2018高考数学考试模拟卷及答案
- 格式:pdf
- 大小:1017.75 KB
- 文档页数:8
**2017-2018学年度高三第二学期第三次模拟考试试题**数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题P :()2,00≥∈∃x f R x 则P ⌝为()A.()2,≥∈∀x f R xB. ()2,<∈∀x f R xC.()2,0≤∈∃x f R x D. ()2,0<∈∃x f R x2.复数i iz -=1(i 为虚数单位)在复平面内关于虚轴对称的点位于A.第一象限B. 第二象限C.第三象限D.第四象限3.下面是一段演绎推理:大前提:如果一条直线平行于一个平面,则这条直线平行于这个平面内的所有直线; 小前提:已知直线b ∥平面α,直线a ⊂平面α;结论:所以直线b ∥直线a. 在这个推理中( )A. 大前提正确,结论错误B. 大前提错误,结论错误C. 大、小前提正确,只有结论错误D. 小前提与结论都是错误的 4.设的三内角、、成等差数列,、、成等比数列,则这个三角形的形状是()A. 等边三角形B. 钝角三角形C. 直角三角形D. 等腰直角三角形5.运行如图所示的程序框图,若输出的S 是254,则 应为()A. 5?n ≤B. 6?n ≤C. 7?n ≤D. 8?n ≤6.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭的部分图像如图所示,将函数()f x 的图像向左平移12π个单位长度后,所得图像与函数()y g x =的图像重合,则A.()2sin23g x xπ⎛⎫=+⎪⎝⎭ B.()2sin26g x xπ⎛⎫=+⎪⎝⎭C.()2sin2g x x=D.()2sin23g x xπ⎛⎫=-⎪⎝⎭7.某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为B.C.D.8.已知直线与两坐标轴围成的区域为,不等式组所形成的区域为,现在区域中随机放置一点,则该点落在区域的概率是()A.B.C.D.9.两个正数a、b的等差中项是72,一个等比中项是a b<,则双曲线22221x ya b-=的离心率e等于()A. 34 B.152 C.54 D.5310.如图,,,45AB AC BAD CADαβαβ⊥⊂⊂∠=∠=,则BAC∠=()A. 90°B. 60°C. 45°D. 30°11.魔术师用来表演的六枚硬币中,有5 枚是真币,1 枚是魔术币,它们外形完全相同,但是魔术币与真币的重量不同,现已知和共重10 克,共重11 克,共重16 克,则可推断魔术币为( )A.B. C.D.12.已知双曲线2213xy-=的右焦点恰好是抛物线22y px=(0p>)的焦点F,且M为抛物线的准线与x轴的交点,N为抛物线上的一点,且满足NF=,则点F到直线MN的距离为()A. 12 B. 1C. D. 2二、填空题:本题共4小题,每小题5分,共20分.13.用秦九韶算法求多项式,当时多项式的值为_______________ .14.已知,αβ是两个不同的平面,,m n是两条不同的直线,给出下列命题:①若,m mαβ⊥⊂,则αβ⊥②若,,m n mαα⊂⊂∥,nβ∥β,则α∥β③若,m nαα⊂⊄,且,m n是异面直线,则n与α相交④若,m nαβ⋂=∥m,且,n nαβ⊄⊄, 则n∥α且n∥β.其中正确的命题是_____(只填序号).15.已知向量()()()1,,3,1,1,2a b cλ===,若向量2a b c-与共线,则向量a在向量c方向上的投影为___________.16.若直角坐标平面内两点,P Q满足条件:①,P Q两点分别在函数()y f x=与()y g x=的图象上;②,P Q关于y 轴对称,则称(),P Q 是函数()y f x =与()y g x =的一个“伙伴点组”(点组(),P Q 与(),Q P 看作同一个“伙伴点组”).若函数()(),(0){0lnx x f x x >=≤与()1g x x a =++有两个“伙伴点组”,则实数a 的取值范围是_______.三、解答题17.(12分)已知数列{an}的首项a1=1,前n 项和为Sn ,且数列⎩⎨⎧⎭⎬⎫Sn n 是公差为2的等差数列.(1)求数列{an}的通项公式;(2)若bn =(-1)nan ,求数列{bn}的前n 项和Tn.18.(12分)前几年随着网购的普及,线下零售遭遇挑战,但随着新零售模式的不断出现,零售行业近几年呈现增长趋势,下表为20142017~年中国百货零售业销售额(单位:亿元,数据经过处理,14~分别对应20142017~):(1)由上表数据可知,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)建立y 关于x 的回归方程,并预测2018年我国百货零售业销售额;(3)从20142017~年这4年的百货零售业销售额及2018年预测销售额这5个数据中任取2个数据,求这2个数据之差的绝对值大于200亿元的概率.参考数据:4411800,2355i i i i i y x y ====∑∑ 2.236≈≈参考公式:相关系数()()n x x y y r --=回归方程ˆˆˆy a bx =+中斜率和截距的最小二乘估计公式分别为()()()121ˆni i i n i i x x y y b x x ==--=-∑∑,ˆˆa y bx =-.19.(12分)在三棱锥中,底面,,,是的中点,是线段上的一点,且,连接,,.(1)求证:平面;(2)求点到平面的距离.20.(12分)已知椭圆:的一个焦点与抛物线:的焦点重合,且经过点.(1)求椭圆的方程;(2)已知斜率大于0且过点的直线与椭圆及抛物线自上而下分别交于,如图所示,若,求.21.(12分)已知函数()xf x e ax a=+-(a R∈且0a≠).(1)若函数()f x在0x=处取得极值,求实数a的值;并求此时()f x在[]2,1-上的最大值;(2)若函数()f x不存在零点,求实数a的取值范围.选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为1{x cos y sin θθ=+=(θ为参数),以坐标原点O 为极点,轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为24sin 3ρρθ-=. (Ⅰ)求曲线1C 的极坐标方程和2C 的直角坐标方程;(Ⅱ)直线3πθ=与曲线12C C ,分别交于第一象限内的,两点,求AB .23.【选修4 -5:不等式选讲】已知|42||1|-++=x x x f )(. (Ⅰ)求不等式)(x f <7的解集;(Ⅱ)若)23(-≥x a x f )(在R 上恒成立,求a 的取值范围.文科答案1.【解析】根据特称命题的否定为全称命题,易知原命题的否定为:.故选B. 2.A3.【解析】直线平行于平面,则直线可与平面内的直线平行、异面、异面垂直. 故大前提错误,结论错误. 故选B .4.【解析】由题意,根据等差数列、等比数列的中项公式,得,又,所以,,由正弦定理得,又,得,从而可得,即为等边三角形,故正确答案为A.5.【解析】根据程序框图可知:该程序的作用是累加S=2+22+…+2n 的值, 并输出满足循环的条件. ∵S=2+22+…+26+27=254, 故①中应填n≤7. 故选:C . A7.【解析】由三视图知,该几何体为三棱锥,高为3,其一个侧面与底面垂直,且底面为等腰直角三角形,所以球心在垂直底面的侧面的三角形高上,设球半径为R ,则解得,所以球的表面积为,故选A.8.【解析】作出约束条件表示的可行域,如图所示,其面积为,由,解得,即,所得区域的面积为,根据几何概型及其概率公式,得该点落在区域内的概率为,故选C .9.【解析】由题意可得:(2722{a b ab +==,结合0a b <<求解方程组可得:3{4a b ==,则双曲线中:55,3c c e a ====.本题选择D 选项.10. B【解析】由三余弦定理得001πcos cos cos cos45cos4523BAC BAD CAD BAC ∠=∠∠==⇒∠=选B.11.【解析】5枚真币重量相同,则任意两枚硬币之和一定为偶数,由题意可知,C ,D 中一定有一个为假的,假设C 为假币,则真硬币的重量为5克,则C 的重量为6克,满足A ,C ,E 共重16克,故假设成立,若D 为假币,则真硬币的重量为5克,不满足A ,C ,E 共重16克,故假设不成立,则D 是真硬币,故选:C .12.【解析】分析:求出双曲线的右焦点,即为抛物线的焦点,可得4p =,求出抛物线的准线方程,由抛物线的定义,结合三角形的有关知识求得结果.详解:双曲线2213x y -=的右焦点为()2,0,抛物线2:2(0)C y px p =>的焦点为,02p ⎛⎫ ⎪⎝⎭,则22p =,解得4p =,则抛物线方程为28y x =,准线方程为2x =-,由点N 向抛物线的准线作垂线,垂足为R ,则由抛物线的定义,可得NR NF ==,从而可以得到60NMR ∠=︒,从而得到30NMF ∠=︒,所以有点F 到直线MN的距离为4sin302d=︒=,故选D.13.【解析】,则,故答案为.14.【解析】对于①,由面面垂直的判定定理可得αβ⊥,故①正确.对于②,由题意知,满足条件的平面,αβ的位置关系为α∥β或αβ,相交,故②不正确.对于③,由题意知当满足条件时有n与α相交或n∥α,故③不正确.对于④,由线面平行的判定方法可得n∥α且n∥β,故④正确.综上可得①④正确.答案:①④15.【解析】016.【解析】设点(),x y在()f x上,则点(),x y-所在的函数为()(),0{ln x xh xx-<=≥,则()g x与()h x有两个交点,()g x的图象由1y x=+的图象左右平移产生,当()1f x=时,x e=-,如图,所以,当()g x左移超过e个单位时,都能产生两个交点,所以a的取值范围是(),e+∞。
2018年高考数学(理科)模拟试卷(一)(本试卷分第I卷和第H卷两部分.满分150分,考试时间120分钟)第I卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (2016年四川)设集合A ={x|1W x w 5}, Z为整数集,则集合A A Z中元素的个数是()A. 6B. 5C. 4D. 31. B 解析:由题意,A A Z = {1,2,3,4,5},故其中的元素的个数为5•故选B.2. (2016年山东)若复数z满足2z+ "z = 3-2i,其中i为虚数单位,则z=()A . 1 + 2i B. 1 —2iC.- 1 + 2iD. —1 —2i2. B 解析:设z= a+ bi(a, b€ R),贝U 2z+ z = 3a+ bi = 3-2i,故a= 1, b =- 2, 则z= 1 - 2i.故选B.3. (2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A. 1B. .'2C. .3 D . 23 . C 解析:四棱锥的直观图如图D188 :由三视图可知,SC丄平面ABCD , SA是四棱锥最长的棱,SA= SC2+ AC2= SC2+ AB2+ BC2= 3.故选 C.•S'4. 曲线y= x3- 2x+ 4在点(1,3)处的切线的倾斜角为()n n n nA6 B.3 C.4 D・2n4. C 解析:f' (x)= 3x2—2, f' (1) = 1,所以切线的斜率是1,倾斜角为4.5. 设x€ R, [x]表示不超过x的最大整数.若存在实数t,使得[t] = 1 , [t2] = 2,…,[t n] =n同时成立,则正整数n的最大值是()A. 3B. 4C. 5D. 65. B 解析:因为[x]表示不超过x的最大整数.由[t] = 1,得1 w t<2,由[t2] = 2,得2W t2<3. 由[t3] = 3,得3< t3<4.由[t4] = 4,得4W t4<5.所以2< t2< 5•所以6< t5<4 5•由[t5] = 5,得5< t5<6,与6<t5<4 5矛盾,故正整数n的最大值是4.6. (2016年北京)执行如图M1-2所示的程序框图,若输入的a值为1,则输出的k值为( )图M1-2A. 1B. 2C. 3D. 46. B 解析:输入a = 1,贝U k= 0, b = 1;1进入循环体,a=—2,否,k= 1, a=—2,否,k= 2, a= 1,此时a= b= 1,输出k,贝U k= 2•故选B.7. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+ n的值是()5 m29 2 2 5A . 10B . 11C . 12D . 13别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B . 16万元 C . 17万元 D . 18万元& D 解析:设该企业每天生产甲、乙两种产品分别为x 吨、y 吨,则利润z = 3x + 4y.3x + 2y w 12, x + 2y w 8,由题意可得其表示如图D189阴影部分区域:x > 0, y > 0.当直线3x + 4y - z = 0过点A(2,3)时,z 取得最大值,所以 Z max = 3 X 2+ 4 X 3 = 18.故选D.9. (2016年新课标川)定义“规范01数列” {a n }如下:{a n }共有2m 项,其中m 项为0, m 项为1,且对任意k w 2m , a 1, a 2,…,a k 中0的个数不少于1的个数.若 m = 4,则不同 的“规范01数列”共有()A . 18 个B . 16 个C . 14 个D . 12 个9. C 解析:由题意,必有a 1 = 0, a 8= 1,则具体的排法列表如下:图 M1-37. C 解析: 故选C.由题意, ZR 78+ 88 + 84+ 86+ 92+ 90+ m + 95 oo 得=88,n = 9.所以 m + n = 12.& (2015年陕西)某企业生产甲、乙两种产品均需用 A ,B 两种原料.已知分别生产 1 吨甲、乙产品需原料及每天原料的可用限额如表所示, 如果生产1吨甲、乙产品可获利润分l I]1l0 lI ll I 0 I0 L J l 0 1 l (J I,0 1 I 0 I0 I 1 l ,0 1 L 0 l 00 1 L 0x 1110. (2016 年天津)已知函数 f(x) = si 门号+ ^sin wx — ^(w >0), x € R.若 f(x)在区间(n 2 n)内没有零点,贝U w 的取值范围是( )■ nk n+ /4(n 2n) (k € Z).D.11.四棱锥P-ABCD 的底面ABCD 为正方形,PA 丄底面ABCD , AB = 2,若该四棱锥的 所有顶点都在体积为Z432的同一球面上,则 PA =( )11.B 解析:如图D190,连接AC , BD 交于点E ,取PC 的中点0,连接OE ,贝U OE // PA ,所以OE 丄底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O 为球心,;PC =fi C图 D190C. 0,10.D 1- 85- 8u1- 4D. 0,4'解析: f(x) =1 — cos wx+ sin wx 1 -2sin7t3X —f(x) = 0? sin n八wx — 4 = 0,所以 因此 8' 4 8'0,4,8 •故选+ 8,所以由球的体积可得 ;n 2 PA 2 + 8243 n 16,解得PA = 2.故选B. BA . 3B.|1FA 2+ AC 2=12. 已知F为抛物线y2= x的焦点,点A、B在该抛物线上且位于x轴两侧,若OA OB =6(0为坐标原点),则△ ABO与厶AOF面积之和的最小值为()A. 4B.3-2^C.^4"2D. 1012. B 解析:设直线AB的方程为x= ty+ m,点A(x i, y i), B(x2, y2),直线AB与x 轴的交点为M(m,0),将直线方程与抛物线方程联立,可得y2—ty- m= 0,根据韦达定理有y i y2=—m,因为OA OB = 6,所以x i X2 + y i y2= 6,从而(y i y2)2+ y i y2 —6 = 0,因为点A, B 位于x 轴的两侧,1所以y1 y2=—3,故m= 3,不妨令点A在x轴上方,则y1>0,又F 4, 0,所以&ABO+&1、/c、〃1、/1 13 913 9 1 3 13 13y1 9 前AFO= 2 X 3X (y1—y2)+ 1X鲜=§0 + 亦》2十y1 9 订=2,当且仅当8=亦,即y1 =时取等号,故其最小值为呼3故选B.13 2第H卷(非选择题满分90分)本卷包括必考题和选考题两部分.