建筑设备监控系统
- 格式:doc
- 大小:459.00 KB
- 文档页数:21
建筑设备监控系统设计建筑设备监控系统是指对建筑物中各种设备的运行状况进行实时监控、报警和管理的系统。
建筑设备包括电气设备、通风设备、给排水设备、消防设备等,这些设备对于建筑的正常运行和使用至关重要,因此对设备运行情况进行监控是非常必要的。
下面我将从设备监控系统的设计原则、系统功能以及实施步骤三个方面进行详细介绍。
一、设备监控系统设计原则1.安全性:建筑设备监控系统要确保设备运行的稳定性和安全性,防止设备异常运行导致事故发生。
2.可靠性:系统应具备良好的稳定性和可靠性,保证设备监控的持续性和准确性。
3.实时性:系统需要能够实时监控设备运行状态,及时响应设备异常和报警信息。
4.易扩展性:系统设计需考虑到建筑的扩展和设备变更,能够方便地增加新的设备和监控点。
5.灵活性:系统应具备一定的灵活性,能够根据建筑物的不同需求进行定制化配置。
二、系统功能1.设备状态监测:实时监测各种设备的运行状态,包括设备的开关状态、能耗情况、运行时间等。
2.故障诊断与报警:监测系统能够对设备出现的故障进行诊断,并及时发出报警信息,提醒相关人员进行处理。
3.远程控制:监控系统可通过远程控制设备进行开关操作和参数调整,提高设备运行的便利性和效率。
4.数据采集与分析:系统可以采集各种设备的运行数据,并进行分析,提供决策支持和设备维护的参考。
5.历史数据存储与查询:系统能够对设备的历史数据进行存储和查询,方便了解设备的运行历史和趋势。
三、系统实施步骤1.需求分析:根据建筑物的需求确定监控系统的功能和配置要求。
2.设备选型:根据需求确定适合建筑物的设备监控设备和传感器。
3.网络布线:设计合理的网络布线,确保监控系统能够与各个设备连接。
4.系统部署:安装设备监控系统,包括各种传感器、监控设备和监控软件。
5.系统调试:对系统进行调试,确保各个设备的连接和数据采集正常,系统功能完备。
6.报警设置:根据需求设置报警规则和参数,确保能够及时发现设备的异常和故障。
建筑设备监控系统方案建筑设备监控系统方案(一)引言建筑设备监控系统是指通过使用现代化的传感器技术、数据采集与处理技术、网络通信技术以及软件系统,来实时监测和管理建筑物内部各种设备的工作状态和运行情况,并在发现问题时及时报警和采取相应的措施。
本方案旨在通过建筑设备监控系统来提高建筑物的安全性、高效性和可靠性。
(二)系统基本功能1. 实时监测设备状态:通过安装传感器和数据采集设备来实时监测建筑物内部各种设备的状态,包括温度、湿度、压力、电流、电压等参数。
2. 预警功能:系统可以根据事先设定的阈值,当设备运行状态异常时及时发出预警信息,以便及时采取相应的措施。
3. 远程操作:系统支持远程操作,用户可以通过手机、电脑等终端设备对建筑设备进行远程监控与控制,方便快捷。
4. 数据存储与分析:系统将各种设备参数和运行数据存储起来,并提供数据分析功能,可以对设备的工作情况进行统计和分析,为设备维护和管理提供参考依据。
(三)系统组成本建筑设备监控系统由传感器节点、数据采集设备、通信网络、数据处理与分析平台以及用户终端等组成。
1. 传感器节点:通过在建筑物内部安装各种传感器设备,如温度传感器、湿度传感器、压力传感器等,实时采集设备运行状态的数据,并将数据发送给数据采集设备。
2. 数据采集设备:负责接收传感器节点发送的数据,并进行数据的处理和存储。
数据采集设备还可以根据事先设定的阈值进行数据分析,当设备状态异常时发出预警信息。
3. 通信网络:将数据采集设备采集到的数据通过网络传输至数据处理与分析平台。
通信网络可以采用有线网络或无线网络,保证数据的及时传输和可靠性。
4. 数据处理与分析平台:负责接收并处理来自数据采集设备的数据,根据设定的规则进行数据分析与处理,并在需要时发出预警信息。
