第二章 无失真信源编码4
- 格式:ppt
- 大小:689.50 KB
- 文档页数:26
《信息论基础》题目:常用无失真信源编码程序设计目录1. 引言 (2)2. 香农编码 (2)2.1 编码步骤 (3)2.2 程序设计 (3)2.3 运行结果 (3)3. 费诺编码 (4)3.1 编码步骤 (5)3.2 程序设计 (5)3.3 运行结果 (5)4. 哈夫曼编码 (6)4.1 编码步骤 (7)4.2 程序设计 (7)4.3 运行结果 (8)5. 结论 (9)6. 参考文献 (10)7. 附录 (11)7.1 香农编码Matlab程序 (11)7.2 费诺编码Matlab程序 (12)7.3 哈夫曼编码Matlab程序 (14)1. 引言信息论(Information Theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。
信息系统就是广义的通信系统,泛指某种信息从一处传送到另一处所需的全部设备所构成的系统。
信息论是关于信息的理论,应有自己明确的研究对象和适用范围[1]。
信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。
信息传输和信息压缩是信息论研究中的两大领域。
这两个方面又由信息传输定理、信源-信道隔离定理相互联系。
信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余度而进行的信源符号变换。
具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列[2]。
在通信中,传送信源信息只需要具有信源极限熵大小的信息率,但在实际的通信系统中用来传送信息的信息率远大于信源极限熵。
为了能够得到或接近信源熵的最小信息率,必须解决编码的问题,而编码分为信源编码和信道编码,其中的信源编码又分为无失真信源编码和限失真信源编码。
由于无失真信源编码只适用于离散信源,所以本次作业讨论无失真离散信源的三种简单编码,即香农(Shannon)编码、费诺(Fano) 编码和哈夫曼(Huffman) 编码[3]。
可变长无失真信源编码定理一、概述可变长无失真信源编码定理是信息论的核心概念之一,它是由美国数学家香农(Claude Shannon)于1948年首次提出。
该定理主要探讨了信源编码的极限性能,为无失真编码提供了理论基础。
可变长无失真信源编码定理不仅在理论上有重要意义,而且在数据压缩、网络传输和存储系统等领域有着广泛的应用价值。
二、定理内容可变长无失真信源编码定理的主要内容是:对于任意给定的离散无记忆信源,存在一种可变长编码方式,使得编码后的平均码长小于或等于信源的熵,从而实现无失真编码。
换句话说,如果信源的熵为H,那么存在一种编码方式,使得编码后的平均码长L满足L ≤ H。
三、证明过程证明可变长无失真信源编码定理的过程较为复杂,涉及到概率论和信息论的基本知识。
以下是证明过程的大致步骤:1.定义信源的熵:信源的熵是信源输出随机变量的不确定性度量,定义为所有可能符号的概率加权和。
如果信源有n个符号,每个符号出现的概率为p1, p2, ..., pn,则信源的熵H定义为H = - Σ (pi * log2(pi)),其中i=1,2,...,n。
2.构造一个可变长度编码表:根据信源的概率分布,构造一个可变长度编码表,使得出现概率较大的符号对应较短的码字,反之亦然。
假设码字长度按照字典序排列,第i个码字的长度为log2(1/pi),其中i=1,2,...,n。
3.计算平均码长:根据可变长度编码表,计算所有可能符号的平均码长。
平均码长等于所有码字长度的概率加权和,即L = Σ(log2(1/pi) * pi),其中i=1,2,...,n。
4.证明平均码长小于或等于信源熵:利用不等式性质和概率分布的性质,推导出平均码长L满足L ≤H。
关键在于利用概率分布的不均匀性,通过调整码字长度来最小化平均码长。
5.构造一个解码函数:为了实现无失真解码,需要构造一个解码函数,使得每个码字能够唯一地还原为原始符号。
解码函数可以采用查表法或类似算法实现。