第13〜21题为必考题,每个试题考生必须作答•第22〜23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5 分.13. __________ 平面向量a= (1,2), b= (4,2), c= ma + b(m € R),且c与a的夹角等于c与b 的夹角,贝U m= __ .13. 2 解析:a= (1,2), b = (4,2),则c= ma + b= (m+ 4,2m+ 2), |a|= 5, |b|= 2 5,c a c b 5m + 8 a c= 5m + 8, b c = 8m+ 20. •/ c 与 a 的夹角等于 c 与 b 的夹角,二|c| |a|= |c| |b「,^5 =;+;°解得m= 2.x2 v214. 设F是双曲线C:二一七=1的一个焦点,若C上存在点P,使线段PF的中点恰 a b为其虚轴的一个端点,则C的离心率为 ___________ .14. 5解析:根据双曲线的对称性,不妨设F(c,0),虚轴端点为(0, b),从而可知点(一c,2b)在双曲线上,有* —晋=1,贝V e2= 5, e=/5.15. (2016年北京)在(1 —2x)6的展开式中,x2的系数为_________ .(用数字作答)15. 60解析:根据二项展开的通项公式T r +1 = C6 (—2)r x r可知,x2的系数为C6(—2)2=60,故填60.116. 在区间[0, n上随机地取一个数x,则事件"sin x<㊁”发生的概率为1 nn时,sin x< 2.16.3解析:由正弦函数的图象与性质知,当x€ 0, - U5 nn6 —0+ n—-6 1所以所求概率为=1.n 3三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1 =1, b2+ b3= 2a3, a5—3b2= 7.(1) 求{a n}和{b n}的通项公式;(2) 设c n= a n b n, n€ N*,求数列{ C n}的前n项和.2q2—3d= 2,17. 解:(1)设{a n}的公比为q,{b n}的公差为d,由题意知q>0.由已知,有4““q —3d= 10.消去d,得q4—2q2—8= 0解得q = 2, d= 2.所以{a n}的通项公式为a n= 2n 1, N ,{ b n}的通项公式为b n= 2n—1, n€ N*.(2)由(1)有c n= (2n—1)2n—1,设{C n}的前n 项和为S n,贝y S n= 1 x 20+ 3 X 21+ 5X 22+ …+ (2n—1) X 2n—1,2S n= 1 X 21+ 3 X 22+ 5 X 23+ …+ (2n —1) X 2n.两式相减,得一S n = 1 + 22+ 23+…+ 2n—(2n —1) X 2n=—(2n—3)X 2n— 3.所以S n= (2n—3) 2n+ 3, n € N*.18. (本小题满分12分)(2014年大纲)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6, 0.5, 0.5,0.4,各人是否需使用设备相互独立.(1) 求同一工作日至少3人需使用设备的概率;(2) X表示同一工作日需使用设备的人数,求X的数学期望.18. 解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i = 0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1) 因为P(B) = 0.6, P(C) = 0.4, P(A i) = C2X 0.52, i = 0,1,2,所以P(D)= P(A1 B C+ A2 B + A2 • B C)= P(A1 B C) + P(A2 B) + P(A2 • B C)=P(A1)P(B)P(C) + P(A2)P(B) + P(A2)P( B )P(C) = 0.31.(2) X的可能取值为0,1,2,3,4,其分布列为P(X = 0) = P( B A 0 • C ) =P( B )P(A 0)P( C )=(1 — 0.6) X 0.52X (1 — 0.4)=0.06,P(X = 1) = P(B A 0 • C + B A 0 C + B A 1 • C ) =P(B)P(A 0)P( C ) + P( B )P(A 0)P(C)+ P( B )P(A 1)P( C )=0.6X 0.52X (1 — 0.4) + (1 - 0.6) X 0.52X 0.4+ (1 - 0.6) X 2 X 0.52X (1 - 0.4) = 0.25, P (X = 4) = P(A 2 B C)= P(A 2)P(B)P(C) =0.52X 0.6X 0.4 = 0.06,P(X = 3) = P(D)-P(X = 4) = 0.25,P(X = 2) = 1- P(X = 0) - P(X = 1) - P(X = 3)- P(X = 4) =1 — 0.06 — 0.25 — 0.25 — 0.06 = 0.38,所以 E(X)= 0 X P(X = 0) + 1 X P(X = 1) + 2 X P(X = 2) + 3X P(X = 3) + 4 X P(X = 4) =0.25+ 2X 0.38+ 3X 0.25+ 4X 0.06= 2.19.(本小题满分 12分)(2016年四川)如图M1-4,在四棱锥 P-ABCD中,AD // BC ,/ ADC 1=/ PAB = 90° ° BC = CD = ^AD , E 为边AD 的中点,异面直线 PA 与CD 所成的角为90 °(1)在平面PAB 内找一点M ,使得直线 CM //平面PBE ,并说明理由;19. 解:(1)在梯形ABCD 中,AB 与CD 不平行.延长AB , DC ,相交于点 M (M €平面FAB ),点M 即为所求的一个点.理由如下: 由已知,BC // ED ,且 BC = ED , 所以四边形BCDE 是平行四边形. 所以 CD // EB. 从而 CM // EB.又EB?平面PBE , CM 平面PBE , 所以CM //平面 PBE.(说明:延长 AP 至点N ,使得AP = PN ,则所找的点可以是直线 MN 上任意一点) (2)方法一,由已知, CD 丄 PA , CD 丄 AD , PA A AD = A , 所以CD 丄平面PAD. 从而CD 丄PD.所以/ PDA 是二面角P-CD-A 的平面角. 所以/ PDA = 45°.设 BC = 1,则在 Rt △ PAD 中,PA = AD = 2.如图D191,过点A 作AH 丄CE ,交CE 的延长线于点 H ,连接PH. 易知PA 丄平面ABCD , 从而PA 丄CE.于是CE 丄平面PAH.所以平面PCE 丄平面PAH.过A 作AQ 丄PH 于Q ,贝U AQ 丄平面PCE.⑵若二面角P-CD-A 的大小为所以/ APH是PA与平面PCE所成的角. 在Rt△ AEH 中,/ AEH = 45° AE = 1,所以AH = 2.2在 Rt △ PAH 中,PH=q RA 2+ AH 2 =色^2,图 D191方法二,由已知, CD 丄PA , CD 丄AD , PA A AD = A , 所以CD 丄平面PAD. 于是CD 丄PD.从而/ PDA 是二面角P-CD-A 的平面角. 所以/ PDA = 45°由PA 丄AB ,可得PA 丄平面 ABCD. 设 BC = 1,则在 Rt A PAD 中,PA = AD = 2.作Ay 丄AD ,以A 为原点,以AD , A P 的方向分别为x 轴,z 轴的正方向,建立如图D192 所示的空间直角坐标系 Axyz ,则 A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以 PE = (1,0,- 2),EC = (1,1,0),AP = (0,0,2) 设平面PCE 的法向量为n = (x ,y ,z),n PE = 0, x -2z = 0, 由得 nEC = 0,x+ y = 0.设 x = 2,解得 n = (2,- 2,1). 设直线PA 与平面PCE 所成角为a ,1所以直线PA 与平面PCE 所成角的正弦值为320. (本小题满分12分)(2016年新课标川)设函数f(x)= In x — x + 1. (1)讨论f(x)的单调性;x 一 1⑵证明当 x € (1,+^)时,1<in _x<x ;⑶设 c>1,证明当 x € (0,1)时,1 + (c — 1)x>c x . 120.解:(1)由题设,f(x)的定义域为(0,+ s ),f ' (x) = 一一 1,令 f ' (x) = 0,解得 x = 1. x当 0<x<1 时,f ' (x)>0,f(x)单调递增; 当x>1时,f ' (x)<0,f(x)单调递减.⑵由(1)知,f(x)在x = 1处取得最大值,最大值为 f(1) = 0. 所以当X M 1时,In x<x — 1.则sin |n AP| a=|n| |晶22X 22+ — 2 2+ 1211 x ——1故当 x € (1,+g )时,In x<x — 1, In 丄<丄一1,即卩 1< <x x x In x '⑶由题设 c>1,设 g(x) = 1 + (c — 1)x — c x , 则 g ' (x)= c -1- c x in c.当x<x o 时,g ' (x)>0, g(x)单调递增;当X>X o 时,g ' (x)<0 , g(x)单调递减.c ——1由⑵知,1<I n c <c ,故 0<x o <1.又 g(0) = g(1)= 0,故当 0<x<1 时,g(x)>0. 所以 x € (0,1)时,1 + (c - 1)x>c x .21. (本小题满分12分)(2016年广东广州综合测试一)已知椭圆C 的中心在坐标原点, 焦点在x 轴上,左顶点为A ,左焦点为F 1( — 2, 0),点B(2, . 2)在椭圆C 上,直线y = kx(k ^ 0) 与椭圆C 交于E , F 两点,直线AE , AF 分别与y 轴交于点M , N.(1) 求椭圆C 的方程;(2) 以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理 由.x 2 y 221. 解:(1)设椭圆C 的方程为a 2 + b 2= 1(a>b >0),因为椭圆的左焦点为 F 1( — 2,0),所以a 2——b 2= 4•①因为点B(2, 2)在椭圆C 上,所以42+ $= 1.②a b由①②,解得a = 2 2, b = 2.所以椭圆C 的方程为:+ y = 1. 8 4⑵因为椭圆C 的左顶点为A ,则点A 的坐标为(一2 2, 0).x 2 y 2因为直线y = kx(k z 0)与椭圆° + : = 1交于两点E , F , 8 4设点 E (X 0, y o )(不妨设 X 0>0),则点 F(-X 0,— y o ).2百k y0 = 1+ 2k 2. y =— (x + 2 V 2). 1+ 1 + 2 k 2 因为直线AE , AF 分别与y 轴交于点M , N ,令x = 0得y =— ,即点M 0, —2卜2k 21 + ^1 +2 k 2 1 +V 1 + 2k 22 \2k同理可得点N 0,——2严 2 .1 — 0'1 +2 k 2In (x)= 0,解得 x o = c - 1 In c In cy = kx ,联立方程组x 2 y 2 消去y ,得x 2= I?.+ y = 1 1 + 2 k 2 8 4所以%0=严2亏,贝y 1 + 2k 2所以直线AE 的方程为所以 |MN|= J ------------ 2 r 2 =: 1+p 1 + 2 k 2 1—讨 1 + 2 k 2 设MN 的中点为P ,则点P 的坐标为P 0, 则以MN 为直径的圆的方程为 x 2+ y + ,2k令 y = 0,得 x 2= 4,即 x = 2 或 x =— 2.故以MN 为直径的圆经过两定点 P 1(2,0), P 2( — 2,0), |k| - 辽 k -2,即卩 x 2+ y 2 + 华y = 4. |k| 请考生在第(22)(23)两题中任选一题作答•注意:只能作答在所选定的题目上•如果多 做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:极坐标与参数方程 x = 2cos 0, 已知曲线C 的参数方程是 (0为参数),以坐标原点为极点,x 轴的正半轴 y = sin 04 n 为极轴建立极坐标系, A 、B 的极坐标分别为 A(2, n 、B2,— (1)求直线AB 的直角坐标方程; ⑵设M 为曲线C 上的动点,求点 M 至煩线AB 距离的最大值.4 n 4 n 22.解:(1)将 A 、B 化为直角坐标为 A(2cos ,n 2sin n) 2cos 3 , 2sin 3,即 A , B 的直角坐标分别为 A( — 2,0), B(— 1,— 3),. -W -0 = o g = — 1 + 2 =—3, •••直线AB 的方程为y — 0=— 3(x + 2), 即直线AB 的方程为 3x + y + 2 3 = 0. (2)设M(2cos 0, sin 0),它到直线 AB 的距离 |2 %?3cos 0+ sin 0+ 2 3| | 13sin 0+$+ 2 3| d = = 23.(本小题满分10分)选修4-5:不等式选讲 已知函数 f(x)= |x — 2|—|2x — a|, a € R. (1)当a = 3时,解不等式f(x)>0 ; ⑵当x € ( — a, 2)时,f(x)<0恒成立,求a 的取值范围. 23.解:(1)当 a = 3 时,f(x)>0 ,即即 |x — 2|— |2x — 3|>0, 等价于X W 2, x — 1>0, 3 <x<2, x > 2, 或2 , 或 ,—x + 1>0.—3x + 5>0,解得i<x w 2,或2<x<;.5所以原不等式的解集为x 1<x<5 .3(2)f(x)= 2-x—|2x—a|,所以f(x)<0可化为|2x—a|>2 —x, ①即2x—a>2 —x,或2x—a<x— 2.①式恒成立等价于(3x—2) min>a 或(X+ 2)max<a , •/ x€ (—8, 2),••• a>4.。
2018年高考模拟试卷(数学)答案 第Ⅰ卷 (选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B2.D3.A4.B5.A6.B7.C8.C9.D 10.B 11.A 12.D第Ⅱ卷 (非选择题 共90分)二 .填空题:本大题共4个小题,没小题4分,共16分。
把答案填在题中横线上。
13. e 114.496 15. 5416.1,3三、解答题17.(1)依题意,随机变量ξ的取值是2、3、4、5、6.因为64983)2(22===ξP ;6418832)3(22=⨯==ξP ; 642182323)4(22=⨯⨯+==ξP ;64128232)5(2=⨯⨯==ξP ; 64482)6(22===ξP ;所以,当4=ξ 时,其发生的概率6421)4(==ξP 最大。