同时,数据处理与分析平台也负责存储和管理历史数据,并提供数据查询与分析功能。
5. 用户终端:用户可以通过手机、电脑等终端设备访问数据处理与分析平台,实现对建筑设备的远程监控与控制。
建筑设备监控系统1 系统定义、系统的基本组成、系统的主要特点1.1系统定义建筑设备监控系统(Building Automation System-BAS)是将建筑物或建筑群内的空调与通风、变配电、照明、给排水、热源与热交换、冷冻和冷却、电梯和自动扶梯等系统,以集中监视、监控和管理为目的构成的综合系统。
1.2系统的基本组成建筑设备监控系统通常是由中央站、现场控制器、仪表和通信网络四个主要部分组成。
1)中央站:是由硬件部分和软件部分组成见表1.2-1。
表1.2-12)现场控制器:通常是由微处理器、网络通信模块、输入输出模块、储存器、电源等部分组成。
3)仪表见表1.2-2 。
表1.2-24)通信网络:建筑设备监控系统的通信网络结构模式为集散式或分布式控制方式,由管理层网络和监控层网络组成。
1.3系统的主要特点采用建筑设备监控系统后能达到以下良好的效果:●确保建筑物内具有最佳的工作与生活环境;●有效节约电能;●大量节省管理人员;●延长设备的使用寿命;●提高建筑物自身以及人员与设备的整体安全水平;●全面提高设备管理水平。
2 系统分类与基本特点、功能、适用范围2.1系统分类、基本特点、功能、适用范围 1)系统分类、基本特点见表2.1。
2)功能:是优化建筑物内空调与通风、变配电、照明、给排水、热源与热交换、冷冻和冷却、电梯和自动扶梯等系统的运行管理,使各系统的运行达到状况最佳、最经济合理。
同时为建筑物内人们的工作和生活提供高度安全的、高效率的、舒适的、温馨的、便利的环境,并节省建筑物能耗和提高工作人员效率,减少运行人员及费用。
3)适用范围:适用于建筑物或建筑群内的空调与通风、变配电、照明、给排水、热源与热交换、冷冻和冷却、电梯和自动扶梯等系统的集中监视、监控和管理。
3 设计依据及产品选用应遵循的相关标准、规范4 产品选用及工程设计要点4.1工程设计要点1)建筑设备监控系统的设计要素见表4.1-1。
表4.1-1表2.12)每台现场控制器的输入输出接口数量与接口类型应用所监控的设备要求相适应,并留有10%~15%的余量。
建筑设备监控系统1。
1项目概况本工程为某建筑设备监控系统,主要包括:空调系统、送排风/烟机、配电系统、电梯系统、给排水系统等组成。
1.2设计原则1、用户至上原则方案的设计以满足用户需求为目标,最大限度满足用户提出的各种功能要求。
2、先进性与实用性本系统应用目前先进的计算机控制技术,结合工业自动化控制技术、现场总线技术实现了计算机网络化管理,最大限度的提高系统的自动化运行程度,同时为使用者提供了良好的人机交互控制界面和丰富可靠的应用功能。
3、科学性与合理性在满足系统所有功能要求的前提下,软硬件搭配要追求最大的性价比,尽最大可能地节约资源、降低成本;系统构建应采用积木式结构,系统化、集成化和模块化的设计方法,为系统今后的扩展提供了广阔的空间,同时也方便了系统的维护保养.4、稳定性与安全性稳定性与安全性始终是任何设备及其应用系统永远追求的最高目标之一。
5、灵活性与可扩充性系统必须具有强大的组网能力、灵活的软硬件设置环境、能支持各种常用的通讯接口和技术标准,并留有未来升级与更新、扩充的足够余量,以确保客户的投资不会浪费。
6、经济性在设计选型的同时应充分考虑系统的经济适用性。
在完全满足系统需求的前提下,选择高性价比的产品来完成整个系统的构建。
充分考虑客户的需求和利益,使得整个系统在功能完善的情况下,其成本最小化。
