第1章传热学绪论
- 格式:ppt
- 大小:21.18 MB
- 文档页数:57
传热学第一章绪论1.传热学的定义: 研究由于温度差而引起的热能传递规律的科学.2.热流量(heat transfer rate):单位时间内通过某一给定面积A的热量,记为Φ,单位为 W3.热流密度(或称面积热流量):通过单位面积的热流量,记为q,单位是 W/m24.稳态过程与非稳态过程稳态过程:热量传递系统中各点温度不随时间而改变的过程非稳态过程:各点温度随时间而改变的过程5.热传导的定义:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子热运动而产生的热量传递过程1)导热是物质的固有属性2)固、液、气等均具有一定的导热能力3)纯导热只发生在密实的固体和静止的流体中导热现象的判断?1)有温差;2)密实固体或静止流体6.模型一平壁稳态导热.影响因素:平壁面积,厚度,温差平壁稳态导热的计算公式:7.λ —热导率,又称导热系数.单位:W/(m·K) (热物理参数)8.热对流:流体中温度不同的各部分发生相互混合的宏观运动而引起的热量传递现象特点: 1)发生在流体中2)流体内部必须存在温差3)流体必须有宏观运动4)伴随着热传导9.对流传热:流动的流体与温度不同的固体壁面间的热量传递过程.(热对流的一种方式,传热学研究方式).分类:按流体流动的起因:1)自然对流、自由对流:流体冷、热各部分密度不同而引起的2)受迫对流、强迫对流:流体的流动是在外力(在泵或风机)作用下产生的技巧:给出流体速度的为强迫对流按流体有无相变:1)无相变的对流传热2)有相变的对流传热:沸腾换热、凝结换热10.如何判断对流传热1)发生在壁面和流体之间:参与物质类型2)壁面和流体存在温差:热量传递的前提3)流体要运动:速度体现一定不要遗漏自然对流11.对流传热的计算—牛顿冷却公式(对流传热的热量传递速率方程)当流体被加热时:当流体被冷却时:h-表面传热系数(过程量),W/(m2·K)13.热辐射:由于自身温度(热)的原因而发出辐射能的现象(heat radiation)1)辐射传热:物体之间因为相互辐射、相互吸收而引起的热量传递过程2)理想物体:绝对黑体,简称黑体(能够全部吸收投射到其表面上辐射能的物体)14.黑体辐射的斯忒藩-玻耳兹曼(Stefan-Boltamann)定律实际物体的辐射能力:注意:1)σ—斯忒藩-玻耳兹曼常数,5.67×10-8W/(m2·K4) 2)ε—发射率(emissivity),习惯上也称为黑度,物性参数15.理想模型2—两平行黑体平板间的辐射传热(相距很近,表面间充满了透明介质)16.理想模型3—非凹表面1包容在面积很大的空腔2中注意:1)辐射传热必须采用热力学温度2)注意公式的使用条件3)“动态平衡”的含义(p8)17.导热、对流与辐射的辨析:1)导热、对流只在有物质存在的条件下才能实现;热辐射不需中间介质(非接触性传热)2)辐射不仅有能量的转移,而且伴随能量形式的转换;3)辐射换热是一种双向热流同时存在的换热过程;4)辐射能力与其温度有关,导热、对流与温差有关;导热与对流的辨析:气、液、固均具有导热能力,纯导热只发生在静止的流体中;对流只发生在流动的流体中;18.传热过程:热量由固体一侧的高温流体通过固体壁面传给另一侧低温流体的热量传递过程 。
第一章绪论1.热流量:单位时间内所传递的热量。
2.热流密度:单位传热面上的热流量。
3.导热:物体粒子微观的热运动而产生的热量传递现象。
4.对流传热:流体流过固体壁时的热传递过程。
热对流:流体个部分之间发生宏观相对位移级领热流体的相互掺混。
5.辐射传热:由于热运动产生的,以电磁波形式传递能量的现象。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。
11.稳态传热过程:物体中各点温度不随时间而改变的热量传递过程。
第二章热传导1.温度场:某一瞬间物体内各点温度分布的总称。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.导热系数:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
导热系数是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
材料的导热能力与吸热能力之比导温系数不但与材料的导热系数有关,还与材料的热容量(或储热能力)也有关;从物理意义看,导热系数表征材料导热能力的强弱,导温系数表征材料传播温度变化的能力的大小,两者都是物性参数。
6.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
7.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
8.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
使两个导热壁面之间出现温差。
接触热阻主要与表面粗糙度、表面所受压力、材料硬度、温度及周围介质的物性等有关,因此可以从这些方面考虑减少接触热阻的方法,此外,也可在固体接触面之间衬以导热系数大的铜箔或铝箔等以减少接触热阻。