6分(2)41564466412564214641836492=⨯+⨯+⨯+⨯+⨯=ξE 8分 644)4156(6412)4155(6421)4154(6418)4153(649)4152(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξD =10241248=3239 所以,所求期望为415,所求方差为3239. 12分 18解:(1))3sin ,(cos ),sin ,3(cos -=-=αααα , 2分αααcos 610sin )3(cos ||22-=+-=∴AC ,αααsin 610)3(sin cos ||22-=-+=BC . 4分由||||=得ααcos sin =. 又45),23,2(παππα=∴∈ . 6分 (2)由.1)3(sin sin cos )3(cos ,1-=-+--=⋅αααα得.32cos sin =+∴αα① 7分又.cos sin 2cos sin 1cos sin 2sin 2tan 12sin sin 222αααααααααα=++=++ 9分 由①式两分平方得,94cos sin 21=+αα .95tan 12sin sin 2.95cos sin 22-=++∴-=∴ααααα 12分19.(1)连BD AC 、相交于O ,则O 为ABCD 的中心,ABCD PO ABCD P 面为正四棱锥,⊥∴- ,且 60=∠PAO ;;22,6,2,2===∴=PA PO AO AB 2分过O 作 OM ⊥AB,连PM ,由三垂线定理,得 PM ⊥AB,所以PMO ∠为所求二面角的平面角,6t a n ,6,1=∠∴==P MO PO OM ,即侧面与底面所成二面角的大小为6arctan .6分(2)假设存在点E ,使得PC AE ⊥,设x BE =,在平面PBC 中,过E 作PC EF //交BC于F ,连AF,在221cos =∠∆EBA BEA 中,,221222222x x AE ⨯⨯-+==4+x x 22-在PBC ∆中,由PC EF //,得PC EF BC BF BP BE == ,即22222EFBF x ==, 2xBF =∴,x EF =. 2422x AF ABF +=∆中,在在222AF EF AE AEF Rt =+∆中,,2424222x x x x +=+-+∴,解得,舍去)或(0322==x x . 12分 20.(1)(i )当n=1时,1)1(11=-+=+a a b a ,命题成立.(ii)假设k n =时命题成立,即1=+k k b a ,那么当1+=k n 时,111)1(112221111==-=-+=-+-⋅=+⋅=+++++kk k k kk k kk kk k k k k k k b ba b a a b a b a b a b b a b a.1时,命题成立当+=∴k n综上,1=+n n b a ,对一切正整数均成立。
2018 年浙江省高考全真模拟数学试卷(一)一、单选题:本大题共10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.(分)已知集合2+4x≥0} ,, C={ x| x=2n, n∈1 4A={ x| ﹣ xN} ,则( A∪B)∩ C=()A.{ 2,4} B.{ 0,2}C.{ 0, 2, 4}D.{ x| x=2n,n∈N}2.(4 分)设 i 是虚数单位,若,x,y∈R,则复数 x+yi 的共轭复数是()A.2﹣i B.﹣ 2﹣i C. 2+i D.﹣ 2+i.(分)双曲线2﹣y2的焦点到其渐近线的距离为()3 4x=1A.1B.C.2D.4.(4 分)已知 a,b∈R,则“a|| >b| b| ”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件.(分)函数2﹣e| x|在 [ ﹣ 2, 2] 的图象大致为()5 4y=2xA.B.C.D.6.(4 分)若数列 { a n} 满足 { a1} =2,{ a n+1} =(n∈N*),则该数列的前2017项的乘积是()A.﹣ 2 B.﹣ 3 C.2D.7.(4 分)如图,矩形 ADFE,矩形 CDFG,正方形 ABCD两两垂直,且 AB=2,若线段 DE 上存在点 P 使得 GP⊥BP,则边 CG长度的最小值为()A.4B.C.2D.8.(4 分)设函数,g(x)=ln(ax 2﹣2x+1),若对任意的 x1∈ R,都存在实数 x2,使得 f (x1)=g(x2)成立,则实数 a 的取值范围为()A.(0,1]B.[ 0,1]C.( 0, 2] D.(﹣∞, 1]9.(4 分)某班有的学生数学成绩优秀,如果从班中随机地找出 5 名学生,那么其中数学成绩优秀的学生数ξ服从二项分布,则 E(﹣ξ)的值为()A.B.C.D.10.(4 分)已知非零向量,满足 | | =2| | ,若函数 f(x)= x3+ | | x2 +x+1在 R 上存在极值,则和夹角的取值范围是()A.B.C.D.二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分11.( 6 分)某几何体的三视图如图所示,则该几何体的体积为,表面积为.12.( 6 分)在的展开式中,各项系数之和为64,则 n=;展开式中的常数项为.13.( 6 分)某人有 4 把钥匙,其中 2 把能打开门.现随机地取 1 把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是.如果试过的钥匙不扔掉,这个概率又是.14.( 6 分)设函数 f (x)=,①若 a=1,则 f (x)的最小值为;②若 f (x)恰有 2 个零点,则实数 a 的取值范围是.15.( 4 分)当实数 x,y 满足时,ax+y≤4恒成立,则实数a 的取值范围是.16.( 4 分)设数列 { a n } 满足,且对任意的n∈ N*,满足,,则 a2017=.17.( 4 分)已知函数 f( x)=ax2+2x+1,若对任意 x∈ R, f[ f( x)] ≥0 恒成立,则实数 a 的取值范围是.三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算过程18.已知函数 f (x)=x﹣1,x∈ R.(I)求函数 f(x)的最小正周期和单调递减区间;(II)在△ ABC中,A,B,C 的对边分别为 a,b,c,已知 c= ,(fC)=1,sinB=2sinA,求 a,b 的值.19.如图,在四面体ABCD中,已知∠ ABD=∠ CBD=60°, AB=BC=2, CE⊥BD 于 E (Ⅰ)求证:BD⊥ AC;(Ⅱ)若平面 ABD⊥平面 CBD,且 BD= ,求二面角 C﹣AD﹣B 的余弦值.20.已知函数.(Ⅰ)当 a=2,求函数 f (x )的图象在点( 1,f ( 1))处的切线方程;(Ⅱ)当 a >0 时,求函数 f (x )的单调区间.21.已知曲线 21) 2+y 2 ( ≥ ),直线 l 与曲线 C 相交于 , C : y =4x , M :(x ﹣ =4 x 1A B 两点, O 为坐标原点.(Ⅰ)若,求证:直线 l 恒过定点,并求出定点坐标;(Ⅱ)若直线 l 与曲线 M 相切,求的取值范围.} 满足 a ,,⋯, ⋯( ∈ N * ) 22.数列 { a n 1=1 a 2=+ a n = + + +n( 1)求 a 2, a 3,a 4, a 5 的值;( 2)求 a n 与 a n ﹣ 1 之间的关系式( n ∈ N *,n ≥2);( 3)求证:(1+ )(1+ ) ⋯(1+ )< 3( n ∈ N *)2018 年浙江省高考全真模拟数学试卷(一)参考答案与试题解析一、单选题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.( 分)已知集合2+4x ≥0} , , C={ x| x=2n , n ∈1 4 A={ x| ﹣ x N} ,则( A ∪B )∩ C=()A .{ 2,4}B .{ 0,2}C .{ 0, 2, 4}D .{ x| x=2n ,n ∈N} 【解答】 解: A={ x| ﹣ x 2+4x ≥0} ={ x| 0≤x ≤ 4} ,={ x| 3﹣4< 3x <33} ={ x| ﹣ 4<x <3} ,则 A ∪B={ x| ﹣ 4< x ≤4} ,C={ x| x=2n ,n ∈N} ,可得( A ∪B )∩ C={ 0, 2, 4} ,故选 C .2.(4 分)设 i 是虚数单位,若,x ,y ∈R ,则复数 x+yi 的共轭复数是()A .2﹣iB .﹣ 2﹣iC . 2+iD .﹣ 2+i【解答】 解:由,得 x+yi==2+i ,∴复数 x+yi 的共轭复数是 2﹣i .故选: A .3.(4 分)双曲线 x 2﹣y 2=1 的焦点到其渐近线的距离为()A .1B .C .2D .【解答】 解:根据题意,双曲线的方程为 x 2﹣ y 2=1,其焦点坐标为(±, 0),其渐近线方程为 y=±x ,即 x ±y=0,则其焦点到渐近线的距离 d= =1;故选: A .4.(4 分)已知 a ,b ∈R ,则 “a || >b| b| ”是 “a>b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解答】 解:设 f ( x )=x| x| =,由二次函数的单调性可得函数f (x )为增函数,则若 a >b ,则 f ( a )> f (b ),即 a| a| > b| b| ,反之也成立,即 “a || >b| b| ”是 “a>b ”的充要条件,故选: C ..( 分)函数 2﹣e| x |在 [ ﹣ 2, 2] 的图象大致为()5 4 y=2xA .B .C .D .【解答】 解:∵ f (x )=y=2x 2﹣e |x |,∴ f (﹣ x ) =2(﹣ x )2﹣ex=2x 2﹣e x,| ﹣ || |故函数为偶函数,当 x=±2 时, y=8﹣e 2∈( 0,1),故排除 A ,B ;当 x ∈[ 0,2] 时, f (x )=y=2x 2﹣e x,∴ f ′( x )=4x ﹣ e x=0 有解,故函数 y=2x 2﹣ e |x |在 [ 0,2] 不是单调的,故排除 C ,故选: D6.(4 分)若数列 { a n } 满足 { a 1} =2,{ a n +1} = (n ∈N *),则该数列的前 2017项的乘积是()A .﹣ 2B .﹣ 3C .2D .【解答】 解:∵数列,∴ a 2= =﹣ 3,同理可得: a 3= ,a 4= ,a 5=2,⋯.∴ a n +4=a n , a 1a 2 a 3a 4=1.∴该数列的前 2017 项的乘积 =1504× a 1=2.故选: C .7.(4 分)如图,矩形 ADFE ,矩形 CDFG ,正方形 ABCD 两两垂直,且 AB=2,若线段 DE 上存在点 P 使得 GP ⊥BP ,则边 CG 长度的最小值为( )A .4B .C .2D .【解答】 解:以 DA , DC ,DF 为坐标轴建立空间坐标系,如图所示:设 CG=a ,P (x ,0,z ),则,即 z= .又 B (2,2,0), G ( 0, 2, a ),∴ =(2﹣x ,2,﹣ ), =(﹣ x ,2,a (1﹣ )),∴=(x ﹣2)x+4+=0,显然 x ≠0 且 x ≠ 2,∴ a 2=,∵ x ∈( 0, 2),∴ 2x ﹣x 2∈( 0,1] ,∴当 2x ﹣ x 2=1 时, a 2取得最小值 12,∴ a 的最小值为 2 .故选 D .8.(4 分)设函数,g (x )=ln (ax 2﹣2x+1),若对任意的 x 1∈ R ,都存在实数 x 2,使得 f (x 1)=g (x 2)成立,则实数 a 的取值范围为()A .(0,1]B .[ 0,1]C .( 0, 2]D .(﹣∞, 1]【解答】 解:设 g ( x ) =ln ( ax 2﹣2x+1)的值域为 A ,∵ f (x )=1﹣在 R 上的值域为(﹣∞, 0] ,∴(﹣∞, 0] ? A ,∴ h ( x )=ax 2﹣2x+1 至少要取遍( 0, 1] 中的每一个数,又 h (0)=1,∴实数 a 需要满足 a ≤0 或,解得 a ≤1.∴实数 a 的范围是(﹣∞, 1] ,故选: D .9.(4 分)某班有的学生数学成绩优秀,如果从班中随机地找出5 名学生,那么其中数学成绩优秀的学生数ξ服从二项分布,则 (E ﹣ ξ)的值为( )A .B .C .D .【解答】 解:∵ ξ服从二项分布,∴ E ( ξ)=5× = ,∴ E (﹣ ξ) =﹣ E ( ξ)=﹣ .故选 D .10.(4 分)已知非零向量 , 满足 | | =2|| ,若函数 f (x )= x 3+ | | x 2+ x+1在 R 上存在极值,则 和 夹角的取值范围是( ) A .B .C .D .【解答】 解:;∵ f (x )在 R 上存在极值;∴ f ′( x )=0 有两个不同实数根; ∴;即,;∴ ;∴;∴ 与 夹角的取值范围为 .故选 B .二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分11.(6 分)某几何体的三视图如图所示, 则该几何体的体积为,表面积为7+.【解答】 解:由三视图还原原几何体如图:该几何体为组合体,左右两边都是棱长为1 的正方体截去一个角,则该几何体的体积为;表面积为=.故答案为: ;.12.( 6 分)在 的展开式中,各项系数之和为 64,则 n=6 ;展开式中的常数项为15 .【解答】 解:令 x=1,则在的展开式中,各项系数之和为2n,=64解得 n=6,则其通项公式为 C 6rx,令 6﹣3r=0,解得 r=2,则展开式中的常数项为 C 62=15故答案为: 6,1513.( 6 分)某人有 4 把钥匙,其中 2 把能打开门.现随机地取 1 把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是.如果试过的钥匙不扔掉,这个概率又是.【解答】解:第二次打开门,说明第一次没有打开门,故第二次打开门的概率为× = .如果试过的钥匙不扔掉,这个概率为× = ,故答案为: ; .14.( 6 分)设函数 f (x )=,①若 a=1,则 f (x )的最小值为﹣1 ;②若 f (x )恰有 2 个零点,则实数 a 的取值范围是≤ a < 1 或 a ≥2 .【解答】 解:①当 a=1 时, f ( x ) =,当 x <1 时, f (x )=2x﹣1 为增函数, f (x )>﹣ 1,当 x >1 时, f (x )=4( x ﹣ 1)(x ﹣2)=4( x 2﹣3x+2)=4(x ﹣ ) 2﹣1,当 1<x < 时,函数单调递减,当 x > 时,函数单调递增, 故当 x= 时, f (x ) min =f ( ) =﹣ 1,x②设 h (x )=2 ﹣a ,g (x )=4( x ﹣a )(x ﹣2a )所以 a >0,并且当 x=1 时, h (1)=2﹣a > 0,所以 0< a < 2,而函数 g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以 2a ≥1,且 a <1,所以 ≤a <1,若函数 h ( x )=2x﹣a 在 x <1 时,与 x 轴没有交点,则函数 g (x )=4(x ﹣a )(x ﹣2a )有两个交点,当 a ≤0 时, h ( x )与 x 轴无交点, g (x )无交点,所以不满足题意(舍去) ,当 h (1)=2﹣ a ≤ 0 时,即 a ≥2 时, g ( x )的两个交点满足 x 1=a , x 2=2a ,都是满足题意的,综上所述 a 的取值范围是≤a<1,或a≥ 2.15.( 4 分)当实数 x,y 满足时,ax+y≤4恒成立,则实数a 的取值范围是(﹣∞,].【解答】解:由约束条件作可行域如图联立,解得 C(1,).联立,解得 B(2,1).在x﹣y﹣ 1=0 中取 y=0 得 A(1,0).由 ax+y≤ 4 得 y≤﹣ ax+4要使 ax+y≤4 恒成立,则平面区域在直线y=﹣ ax+4 的下方,若a=0,则不等式等价为 y≤ 4,此时满足条件,若﹣ a>0,即 a<0,平面区域满足条件,若﹣ a<0,即 a>0 时,要使平面区域在直线 y=﹣ ax+4 的下方,则只要 B 在直线的下方即可,即 2a+1≤4,得 0<a≤ .综上 a≤∴实数 a 的取值范围是(﹣∞,] .故答案为:(﹣∞,] .16.( 4 分)设数列 { a n } 满足,且对任意的 n ∈ N *,满足,,则 a 2017.=【解答】 解:对任意的 n ∈ N *,满足 a n +2﹣a n ≤2n ,a n +4﹣a n ≥5× 2n,∴ a n +4﹣ a n +2≤2n +2,∴ 5× 2n≤a n +4﹣a n +2+a n +2﹣a n ≤2n +2+2n =5× 2n,∴ a n +4﹣ a n =5×2n,∴ a 2017=(a 2017﹣ a 2013)+(a 2013﹣a 2009)+⋯+(a 5﹣ a 1)+a 1 =5×( 22013+22009+⋯+2)+ =5×+ = ,故答案为:.