(2)一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 83.面面垂直的性质:(1)二面角的平面角为︒90(2)在一个平面内垂直于交线的直线必垂直于另一个平面(3)相交平面同垂直于第三个平面,则交线垂直于第三个平面84.分类计数原理(加法原理)12n N m m m =+++ ;分步计数原理(乘法原理)12n N m m m =⨯⨯⨯ .85.排列数公式 mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).组合数公式 mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤).86.排列恒等式 (1)1(1)m m n nA n m A -=-+;(2)1m m n n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+. 87.组合数的两个性质(1) m n C =m n n C - ;(2) m n C +1-m n C =m n C 1+ 88.组合恒等式(1)11mm nn n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)11kk n n kC nC--=(5)∑=nr r n C 0=n 2;(6)1121++++=++++r n r n r r r r r r C C C C C .89.二项式定理 nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式:rr n r n r b a C T -+=1)210(n r ,,,=.信诺,成就孩子的未来!信诺教育诚信百年 一诺千金90.可能性事件的概率()m P A n=. 91.互斥事件A ,B 分别发生的概率的和P(A +B)=P(A)+P(B).n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 92.独立事件A ,B 同时发生的概率P(A ·B)= P(A)·P(B). 事件A 发生的条件下事件B 发生的条件概率()(|)()P AB P B A P A = 93.n 个独立事件同时发生的概率 P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).94.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n k n n P k C P P -=- 95.函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.96.导数与函数的单调性的关系:㈠0)(>'x f 是)(x f 为增函数的充分不必要条件。