( 分)已知函数2+2x+1,若对任意 x ∈ R , f[ f ( x )] ≥0 恒成立, 17 4 f ( x )=ax 则实数 a 的取值范围是a ≥.【解答】 解:当 a=0 时,函数 f (x )=2x+1, f[ f ( x )] =4x+3, 不满足对任意 x ∈R , f[ f (x )] ≥0 恒成立, 当 a >0 时, f (x )≥=1﹣ ,f[ f (x )] ≥f ( 1﹣ )=a ( 1﹣ )2+2(1﹣ )+1=a ﹣ +1,解 a ﹣ +1≥ 0 得: a ≤,或 a ≥,故 a ≥,当 a <0 时, f (x )≤=1﹣,不满足对任意 x ∈R , f[ f (x )] ≥0 恒成立,综上可得: a ≥故答案为: a ≥三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算过程18.已知函数 f (x )=x ﹣1,x ∈ R .( I )求函数 f (x )的最小正周期和单调递减区间;( II )在△ ABC 中,A ,B ,C 的对边分别为 a ,b ,c ,已知 c= ,(fC )=1,sinB=2sinA ,求 a ,b 的值.【解答】 解:由, ⋯(2 分)( 1)周期为 T=π,⋯(3 分)因为, ⋯(4 分)所以,∴函数的单减区间为;⋯(6 分)( 2)因为,所以;⋯(7 分)所以,a 2+b 2﹣ ab=3,⋯( 9 分)又因为 sinB=2sinA ,所以 b=2a , ⋯( 10 分)解得: a=1,b=2,∴ a , b 的值 1, 2.⋯(12 分)19.如图,在四面体 ABCD 中,已知∠ ABD=∠ CBD=60°, AB=BC=2, CE ⊥BD 于 E(Ⅰ)求证: BD ⊥ AC ;(Ⅱ)若平面 ABD⊥平面 CBD,且 BD= ,求二面角 C﹣AD﹣B 的余弦值.【解答】(I)证明:连接 AE,∵AB=BC,∠ ABD=∠CBD, BE是公共边,∴△ ABE≌△ CBE,∴∠ AEB=∠CEB,∵CE⊥BD,∴ AE⊥BD,又AE? 平面 ACE,CE? 平面 ACE,AE∩ CE=E,∴ BD⊥平面 ACE,又AC? 平面 ACE,∴BD⊥AC.( 2)解:过 E 作 EF⊥AD 于 F,连接 CF,∵平面 ABD⊥平面 BCD, CE? 平面 BCD,平面 ABD∩平面 BCD=BD,CE⊥ BD,∴CE⊥平面 ABD,又 AD? 平面 ABD,∴CE⊥AD,又 AD⊥ EF,∴AD⊥平面 CEF,∴∠ CFE为二面角 C﹣ AD﹣ B 的平面角,∵AB=BC=2,∠ ABD=∠CBD=60°,AE⊥BD,CE⊥BD,∴ BE=1, AE=CE= , DE= ,∴ AD==,EF==,CF==,∴cos∠ CFE= =.∴二面角 C﹣AD﹣ B 的余弦值为.20.已知函数.(Ⅰ)当 a=2,求函数 f (x)的图象在点( 1,f( 1))处的切线方程;(Ⅱ)当 a>0 时,求函数 f(x)的单调区间.【解答】解:(Ⅰ)根据题意,当 a=2 时,,∴,∴,f'(1)=0;∴函教f( x)的图象在点( 1,f (1))处的切线方程为.(Ⅱ)由题知,函数 f ( x )的定义域为( 0 , + ∞),,令f(x)=0,解得 x1=1,x2=a﹣1,①当 a>2 时,所以 a﹣1>1,在区间( 0, 1)和( a﹣1,+∞)上 f (x)> 0;在区间( 1, a﹣1)上 f'(x)< 0,故函数 f( x)的单调递增区间是( 0,1)和(a﹣1,+∞),单调递减区间是( 1,a﹣1).②当 a=2 时, f'(x)> =0 恒成立,故函数 f( x)的单调递增区间是( 0,+∞).③当 1<a<2 时, a﹣ 1< 1,在区间( 0,a﹣ 1),和( 1,+∞)上 f'(x)> 0;在( a﹣1, 1)上 f' (x)< 0,故函数 f( x)的单调递增区间是( 0,a﹣1),(1,+∞),单调递减区间是( a﹣1,1)④当 a=1 时, f'(x)=x﹣1,x> 1 时 f'(x)> 0, x<1 时 f' (x)< 0,函数 f(x)的单调递增区间是( 1,+∞),单调递减区间是( 0,1)⑤当0<a<1 时, a﹣ 1< 0,函数 f( x)的单调递增区间是( 1,+∞),单调递减区间是( 0, 1),综上,① a >2 时函数 f (x )的单调递增区间是( 0, 1)和( a ﹣1,+∞),单调递减区间是( 1,a ﹣1);② a=2 时,函数 f (x )的单调递增区间是( 0,+∞);③当 0<a <2 时,函数 f (x )的单调递增区间是( 0,a ﹣1),(1,+∞),单调递减区间是( a ﹣1,1);④当 0<a ≤1 时,函数 f (x )的单调递增区间是 ( 1,+∞),单调递减区间是 (0,1).22+y 2( ≥ ),直线 l 与曲线 C 相交于 , 21.已知曲线 C : y =4x , M :(x ﹣ 1) =4 x 1 AB 两点, O 为坐标原点.(Ⅰ)若,求证:直线 l 恒过定点,并求出定点坐标;(Ⅱ)若直线 l 与曲线 M 相切,求的取值范围.【解答】 解:(Ⅰ)由已知,可设 l :x=my+n , A ( x 1,y 1)?¢,B (x 2,y 2) 由得: y 2﹣4my ﹣4n=0,∴ y 1+y 2=4m ,y 1?y 2=﹣ 4n .∴ x 1+x 2=4m 2+2n ,x 1?x 2=n 2,∴由?=﹣4 可得: x 1?x 2+y 1?y 2=n 2﹣ 4n=﹣4.解得: n=2.∴ l :x=my+2,∴直线 l 恒过定点( 2, 0).(Ⅱ)∵直线 l 与曲线 C 1 相切, M (1,0),显然 n ≥ 3,∴=2,整理得: 4m 2=n 2﹣2n ﹣3.①由(Ⅰ)及①可得:?=( x 1﹣1,y 1)?(x 2﹣ 1, y 2)=(x 1﹣1)( x 2﹣1)+y 1 ?y 2=x 1?x 2﹣(x 1+x 2)+1+y 1?y 2=n 2﹣ 4m 2﹣2n+1﹣4n=n 2﹣4m2﹣ 6n+1=4﹣4n∴? ≤﹣ 8,即的取值范围是(﹣∞,﹣ 8] .22.数列 { a n } 满足 a 1=1, a 2= +,⋯, a n = + +⋯+ (n ∈N *)( 1)求 a 2, a 3,a 4, a 5 的值;( 2)求 a n 与 a n ﹣ 1 之间的关系式( n ∈ N *,n ≥2);( 3)求证:(1+ )(1+ ) ⋯(1+ )< 3( n ∈ N *)【解答】 解:(1)a 2 = +=2+2=4,a 3= + +=3+6+6=15,a 4= + + + =4+4×3+4× 3×2+4× 3× 2× 1=64,a 5= + + + +=5+20+60+120+120=325;( 2) a n = + +⋯+ =n+n (n ﹣1)+n (n ﹣ 1)(n ﹣2)+⋯+n!=n+n[ (n ﹣1)+(n ﹣1)( n ﹣ 2)+⋯+(n ﹣1)!]=n+na n ﹣ 1;( 3)证明:由( 2)可知= ,所以( 1+)(1+ ) ⋯(1+ )= ? ⋯== + + +⋯+ = + ++⋯+=+ + +⋯+ ≤ 1+1+++⋯+=2+1﹣+ ﹣+⋯+﹣=3﹣<3(n ≥2).所以 n ≥2 时不等式成立,而n=1 时不等式显然成立,所以原命题成立.。
2018年普通高等学校招生全国统一考试模拟试题理数(四)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知虚数单位,复数对应的点在复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】因为=所对应的点为,在第四项限.故答案为:D.2. 已知集合,,若,则实数的取值范围为()A. B. C. D.【答案】D【解析】},若,则故答案为:D.3. 设,,,,为实数,且,,下列不等式正确的是()A. B. C. D.【答案】D【解析】取a=2,b=4,c=3,d=2,d-a=0,c-b=-1,此时d-a>c-b,A错误;取a=2,b=3,小,则,,此时,B错误;取b=3,a=,c=1,d=-3,,C错误;对于D ,D正确.故选D.4. 设随机变量,则使得成立的一个必要不充分条件为()A. 或B.C.D. 或【答案】A【解析】由,得到=,故3m=3,得到m=1,则使得成立的充要条件为m=1,故B错误;因为是的真子集,故原题的必要不充分条件为或.故答案为:A.5. 执行如图所示的程序框图,若输出的结果,则判断框内实数应填入的整数值为()A. 998B. 999C. 1000D. 1001【答案】A【解析】因为令则故当根据题意此时退出循环,满足题意,则实数M应填入的整数值为998,故答案为:A.6. 已知公差不为0的等差数列的前项和为,若,则下列选项中结果为0的是()A. B. C. D.【答案】C【解析】由得到,因为公差不为0,故=0,由等差数列的性质得到,故答案为:C.7. 设,分别为双曲线(,)的左、右顶点,过左顶点的直线交双曲线右支于点,连接,设直线与直线的斜率分别为,,若,互为倒数,则双曲线的离心率为()A. B. C. D.【答案】B【解析】由圆锥曲线的结论知道故答案为:B.8. 如图所示,网格纸上小正方形的边长为1,粗实线画出的是几何体的三视图,则该几何体的体积为()A. B. C. 16 D.【答案】A【解析】由已知中的三视图得到该几何体是一个半圆柱挖去了一个三棱锥,底面面积为,高为4,该几何体的体积为...........................故答案为:A .9. 已知曲线和直线所围成图形的面积是,则的展开式中项的系数为()A. 480B. 160C. 1280D. 640【答案】D【解析】由题意得到两曲线围成的面积为=故答案为:D.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.10. 在平面直角坐标系中,为坐标原点,,,,,设,,若,,且,则的最大值为()A. 7B. 10C. 8D. 12【答案】B【解析】已知,,,得到因为,,故有不等式组表示出平面区域,是封闭的三角形区域,当目标函数过点(2,4)时取得最大值,为10.故答案为:B.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值;注意解答本题时不要忽视斜率不存在的情形.11. 如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线的方程为,其左、右焦点分别是,,直线与椭圆切于点,且,过点且与直线垂直的直线与椭圆长轴交于点,则()A. B. C. D.【答案】C【解析】由椭圆的光学性质得到直线平分角,因为由,得到,故.故答案为:C.12. 将给定的一个数列:,,,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将作为第一组,将,作为第二组,将,,作为第三组,…,依次类推,第组有个元素(),即可得到以组为单位的序列:,,,…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第个括号称为第群,从而数列称为这个分群数列的原数列.如果某一个元素在分群数列的第个群众,且从第个括号的左端起是第个,则称这个元素为第群众的第个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,),…,以此类推.设该数列前项和,若使得成立的最小位于第个群,则()A. 11 B. 10 C. 9 D. 8【答案】B【解析】由题意得到该数列的前r组共有个元素,其和为则r=9时,故使得N>14900成立的最小值a位于第十个群.故答案为:B.点睛:这个题目考查的是新定义题型,属于数列中的归纳推理求和问题;对于这类题目,可以先找一些特殊情况,总结一下规律,再进行推广,得到递推关系,或者直接从变量较小的情况开始归纳得到递推关系.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若函数为偶函数,则__________.【答案】-1【解析】由偶函数的定义得到,即=即恒成立,k=-1.故答案为:-1.14. 已知,,则__________.【答案】【解析】=,故=,因为,故=,故,故.故答案为:.15. 中华民族具有五千多年连绵不断的文明历史,创造了博大精深的中华文化,为人类文明进步作出了不可磨灭的贡献.为弘扬传统文化,某校组织了国学知识大赛,该校最终有四名选手、、、参加了总决赛,总决赛设置了一、二、三等奖各一个,无并列.比赛结束后,对说:“你没有获得一等奖”,对说:“你获得了二等奖”;对大家说:“我未获得三等奖”,对、、说:“你们三人中有一人未获奖”,四位选手中仅有一人撒谎,则选手获奖情形共计__________种.(用数字作答)【答案】12【解析】设选手ABCD获得一等奖,二等奖,三等奖,分别用表示获得的奖次,其中i=0时,表示为获奖,若C说谎,则若B说谎则等九种情况,若A说谎则若D说谎则,公12种情况.故答案为:12.16. 已知为的重心,点、分别在边,上,且存在实数,使得.若,则__________.【答案】3【解析】设连接AG并延长交BC于M,此时M为BC的中点,故故存在实数t使得,得到故答案为:3.点睛:本题考查了向量共线定理、平面向量基本定理、考查了推理能力与计算能力,属于中档题.在解决多元的范围或最值问题时,常用的解决方法有:多元化一元,线性规划的应用,均值不等式的应用,“乘1法”与基本不等式的性质,等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,所对的边分别为,,,已知.(1)求角的大小;(2)若的面积,为边的中点,,求.【答案】(1);(2)5.【解析】试题分析:(1) 由正弦定理,得,又,进而得到;(2)的面积,得,两边平方得到,结合两个方程得到结果.解析:(1)因为,由正弦定理,得.又,所以,即.因为,故.所以.(2)由的面积,得.又为边的中点,故,因此,故,即,故.所以.18. 市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占领了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:月份市场份额请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额.如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为,经统计,当时,企业每天亏损约为200万元;当时,企业平均每天收入约为400万元;当时,企业平均每天收入约为700万元.①设该企业在六月份每天收入为,求的数学期望;②如果将频率视为概率,求该企业在未来连续三天总收入不低于1200万元的概率.附:回归直线的方程是,其中,,【答案】(1);预测该企业2017年7月份的市场份额为23%.(2) ①;②.【解析】试题分析:(1)根据题中数据得到,,,,代入样本中心值得到,进而得到方程,将x=7代入方程即可;(2)由题干知设该企业每天亏损约为200万元为事件,平均每天收入约达到400万元为事件,平均每天收入约达到700万元为事件,则,,,进而得到分布列和均值;由第一小问得到未来连续三天该企业收入不低于1200万元包含五种情况,求概率之和即可.解析:(1)由题意,,,故,,由得,则.当时,,所以预测该企业2017年7月的市场份额为23%.(2)①设该企业每天亏损约为200万元为事件,平均每天收入约达到400万元为事件,平均每天收入约达到700万元为事件,则,,.故的分布列为所以(万元).②由①知,未来连续三天该企业收入不低于1200万元包含五种情况.则.所以该企业在未来三天总收入不低于1200万元的概率为0.876.19. 如图,在三棱柱中,侧面为矩形,,,为棱的中点,与交于点,侧面,为的中点.(1)证明:平面;(2)若,求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】试题分析:(1)取中点为,连接,,,可证明四边形为平行四边形,进而得到线面平行;(2)建立坐标系得到直线的方向向量和面的法向量,由向量的夹角公式得到要求的线面角. 解析:(1)取中点为,连接,,,由,,,,得,且,所以四边形为平行四边形.所以,又因为平面,平面,所以平面.(2)由已知.又平面,所以,,两两垂直.以为坐标原点,,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,则经计算得,,,,因为,所以,所以,,.设平面一个法向量为,由令,得.设直线与平面所成的角为,则.20. 已知焦点为的的抛物线:()与圆心在坐标原点,半径为的交于,两点,且,,其中,,均为正实数.(1)求抛物线及的方程;(2)设点为劣弧上任意一点,过作的切线交抛物线于,两点,过,的直线,均于抛物线相切,且两直线交于点,求点的轨迹方程.【答案】(1)答案见解析;(2).【解析】试题分析:(1)由题意可得到将点A坐标代入方程可得到m=2,进而得到点A的坐标,由点点距得到半径;(2)设,,,,由直线和曲线相切得到,:,同理:,联立两直线得,根据点在圆上可消参得到轨迹.解析:(1)由题意,,故。
2018年浙江高考仿真卷(一)(对应学生用书第163页)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若i 是虚数单位,复数z 满足(1-i)z =1,则|2z -3|=( ) A. 3 B. 5 C. 6D.7B [由题意得z =11-i =1+i -+=12+12i ,则|2z -3|=|-2+i|=-2+12=5,故选B.]2.若a ,b 都是正数,则⎝⎛⎭⎪⎫1+b a ⎝⎛⎭⎪⎫1+4a b 的最小值为( )A .7B .8C .9D .10C [⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=1+4a b +b a+4≥5+24a b ·b a=9,当且仅当2a =b 时,等号成立,所以⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b 的最小值为9,故选C.]3.已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( ) A .± 3 B .±1 C .±34D .±33A [因为点M 到抛物线的焦点的距离为2p ,所以点M 到抛物线的准线的距离为2p ,则点M 的横坐标为3p2,即M ⎝ ⎛⎭⎪⎫3p 2,±3p ,所以直线MF 的斜率为±3,故选A.]4.函数f (x )=x ecos x(x ∈[-π,π])的图象大致是( )B [由题意得f (-x )=-x ecos(-x )=-x ecos x=-f (x )(x ∈[-π,π]),所以函数f (x )为奇函数,函数图象关于原点成中心对称,排除A 、C.又因为f ′(x )=e cos x+x ecos x·(-sin x ),则f ′(0)=e ,即函数f (x )在原点处的切线的斜率为e ,排除D ,故选B.]5.由棱锥和棱柱组成的几何体的三视图如图1所示,则该几何体的体积为( )图1A .14B.2132 C .22 D.2732A [由三视图得该几何体为一个底面为底为3,高为2的三角形,高为4的直三棱柱和一个底面为底为3,高为2的三角形,高为2的三棱锥的组合体,则其体积为4×12×2×3+13×2×12×2×3=14,故选A.]6.在三棱锥P ABC 中,PA ⊥平面ABC ,∠BAC =60°,AB =AC =23,PA =2,则三棱锥P ABC 外接球的表面积为( ) A .20π B .24π C .28πD .32πA [因为∠BAC =60°,AB =AC =23,所以△ABC 为边长为23的等边三角形,则其外接圆的半径r =232sin 60°=2,则三棱锥P ABC 的外接球的半径R =r 2+⎝ ⎛⎭⎪⎫PA 22=5,则三棱锥P ABC 的外接球的表面积为4πR 2=20π,故选A.]7.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为( ) A .50 B .80 C .120D .140B [当甲组有两人时,有C 25C 23A 22种不同的分配方案;当甲组有三人时,有C 35A 22种不同的分配方案.综上所述,不同的分配方案共有C 25C 23A 22+C 35A 22=80种不同的分配方案,故选B.]8.定义在R 上的偶函数f (x )的导函数为f ′(x ).若对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围为( )A .{x |x ≠±1}B .(-∞,-1)∪(1,+∞)C.(-1,1)D.(-1,0)∪(0,1)B[设g(x)=x2[f(x)-1],则由f(x)为偶函数得g(x)=x2[f(x)-1]为偶函数.又因为g′(x)=2x[f(x)-1]+x2f′(x)=x[2f(x)+xf′(x)-2],且2f(x)+xf′(x)<2,即2f(x)+xf′(x)-2<0,所以当x>0时,g′(x)=x[2f(x)+xf′(x)-2]<0,函数g(x)=x2[f(x)-1]单调递减;当x<0时,g′(x)=x[2f(x)+xf′(x)-2]>0,函数g(x)=x2[f(x)-1]单调递增,则不等式x2f(x)-f(1)<x2-1⇔x2f(x)-x2<f(1)-1⇔g(x)<g(1)⇔|x|>1,解得x<-1或x>1,故选B.]9.已知f(x)=x2+3x,若|x-a|≤1,则下列不等式一定成立的是( )A.|f(x)-f(a)|≤3|a|+3B.|f(x)-f(a)|≤2|a|+4C.|f(x)-f(a)|≤|a|+5D.|f(x)-f(a)|≤2(|a|+1)2B[∵f(x)=x2+3x,∴f(x)-f(a)=x2+3x-(a2+3a)=(x-a)(x+a+3),∴|f(x)-f(a)|=|(x-a)(x+a+3)|=|x-a||x+a+3|,∵|x-a|≤1,∴a-1≤x≤a+1,∴2a+2≤x+a+3≤2a+4,∴|f(x)-f(a)|=|x-a||x+a+3|≤|2a+4|≤2|a|+4,故选B.]10.如图,四边形ABCD是矩形,沿直线BD将△ABD翻折成△A′BD,异面直线CD与A′B所成的角为α,则( )图A.α<∠A′CD B.α>∠A′CDC.α<∠A′CA D.α>∠A′CAD[∵AB∥CD,∴∠A′BA为异面直线CD与A′B所成的角α,假设四边形ABCD是正方形,AB=2,平面A′BD⊥平面ABCD,连接AC交BD于点O,连接A′A,A′C,则A′O⊥平面ABCD,A′O=AO=BO=CO=DO=12AC=2,∴A′A=A′C=A′B=A′D=2,∴△A′BA,△A′CD是等边三角形,△A′CA是等腰直角三角形,∴∠A′CA=45°,∠A′CD=∠A′BA=60°,即α>∠A′CA,α=∠A′CD,排除A,B,C,故选D.]第Ⅱ卷二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上) 11.设全集U =R ,集合A ={x |x 2-3x -4<0},B ={x |log 2(x -1)<2},则A ∩B =________,∁R A =________.(1,4) (-∞,-1]∪[4,+∞) [A =(-1,4),B =(1,5),所以A ∩B =(1,4),∁R A =(-∞,-1]∪[4,+∞).] 12.⎝⎛⎭⎪⎫3x +1x 6的展开式中常数项为________(用数字作答).135 [二项式⎝⎛⎭⎪⎫3x +1x 6的展开式的通项公式为T r +1=C r 6(3x )6-r ⎝ ⎛⎭⎪⎫1x r= 36-r C r6x,令6-32r =0,得r =4,所以⎝⎛⎭⎪⎫3x +1x 6的展开式中常数项为32C 46=135.]13.已知△ABC 的外接圆半径为1,圆心为O ,且3OA →+4OB →+5OC →=0,则OB →·OC →=____________,cos A =__________.-45 1010 [由4OB →+5OC →=-3OA →,|OB →|=|OC →|=|OA →|=1得(4OB →+5OC →)2=9OA →2,即16+25+40 OB →·OC →=9,OB →·OC →=-45,OB →·OC →=1×1×cos∠BOC =-45,解得cos ∠BOC =-45,因为∠BOC =2∠A ,所以cos A =1+⎝ ⎛⎭⎪⎫-452=1010.] 14. 已知变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,x +y -4≤0,x ≥1,点(x ,y )对应的区域的面积________,x 2+y 2xy的取值范围为________.85 ⎣⎢⎡⎦⎥⎤2,103 [不等式组对应的平面区域是以点(1,1),(1,3)和⎝ ⎛⎭⎪⎫135,75为顶点的三角形区域,该区域的面积为12×2×⎝ ⎛⎭⎪⎫135-1=85.y x 的几何意义是可行域上的点(x ,y )与原点连线的斜率,当(x ,y )为点⎝ ⎛⎭⎪⎫135,75时,⎝ ⎛⎭⎪⎫y x min =713,当(x ,y )为点(1,3)时,⎝ ⎛⎭⎪⎫y x max =3,所以y x ∈⎣⎢⎡⎦⎥⎤713,3,令y x =t ∈⎣⎢⎡⎦⎥⎤713,3,则x 2+y 2xy =x y +y x =1t +t ,当t =1时,取得最小值2,当t =3时,取得最大值103,故x 2+y 2xy 的取值范围是⎣⎢⎡⎦⎥⎤2,103.]15.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线上,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线的渐近线方程为________.2x ±y =0 [由题意不妨设|PF 1|-|PF 2|=2a ,∵|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a .∵|F 1F 2|=2c >2a ,∴△PF 1F 2最小内角为∠PF 1F 2=30°,∴在△PF 1F 2中,由余弦定理得4a 2=4c 2+16a 2-2×2c ×4a ×cos 30°,解得c =3a ,∴b =2a ,故双曲线的渐近线方程为y =±bax =±2x ,即2x ±y =0.]16.甲、乙两人被随机分配到A ,B ,C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望E (X )=________,方差D (X )=________.23 49 [由题意可得X 的可能取值有0,1,2,P (X =0)=2×23×3=49,P (X =1)=C 12×23×3=49,P (X =2)=13×3=19,则数学期望E (X )=0×49+1×49+2×19=23,方差D (X )=⎝ ⎛⎭⎪⎫0-232×49+⎝ ⎛⎭⎪⎫1-232×49+⎝ ⎛⎭⎪⎫2-232×19=49.]17.若函数f (x )=x 2(x -2)2-a |x -1|+a 有四个零点,则a 的取值范围为________.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a =-3227或-1<a <0或a >0[显然x =0和x =2为函数f (x ) =x 2x -2|x -1|-1的两个零点.当x ≠0且x ≠2时,令x 2(x -2)2-a |x -1|+a =0得a=⎩⎪⎨⎪⎧x 2x -,x ≥1,-x x -2,x <1,设g (x )=⎩⎪⎨⎪⎧x 2x -,x ≥1,-x x -2,x <1,则由题意得直线y =a 与函数g (x )的图象有两个横坐标不为0,2的相异交点,在平面直角坐标系内画出函数g (x )的图象如图所示,由图易得当a =-3227或-1<a <0或a >0时,直线y=a 与函数g (x )的图象有两个横坐标不为0,2的相异交点,即a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a =-3227或-1<a <0或a >0.] 三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)18.(本小题满分14分)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c .已知函数f (x )=sin(2x +B )+3cos(2x +B )为偶函数,b =f ⎝ ⎛⎭⎪⎫π12. (1)求b ;(2)若a =3,求△ABC 的面积S .[解] (1)f (x )=sin(2x +B )+3cos(2x +B )=2sin ⎝ ⎛⎭⎪⎫2x +B +π3, 由f (x )为偶函数可知B +π3=π2+k π,k ∈Z ,所以B =π6+k π,k ∈Z .5分又0<B <π,故B =π6,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x , b =f ⎝ ⎛⎭⎪⎫π12= 3.7分 (2)因为B =π6,b =3,由正弦定理可得sin A =a sin B b =32,12分所以A =π3或A =2π3.当A =π3时,△ABC 的面积S =332;当A =2π3时,△ABC 的面积S =334.14分19.(本小题满分15分)如图2,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1.图3(1)求证:AD ⊥平面BFED ;(2)点P 在线段EF 上运动,设平面PAB 与平面ADE 所成锐二面角为θ,试求θ的最小值. [解] (1)证明:在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠BCD =120°, ∴AB =2.∴BD 2=AB 2+AD 2-2AB ·AD ·cos 60°=3. 2分∴AB 2=AD 2+BD 2,∴AD ⊥BD .∵平面BFED ⊥平面ABCD ,平面BFED ∩平面ABCD =BD ,DE ⊂平面BFED ,DE ⊥DB , ∴DE ⊥平面ABCD ,5分∴DE ⊥AD ,又DE ∩BD =D , ∴AD ⊥平面BFED .7分(2)由(1)可建立以直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令EP =λ(0≤λ≤3),则D (0,0,0),A (1,0,0),B (0,3,0),P (0,λ,1), ∴AB →=(-1,3,0),BP →=(0,λ-3,1),8分 设n 1=(x ,y ,z )为平面PAB 的法向量, 由⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BP →=0,得⎩⎨⎧-x +3y =0,λ-3y +z =0,取y =1,则n 1=(3,1,3-λ).12分 ∵n 2=(0,1,0)是平面ADE 的一个法向量, ∴cos θ=|n 1·n 2||n 1||n 2|=13+1+3-λ2×1=1λ-32+4.∵0≤λ≤3,∴当λ=3时,cos θ有最大值12.∴θ的最小值为π3.15分20.(本小题满分15分)设函数f (x )=1-x +1+x . (Ⅰ)求函数f (x )的值域;(Ⅱ)当实数x ∈[0,1],证明:f (x )≤2-14x 2.[解] (Ⅰ)函数f (x )的定义域是[-1,1], ∵f ′(x )=1-x -1+x 21-x2,当f ′(x )>0时,解得-1<x <0, 当f ′(x )<0时,解得0<x <1,∴f (x )在(0,1)上单调递减,在(-1,0)上单调递增, 4分 ∴f (x )min =f (1)=f (-1)=2,f (x )max =f (0)=2, 7分∴函数f (x )的值域为[2,2].(Ⅱ)证明:设h (x )=1-x +1+x +14x 2-2,x ∈[0,1],h (0)=0,∵h ′(x )=-12(1-x )-12+12(1+x )-12+12x=12x ⎣⎢⎡⎦⎥⎤1-21-x21+x +1-x ,10分∵1-x 2(1+x +1-x )=1-x 2·2+21-x 2≤2, ∴h ′(x )≤0.∴h (x )在(0,1)上单调递减, 13分又h (0)=0,∴h (x )≤h (0)=0, ∴f (x )≤2-14x 2.15分21.(本小题满分15分)已知椭圆C 1:x 24+y 23=1,抛物线C 2:y 2=4x ,过抛物线C 2上一点P (异于原点O )作切线l 交椭圆C 1于A ,B 两点.图4(1)求切线l 在x 轴上的截距的取值范围;(2)求△AOB 面积的最大值.[解] (1)设P (t 2,2t )(t ≠0),显然切线l 的斜率存在, 设切线l 的方程为y -2t =k (x -t 2),即y =k (x -t 2)+2t .1分由⎩⎪⎨⎪⎧y =k x -t 2+2t ,y 2=4x消去x 得ky 2-4y -4kt 2+8t =0,由Δ=16-16k (-kt 2+2t )=0,得k =1t,从而切线l 的方程为x =ty -t 2,3分令y =0,得切线l 在x 轴上的截距为-t 2.由⎩⎪⎨⎪⎧x =ty -t 2,x 24+y23=1,得(3t 2+4)y 2-6t 3y +3t 4-12=0,令Δ=36t 6-12(3t 2+4)(t 4-4)>0,得0<t 2<4, 则-4<-t 2<0,6分 故切线l 在x 轴上的截距的取值范围为(-4,0).7分(2)设A (x 1,y 1),B (x 2,y 2),由(1)知y 1+y 2=6t 33t 2+4,y 1y 2=3t 4-123t 2+4,|AB |=1+t 2|y 1-y 2|=1+t 2·y 1+y 22-4y 1y 2=1+t 2·⎝ ⎛⎭⎪⎫6t 33t 2+42-t 4-3t 2+4=43·1+t 2·-t 4+3t 2+4t 2+2,9分原点O 到切线l 的距离为d =t 21+t2,∴S =12|AB |×d =23·t 4-t 4+3t 2+t 2+2. 12分令3t 2+4=u ,∵0<t 2<4,∴4<u <16,则有S =23·u -29⎣⎢⎡⎦⎥⎤-u -29+u u 2=239·u 2-8u +-u 2+17u -u 2,∴S =239·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫u +16u -8·⎣⎢⎡⎦⎥⎤17-⎝ ⎛⎭⎪⎫u +16u =239·-⎝⎛⎭⎪⎫u +16u 2+25⎝ ⎛⎭⎪⎫u +16u -136. 令y =u +16u,∵4<u <16,∴y =u +16u在(4,16)上为增函数,得8<y <17,∴S =239·-y 2+25y -136,当y =252∈(8,17)时,S max =239·-6254+6252-136= 3. 14分 由y =u +16u =252得u =25+3414,有t =3+412<2,故当t =3+412时,△OAB 面积S 有最大值 3. 15分22.(本小题满分15分)设各项均为正数的数列{a n }的前n 项和S n 满足S n a n =13n +r .(1)若a 1=2,求数列{a n }的通项公式; (2)在(1)的条件下,设b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为T n ,求证:T n ≥2n 3n +1. [解] (1)令n =1,得13+r =1,∴r =23,1分则S n =⎝ ⎛⎭⎪⎫13n +23a n ,∴S n -1=⎝ ⎛⎭⎪⎫13n +13a n -1(n ≥2),两式相减得a n a n -1=n +1n -1(n ≥2), 3分∴a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=31·42·53·…·n +1n -1, 化简得a n a 1=n n +1×2(n ≥2),∴a n =n 2+n (n ≥2),6分 又a 1=2适合a n =n 2+n (n ≥2),∴a n =n 2+n . 7分(2)证明:由(1)知a 2n -1=(2n -1)·2n , ∴b n =1a 2n -1=1n -n=12n -1-12n ,∴T 1=12≥23+1不等式成立, ∴T n =11-12+13-14+15-16+…+12n -1-12n (n ≥2),∴T n =11+12+13+…+12n -2⎝ ⎛⎭⎪⎫12+14+ (12)=11+12+13+…+12n -⎝ ⎛⎭⎪⎫11+12+…+1n ,∴T n =1n +1+1n +2+…+12n,10分∴2T n =⎝ ⎛⎭⎪⎫1n +1+12n +⎝ ⎛⎭⎪⎫1n +2+12n -1+…+⎝ ⎛⎭⎪⎫1n +k +12n -k +1+…+⎝ ⎛⎭⎪⎫12n +1n +1.∵1n +k +12n -k +1=3n +1n +k 2n -k +≥43n +1(仅在k =n +12时取等号), ∴2T n ≥4n 3n +1,即结论T n ≥2n3n +1成立. 15分。
2018年普通高考模拟考试理科数学2018.5本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={}x x a >,B={}232x x x -+>0,若A ∪B=B ,则实数a 的取值范围是(A) (),1-∞ (B) (],1-∞ (C) ()2,+∞(D) [)2,+∞2.欧拉公式cos sin ix e x i x =+ (i 为虚数单位)是由瑞士著名数学家欧拉发明的,他将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,3i e 表示的复数在复平面中位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.给出以下三种说法:①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+<”; ②已知,p q 为两个命题,若p q ∨为假命题,则()()p q ⌝∧⌝为真命题; ③命题“,a b 为直线,α为平面,若//,//,a b αα,则//a b ”为真命题. 其中正确说法的个数为 (A)3个 (B)2个 (C)1个 (D)0个4.已知4cos 45πα⎛⎫-=⎪⎝⎭,则sin 2α= (A) 725- (B) 15- (C) 15 (D) 7255.直线40x y m ++=交椭圆2116x y +=于A ,B 两点,若线段AB 中点的横坐标为l ,则,m= (A)-2 (B)-1 (C)1 (D)2 6.执行如图所示的程序框图,则输出的a = (A)6.8 (B)6.5 (C)6.25 (D)67.已知定义域为R 的奇函数()f x 在(0,+∞)上的解析式为()()()23log 5,0233,,2x x f x f x x ⎧-<≤⎪⎪=⎨⎪->⎪⎩则()()32018f f +=(A)-2(B)-1 (C)1(D)28.一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“▂”组成.已知在一个显示数字8的显示池中随机取一点A ,点A 落在深色区域内的概率为12,若在一个显示数字0的显示池中随机取一点B ,则点B 落在深色区域内的概率为(A)67(B)37 (C) 34 (D) 389.记不等式组10,330,10x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,所表示的平面区域为D ,若对任意点(00,x y )∈D ,不等式0020x y c -+≤恒成立,则c 的取值范围是 (A) (],4-∞- (B) (],1-∞-(C) [)4,-+∞(D) [)1,-+∞10.如图是某几何体的三视图,则该几何体的体积为(A) 13π+(B) 223π+(C) 23π+(D) 123π+11.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为F 1,F 2,点A 为双曲线C 虚轴的一个端点,若线段AF 2与双曲线右支交于点B ,且112::AF BF BF =3:4:2,则双曲线C 的离心率为(A)(B)10(C)(D) 1012.在△ABC 中,D 为边BC 上的点,且满足∠DAC=90°,sin ∠BAD=13,若S △ADC =3S △ABD ,则cosC=(A)(B)6 (C)23(D)23二、填空题:本题共4小题,每小题5分,共20分。
2018年全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣116.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF 的位置,并使PF⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i【解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设AB=2,则BC=CD=DE=EF=1,∴S=××=,△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.【解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣63【解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.【解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.【解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣1【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,所以:b n=a2n﹣1﹣a2n==﹣22n﹣4,则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,,点E 是线段CD 上异于点C ,D 的动点,EF ⊥AD 于点F ,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF ,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【解答】解:∵PF ⊥AF ,PF ⊥EF ,AF ∩EF=F , ∴PF ⊥平面ABCD .设PF=x ,则0<x <1,且EF=DF=x .∴五边形ABCEF 的面积为S=S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2). ∴五棱锥P ﹣ABCEF 的体积V=(3﹣x 2)x=(3x ﹣x 3),设f (x )=(3x ﹣x 3),则f′(x )=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x )>0,∴f (x )在(0,1)上单调递增,又f (0)=0,f (1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,). 故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A ,B ,C 的对边a ,b ,c 分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O ﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.【解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z服从正态分布N(μ,σ2),且μ=,σ≈,∴P(<Z<)=P(﹣<Z<+)=,∴Z落在(,)内的概率是.②根据题意得X~B(4,),;;;;.∴X的分布列为X01234P∴.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f (1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n ≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。
届汉中市高三理科数学模拟试卷题目及答案2018届汉中市高三理科数学模拟试卷题目及答案要想在高考数学中取得好,就要在最短的时间内拟定解决问题的最佳方案,实现答题效率最优化。
我们可以多做一些数学模拟试卷来提升这方面的能力,以下是店铺为你整理的2018届汉中市高三理科数学模拟试卷,希望能帮到你。
2018届汉中市高三理科数学模拟试卷题目一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.83.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <04.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.35.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.10246.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.87.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=09.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]二、填空题(本大题共4小题,每小题5分)13.(2x﹣1)5的展开式中,含x3项的系数为(用数字填写答案)14.已知实数x,y满足则z= 的取值范围为.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为.三、解答题17.(12分)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.18.(12分)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.19.(12分)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:PQ∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.20.(12分)已知椭圆C: + =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .21.(12分)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )四、选修4-4:极坐标与参数方程22.(10分)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.选修4-5:不等式选讲23.(10分)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.2018届汉中市高三理科数学模拟试卷答案一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]【考点】交、并、补集的混合运算.【分析】求出A,B中不等式的解集确定出B,找出B的补集,求出A与B补集的交集即可.【解答】解:A={x|(x﹣2)(x+3)<0}=(﹣3,2),B={x|y= }=(﹣1,+∞),∴∁RB=(﹣∞,﹣1]∴A∩(∁RB)=(﹣3,﹣1].故选:B.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.8【考点】复数求模;复数代数形式的混合运算.【分析】利用复数运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:z( +3i)=16i(i为虚数单位),∴z( +3i)( ﹣3i)=16i( ﹣3i),∴16z=16i( ﹣3i),∴z=3+ i.则复数|z|= =4.故选:C.【点评】本题考查了复数运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.3.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <0【考点】线性回归方程.【分析】利用公式求出,,即可得出结论.【解答】解:样本平均数 =0.2, =﹣1.7,∴ = = >0,∴ =﹣1.7﹣×0.2<0,故选:C.【点评】本题考查线性回归方程的求法,考查最小二乘法,属于基础题.4.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.3【考点】平面向量数量积的运算.【分析】利用向量垂直关系推出等式,求出x,然后求解向量的模.【解答】既然:向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),2 + =(1,x﹣8),(2 + )⊥ ,可得:1+8﹣x=0,解得x=9.则| |= =3 .故选:D.【点评】本题考查平面向量的数量积的运算,向量的模的求法,考查计算能力.5.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.1024【考点】等比数列的性质.【分析】利用已知条件求出a2a8的值,然后利用等比数列的性质求解T9的值.【解答】解:log2a2+log2a8=2,可得log2(a2a8)=2,可得:a2a8=4,则a5=±2,等比数列{an}的前9项积为T9=a1a2…a8a9=(a5)9=±512.故选:A.【点评】本题考查的等比数列的性质,数列的应用,考查计算能力.6.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.8【考点】程序框图.【分析】模拟执行程序的运行过程,即可得出程序运行后输出的i 值.【解答】解:模拟执行程序的运行过程,如下;S=1,i=1,S<30;S=2,i=2,S<30;S=4,i=3,S<30;S=8,i=4,S<30;S=16,i=5,S<30;S=32,i=6,S≥30;终止循环,输出i=6.故选:B【点评】本题主要考查了程序框图的应用问题,模拟程序的运行过程是解题的常用方法.7.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.【考点】简单空间图形的三视图.【分析】找出各点在xoy平面内的投影得出俯视图.【解答】解:由题意,A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0)在xOy平面上投影坐标分别为A(2,0,0),B(2,1,0),C(0,2,0),D(1,2,0).故选:C.【点评】本题考查了三视图的定义,简单几何体的三视图,属于基础题.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=0【考点】圆的切线方程.【分析】求出P的坐标,设直线l的方程为x+ y+c=0,代入P,求出c,即可求出直线l的`方程.【解答】解:由题意,切线的倾斜角为30°,∴P(1, ).设直线l的方程为x+ y+c=0,代入P,可得c=﹣4,∴直线l的方程为x+ y﹣4=0,故选B.【点评】本题考查直线与圆的位置关系,考查直线方程,考查学生的计算能力,属于中档题.9.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.【考点】函数的图象.【分析】先判断函数的奇偶性,再取特殊值验证.【解答】解:∵f(x)=( ﹣1)•sinx,∴f(﹣x)=( ﹣1)•sin(﹣x)=﹣( ﹣1)sinx=( ﹣1)•sinx=f(x),∴函数f(x)为偶函数,故排除C,D,当x=2时,f(2)=( ﹣1)•sin2<0,故排除B,故选:A【点评】本题考查了函数图象的识别,关键掌握函数的奇偶性和函数值的特点,属于基础题.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)【考点】函数y=Asin(ωx+φ)的图象变换;余弦函数的单调性.【分析】利用三角恒等变换化简f(x)的解析式,利用正弦函数的周期性求得ω的值,再利用余弦函数的单调性,求得函数g(x)的增区间.【解答】解:函数f(x)= sinωx﹣cosωx(ω<0)=2sin(ωx﹣ ),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,则为函数f(x)的周期,即=k•| |,∴ω=±4k,k∈Z.记ω的最大值为ω0,则ω0=﹣4,函数g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).令2kπ﹣π≤4x+ ≤2kπ,求得﹣≤x≤ ﹣,故函数g(x)的增区间为[ ﹣,﹣ ],k∈Z.故选:A.【点评】本题主要考查三角恒等变换,正弦函数的周期性,余弦函数的单调性,属于中档题.11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2关于双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.【考点】双曲线的简单性质.【分析】设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.【解答】解:设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),即有 =﹣,且•n= • ,解得m= ,n=﹣,将F'( ,﹣ ),即( ,﹣ ),代入双曲线的方程可得﹣ =1,化简可得﹣4=1,即有e2=5,解得e= .故选:D.【点评】本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]【考点】函数恒成立问题.【分析】由条件利用函数的奇偶性和单调性,可得0≤2mx﹣lnx≤6对x∈[1,3]恒成立,2m≥ 且2m≤ 对x∈[1,3]恒成立.求得相应的最大值和最小值,从而求得m的范围.【解答】解:∴定义在R上的函数f(x)的图象关于y轴对称,∴函数f(x)为偶函数,∵函数数f(x)在[0,+∞)上递减,∴f(x)在(﹣∞,0)上单调递增,若不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)对x∈[1,3]恒成立,即f(2mx﹣lnx﹣3)≥f(3)对x∈[1,3]恒成立.∴﹣3≤2mx﹣lnx﹣3≤3对x∈[1,3]恒成立,即0≤2mx﹣lnx≤6对x∈[1,3]恒成立,即2m≥ 且2m≤ 对x∈[1,3]恒成立.令g(x)= ,则g′(x)= ,在[1,e)上递增,(e,3]上递减,∴g(x)max= .令h(x)= ,h′(x)= <0,在[1,3]上递减,∴h(x)min= .综上所述,m∈[ , ].故选D.【点评】本题主要考查函数的奇偶性和单调性的综合应用,函数的恒成立问题,体现了转化的数学思想,属于中档题.二、填空题(本大题共4小题,每小题5分)13.(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项的系数为﹣260 (用数字填写答案)【考点】二项式定理的应用.【分析】分析x3得到所有可能情况,然后得到所求.【解答】解:(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项为﹣30x2 =80x3﹣40x3﹣300x3=﹣260x3,所以x3的系数为﹣260;故答案为:﹣260.【点评】本题考查了二项式定理;注意各种可能.14.已知实数x,y满足则z= 的取值范围为[ ] .【考点】简单线性规划.【分析】由约束条件作出可行域,再由z= 的几何意义,即可行域内的动点与定点P(﹣2,﹣1)连线的斜率求解.【解答】解:由约束条件作出可行域如图:A(2,0),联立,解得B(5,6),z= 的几何意义为可行域内的动点与定点P(﹣2,﹣1)连线的斜率,∵ ,∴z= 的取值范围为[ ].故答案为:[ ].【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.【考点】数列递推式;数列的求和.【分析】n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),可得[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.可得Sn= = ﹣ .利用“裂项求和”方法即可得出.【解答】解:∵n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),∴[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.∴n(n+1)Sn﹣1=0,∴Sn= = ﹣ .∴S1+S2+…+S2017= +…+ = .故答案为: .【点评】本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为13π.【考点】球内接多面体;球的体积和表面积.【分析】由题意得PA2+PB2=AB2,即可得D为△PAB的外心,在CD上取点O1,使O1为等边三角形ABC的中心,在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心,在△DEC中求解OC,即可得到球半径,【解答】解:由题意,PA2+PB2=AB2,因为,∴AD⊥面DEC,∵AD⊂PAB,AD⊂ABC,∴面APB⊥面DEC,面ABC⊥面DEC,在CD上取点O1,使O1为等边三角形ABC的中心,∵D为△PAB斜边中点,∴在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心.∵∠EDC=90°,∴ ,又∵ ,∴OO1= ,三棱锥P﹣ABC的外接球的半径R= ,三棱锥P﹣ABC的外接球的表面积为4πR2=13π,故答案为:13π.【点评】本题考查了几何体的外接球的表面积,解题关键是要找到球心,求出半径,属于难题.三、解答题17.(12分)(2017•内蒙古模拟)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.【考点】正弦定理;三角形中的几何计算.【分析】(Ⅰ)根据题意,由正弦定理可得sinC= sinBsinC﹣sinCcosB,进而变形可得1= sinC﹣cosB,由正弦的和差公式可得1=2sin(B﹣ ),即可得B﹣的值,计算可得B的值,即可得答案;(Ⅱ)由余弦定理可得(a+c)2﹣3ac=12,又由a、b、c成等比数列,进而可以变形为12=(a+c)2﹣36,解可得a+c=4 ,进而计算可得△ABC的周长l=a+b+c,由面积公式S△ABC= acsinB= b2sinB计算可得△ABC的面积.【解答】解:(Ⅰ)根据题意,若c= bsinC﹣ccosB,由正弦定理可得sinC= sinBsinC﹣sinCcosB,又由sinC≠0,则有1= sinC﹣cosB,即1=2sin(B﹣ ),则有B﹣ = 或B﹣ = ,即B= 或π(舍)故B= ;(Ⅱ)已知b=2 ,则b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=12,又由a、b、c成等比数列,即b2=ac,则有12=(a+c)2﹣36,解可得a+c=4 ,所以△ABC的周长l=a+b+c=2 +4 =6 ,面积S△ABC= acsinB= b2sinB=3 .【点评】本题考查正弦、余弦定理的应用,关键利用三角函数的恒等变形正确求出B的值.18.(12分)(2017•汉中一模)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.【考点】独立性检验.【分析】(Ⅰ)求出前三组频率之和,即可根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)确定基本事件的个数,即可求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)根据所给数据得出2×2列联表,求出K2,即可判断是否有99%的把握认为月底丰富与性别有关.【解答】解:(Ⅰ)前三组频率之和为0.1+0.2+0.25=0.55,∴中位数位于第三组,设中位数为a,则 = ,∴a=38,∴估计该校女生年阅读量的中位数为38;(Ⅱ)利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,从这6人中随机抽取2人,共有方法 =15种,各组分别为4人,2人,[30,40)这一组中至少有1人被抽中的概率1﹣= ;(Ⅲ)性别阅读量丰富不丰富合计男 4 16 20女 9 11 20合计 13 27 40K2= ≈2.849<6.635,∴没有99%的把握认为月底丰富与性别有关.【点评】本题考查频率分布直方图,考查概率的计算,考查独立性检验知识的运用,属于中档题.19.(12分)(2017•内蒙古模拟)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF 的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:P Q∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取EB的中点M,连接PM,QM,证明:平面PMQ∥平面BCD,即可证明PQ∥平面BCD;(Ⅱ)建立坐标系,利用向量方法,即可求二面角A﹣DB﹣E的余弦值.【解答】(Ⅰ)证明:取EB的中点M,连接PM,QM,∵P为DE的中点,∴PM∥BD,∵PM⊄平面BCD,BD⊂平面BCD,∴PM∥平面BCD,同理MQ∥平面BCD,∵PM∩MQ=M,∴平面PMQ∥平面BCD,∵PQ⊂平面PQM,∴PQ∥平面BCD;(Ⅱ)解:在平面DFC内,过F作FC的垂线,则∠DFC= ,建立坐标系,则E(2,0,0),C(0,1,0),B(2,1,0),D(0,﹣1,﹣),A(2,﹣1, ),∴ =(﹣2,﹣2, ), =(0,2,﹣ ), =(0,1,0),设平面DAB的一个法向量为 =(x,y,z),则,取 =(0,, ),同理平面DBE的一个法向量为 =( ,0, ),∴cos< , >= = ,∴二面角A﹣DB﹣E的余弦值为 .【点评】本题考查线面平行的证明,考查二面角的大小的求法,考查向量方法的运用,是中档题.20.(12分)(2017•内蒙古模拟)已知椭圆C:+ =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆的离心率公式求得a和b的关系,将(﹣,)代入椭圆方程,即可求得a和b的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,求得P的横坐标,求得丨BP丨,利用直线垂直的斜率关系求得丨BQ丨,由= ,根据函数零点的判断即可存在k∈R, = .【解答】解:(Ⅰ)椭圆的离心率e= = = ,则a2=2b2,将点(﹣, )代入椭圆方程,解得:a2=4,b2=2,∴椭圆的标准方程为:,(Ⅱ)由题意的对称性可知:设存在存在k>0,使得 = ,由a2=2b2,椭圆方程为:,将直线方程代入椭圆方程,整理得:(1+2k2)x2+4kbx=0,解得:xP=﹣,则丨BP丨= × ,由BP⊥BQ,则丨BQ丨= ×丨丨= • ,由 = .,则2 × = • ,整理得:2k3﹣2k2+4k﹣1=0,设f(x)=2k3﹣2k2+4k﹣1,由f( )<0,f( )>0,∴函数f(x)存在零点,∴存在k∈R, = .【点评】本题考查椭圆的标准方程及椭圆的离心率,考查直线与椭圆的位置关系,弦长公式,考查函数零点的判断,考查计算能力,属于中档题.21.(12分)(2017•内蒙古模拟)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出lnx< x﹣,令x=1+ (n≥2),得到ln(1+ )< ( ﹣ ),累加即可证明结论.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)= ,令h(x)=﹣ax2+x﹣a,记△=1﹣4a2,当△≤0时,得a≥ ,若a≥ ,则﹣ax2+x﹣a≤0,f′(x)≤0,此时函数f(x)在(0,+∞)递减,当0显然x1>x2>0,故此时函数f(x)在( , )递增,在(0, )和( ,+∞)递减;综上,0在(0, )和( ,+∞)递减,a≥ 时,函数f(x)在(0,+∞)递减;(Ⅱ)证明:令a= ,由(Ⅰ)中讨论可得函数f(x)在区间(0,+∞)递减,又f(1)=0,从而当x∈(1,+∞)时,有f(x)<0,即lnx< x﹣,令x=1+ (n≥2),则ln(1+ )< (1+ )﹣ == ( + )< = ( ﹣ ),从而:ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< (1﹣ + ﹣ + ﹣+…+ ﹣ + ﹣ + ﹣ )= (1+ ﹣﹣ )< (1+ )= ,则有ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< ,可得(1+ )(1+ )(1+ )…(1+ )【点评】本题考查了函数的单调性问题,考查不等式的证明以及导数的应用,是一道中档题.四、选修4-4:极坐标与参数方程22.(10分)(2017•内蒙古模拟)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得普通方程,展开利用互化公式可得极坐标方程.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐标方程.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,利用|PQ|=|ρ1﹣ρ2|= 即可得出.【解答】解:(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得: +(y+1)2=9,展开为:x2+y2﹣2 x+2y﹣5=0,可得极坐标方程:ρcosθ+2ρsinθ﹣5=0.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,∴ρ1+ρ2=2,ρ1•ρ2=﹣5,∴|PQ|=|ρ1﹣ρ2|= = =2 .【点评】本题考查了直角坐标方程化为极坐标方程及其应用、参数方程化为普通方程、弦长公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲23.(10分)(2017•内蒙古模拟)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.【考点】函数的图象.【分析】(Ⅰ)根据函数解析式作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,可得p,q∈(﹣,3),若p,q∈M,且|p+q+pq|<λ,利用绝对值不等式,即可求实数λ的取值范围.【解答】解:(Ⅰ)函数g(x)=f(x)+|x+2|﹣4=|3x﹣4|+|x+2|﹣4,图象如图所示,由图象可得,x= ,g(x)有最小值﹣ ;(Ⅱ)由题意,|3x﹣4|<5,可得﹣∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,∴λ≥15.【点评】本题考查函数的图象,考查绝对值不等式的运用,考查数形结合的数学思想,属于中档题.【2018届汉中市高三理科数学模拟试卷题目及答案】。
2018年河南省郑州市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.36.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm37.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.912.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.2018年河南省郑州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i【解答】解:==﹣1﹣3i故选A2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}【解答】解:∵A∩B=A,∴A⊆B.∵集合A={x|1<x<2},B={x|x<a},∴a≥2故选:D.3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.【解答】解:∵(﹣)⊥,∴(﹣)•=0,即2﹣•=0,即1+m2﹣(m﹣1+2m)=0,即m2﹣3m+2=0,得m=1或m=2,当m=1时,量=(1,1),=(0,2),满足≠,当m=2时,量=(1,2),=(1,2),不满足≠,综上m=1,故选:B.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题【解答】解:“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故A错;“若am2<bm2,则a<b”的逆命题为假命题,比如m=0,若a<b,则am2=bm2,故B错;对任意x>0,均有3x<4x成立,故C错;对若,则”的逆否命题是“若α=,则sinα=”为真命题,则D正确.故选D.5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.3【解答】解:模拟执行程序,可得a=1,A=1,S=0,n=1S=2不满足条件S≥10,执行循环体,n=2,a=,A=2,S=不满足条件S≥10,执行循环体,n=3,a=,A=4,S=不满足条件S≥10,执行循环体,n=4,a=,A=8,S=满足条件S≥10,退出循环,输出n的值为4.故选:A.6.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.7.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.【解答】解:数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),则:数列为等差数列.设公差为d,则:d=a2﹣a1=2﹣1=1,则:a n=1+n﹣1=n.故:,则:,所以:,=,=,=.所以:.故选:C9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]【解答】解:当x≤0时,f(x)单调递增,∴f(x)≤f(0)=1﹣a,当x>0时,f(x)单调递增,且f(x)>﹣a.∵f(x)在R上有两个零点,∴,解得0<a≤1.故选A.10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.【解答】解:方法一:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,则•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.9【解答】解:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,乙班学生的平均分是86,且总分为86×7=602,所以y=4,若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,则xy=G2,2G=a+b,即有a+b=4,a>0,b>0,则+=(a+b)(+)=(1+4++)≥(5+2)=×9=,当且仅当b=2a=时,的最小值为.12.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.【解答】解:根据题意,对于(2x﹣)•ln≤,变形可得(2x﹣)ln≤,即(2e﹣)ln≤,设t=,则(2e﹣t)lnt≤,t>0,设f(t)=(2e﹣t)lnt,(t>0)则其导数f′(t)=﹣lnt+﹣1,又由t>0,则f′(t)为减函数,且f′(e)=﹣lne+﹣1=0,则当t∈(0,e)时,f′(t)>0,f(t)为增函数,当t∈(e,+∞)时,f′(t)<0,f(t)为减函数,则f(t)的最大值为f(e),且f(e)=e,若f(t)=(2e﹣t)lnt≤恒成立,必有e≤,解可得0<m≤,即m的取值范围为(0,];故选:D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为1.【解答】解:设变量x,y满足约束条件在坐标系中画出可行域三角形,平移直线4x﹣y=0经过点A(1,3)时,4x﹣y最小,最小值为:1,则目标函数z=4x﹣y的最小值:1.故答案为:1.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=3.【解答】解:∵直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,∴,解得a=3.故答案为:3.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=100.【解答】解:∵,∴log2a n+1﹣log2a n=1,即,∴.∴数列{a n}是公比q=2的等比数列.则a101+a102+…+a110=(a1+a2+a3+…+a10)q100=2100,∴log2(a101+a102+…+a110)=.故答案为:100.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为y=±x.【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为y=x,则另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣(x﹣c),联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣(x﹣c),联立方程y=﹣x,可得N的横坐标为.由2=,可得2(﹣c)=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1(舍去),即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.【解答】解:(1)由正弦定理可知:===2R,a=2RsinA,b=2RsinB,c=2RsinC,由2ccosB=2a+b,则2sinCcosB=2sin(B+C)+sinB,∴2sinBcosC+sinB=0,由0<B<π,sinB≠0,cosC=﹣,0<C<π,则C=;(2)由S=absinC=c,则c=ab,由c2=a2+b2﹣2abcosC=a2+b2+ab,∴=a2+b2+ab≥3ab,当且仅当a=b时取等号,∴ab≥12,故ab的最小值为12.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)【解答】解:(1)按分层抽样男生应抽取80名,女生应抽取20名;∴x=80﹣(5+10+15+47)=3,y=20﹣(2+3+10+2)=3;抽取的100名且测试等级为优秀的学生中有三位男生,设为A,B,C;两位女生设为a,b;从5名任意选2名,总的基本事件有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个;设“选出的两名学生恰好是一男一女为事件A”;则事件包含的基本事件有Aa,Ab,Ba,Bb,Ca,Cb共6个;∴P(A)==;(2)填写2×2列联表如下:男生女生总计体育达人50555非体育达人301545总计8020100则K2=≈9.091;∵9.091>6.635且P(K2≥6.635)=0.010,∴在犯错误的概率不超过0.010的前提下认为“是否为‘体育达人’与性别有关”.19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.【解答】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos,∴=8,∴CD=2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,∴CD⊥平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,∴PD⊥平面ABC.解:(2)∵,∴PD=AD=4,∴PA=4,在Rt△PCD中,PC==2,∴△PAC是等腰三角形,∴,设点B到平面PAC的距离为d,由V E=V P﹣AEC,得,﹣PAC∴d==3,故点B到平面PAC的距离为3.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:(1)圆C:x2+y2+2x﹣2y+1=0可化为(x+1)2+(y﹣1)2=1,则圆心为(﹣1,1).抛物线E:y2=2px(p>0),焦点坐标F(),由于:圆心C到抛物线焦点F的距离为.则:,解得:p=6.故抛物线的方程为:y2=12x(2)设直线的方程为x=my+t,A(x1,y1),B(x2,y2),则:,整理得:y2﹣12my﹣12t=0,所以:y1+y2=12m,y1y2=﹣12t.由于:OA⊥OB.则:x1x2+y1y2=0.即:(m2+1)y1y2+mt(y1+y2)+t2=0.整理得:t2﹣12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN⊥l时,即动点M经过圆心C(﹣1,1)时到直线的距离取最大值.当CP⊥l时,即动点M经过圆心C(﹣1,1)时到动直线L的距离取得最大值.k MP=k CP=﹣,则:m=.此时直线的方程为:x=,即:13x﹣y﹣156=0.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.【解答】解:(1)由已知可得f(x)的定义域为(0,+∞),∵f′(x)=﹣a,∴f′(1)=1﹣a=0,解得:a=1,∴f′(x)=,令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,故f(x)在(0,1)递增,在(1,+∞)递减;(1)不等式f(x)﹣+2x+>k(x﹣1)可化为lnx﹣+x﹣>k(x﹣1),令g(x)=lnx﹣+x﹣﹣k(x﹣1),(x>1),g′(x)=,∵x>1,令h(x)=﹣x2+(1﹣k)x+1,h(x)的对称轴是x=,①当≤1时,即k≥﹣1,易知h(x)在(1,x0)上递减,∴h(x)<h(1)=1﹣k,若k≥1,则h(x)≤0,∴g′(x)≤0,∴g(x)在(1,x0)递减,∴g(x)<g(1)=0,不适合题意.若﹣1≤k<1,则h(1)>0,∴必存在x0使得x∈(1,x0)时,g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.②当>1时,即k<﹣1,易知必存在x0使得h(x)在(1,x0)递增,∴h(x)>h(1)=1﹣k>0,∴g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.综上,k的取值范围是(﹣∞,1).22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.【解答】(1)直线L的参数方程为:(α为参数).曲线C的极坐标方程是,转化为直角坐标方程为:y2=8x(2)当时,直线l的参数方程为:(t为参数),代入y2=8x得到:.(t1和t2为A和B的参数),所以:,t1t2=﹣16.所以:.O到AB的距离为:d=.则:=.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.【解答】解:(1)由已知得|x+3|<|2x﹣1|,即|x+3|2<|2x﹣1|2,则有3x2﹣10x﹣8>0,∴x<﹣或x>4,故不等式的解集是(﹣∞,﹣)∪(4,+∞);(2)由已知,设h(x)=2f(x)+g(x)=2|x+3|+|2x﹣1|=,当x≤﹣3时,只需﹣4x﹣5>ax+4恒成立,即ax<﹣4x﹣9,∵x≤﹣3<0,∴a>=﹣4﹣恒成立,∴a>,∴a>﹣1,当﹣3<x<时,只需7>ax+4恒成立,即ax﹣3<0恒成立,只需,∴,∴﹣1≤a≤6,当x≥时,只需4x+5>ax+4恒成立,即ax<4x+1,∵x≥>0,∴a<=4+恒成立,∵4+>4,且无限趋近于4,∴a≤4,综上,a的取值范围是(﹣1,4].。