1.3设计依据和标准《民用建筑电气设计规范》 JGJ/T16-92《中国电气装置安装工程施工及验收规范》 GBJ232—82《采暖通风与空气调节设计规范》 GB50019-2003《智能建筑设计规范》 GB/T20314-2000《智能建筑设计标准》 DBJ08—47—95《中国高层民用建筑设计规范》 GBJ45-90—92《客户提供的标准设计图纸,规范》。
1.4系统总体设计说明1、系统描述建筑设备监控系统全部采用485联网控制。
空调末端系统包括:空调柜34台、新风机98台、送排风/烟机33台;给排水系统生活水箱2个、各类泵86台、集水井38个和消防水池1个;配电系统高低压柜,采用通迅接口板进行监测;水冷冷冻主机系统采用通迅接口板进行监测;变电所综合继电保护系统采用通迅接口板进行监测;锅炉系统采用通迅接口板进行监测;发电机系统采用通迅接口板进行监测;VRV空调系统采用通迅接口板进行监测;恒温恒湿空调系统采用通迅接口板进行监测;风冷热泵/冷水机组系统采用通迅接口板进行监测;洁净区系统采用通迅接口板进行监测;电梯系统采用通迅接口板进行监测;照明系统分为车库照明和公共照明,总共控制40个回路。
建筑设备监控系统简介建筑设备监控系统是一种用于监控和管理建筑物内的各种设备和系统的技术方案。
它通过使用传感器、数据采集和分析以及网络通信等技术手段,实现对建筑设备的实时监测、数据分析和远程控制。
功能建筑设备监控系统通常具有以下功能:实时监控该系统可以连接到建筑物内的各种设备,如空调、电梯、照明等,并实时监测它们的运行状态。
通过收集各种传感器数据,系统可以实时检测设备的温度、湿度、电压、电流等关键参数,并将这些数据展示在用户界面中。
故障预警建筑设备监控系统可以通过分析历史数据和实时数据,检测设备潜在的故障风险。
一旦系统发现设备存在故障风险,它会自动发出警报并通知相关人员,以便及时采取措施进行维修。
远程控制建筑设备监控系统可以通过网络远程控制建筑内的各种设备。
用户可以通过手机、电脑等终端设备,实时监控设备状态并远程控制设备的开关、模式等参数。
数据分析建筑设备监控系统还可以对设备运行数据进行统计和分析。
通过分析设备的运行状况,系统可以帮助用户发现设备的运行问题,并提供相应的解决方案。
运行原理建筑设备监控系统通常由以下几个组成部分:传感器传感器是建筑设备监控系统的核心组件。
它们可以安装在建筑物的各个位置,用于实时监测设备的运行状态。
常见的传感器类型包括温度传感器、湿度传感器、压力传感器等。
数据采集建筑设备监控系统通过连接传感器,实时采集和记录设备的运行数据。
数据采集可以通过有线或无线方式进行,具体取决于建筑物的布局和设备的分布情况。
数据传输和存储采集到的数据可以通过网络传输到云端或本地服务器,并进行存储。
数据的传输和存储通常采用安全的通信协议和数据加密技术,以保证数据的安全性和完整性。
数据分析与展示采集到的数据可以通过数据分析算法进行处理,并得出结论和预测。
这些分析结果可以展示在用户界面上,帮助用户了解设备的运行状况和性能指标。
应用场景建筑设备监控系统在各种建筑物中都有广泛的应用,包括商业大楼、办公楼、公共设施等。
18 建筑设备监控系统18.1 一般规定18.1.1本章适用于建筑物(群)所属建筑设备监控系统(BAS)的设计。
BAS可对下列子系统进行设备运行和建筑节能的监测及控制:1冷冻水及冷却水系统;2热交换系统;3采暖通风及空气调节系统;4给水及排水系统;5供配电系统;6公共照明系统;7电梯和自动扶梯系统。
【注释】 BAS按工作范围有两种定义方法,即广义的BAS和狭义的BAS。
广义的BAS即建筑设备自动化系统,它包括建筑设备监控系统、火灾自动报警系统和安全防范系统;狭义的BAS 即建筑设备监控系统,它不包括火灾自动报警系统和安全防范系统。
从使用方便的角度,可将狭义二字去掉,简称建筑设备监控系统为“BAS”。
建筑设备监控系统的主要监控对象是各类建筑设备,为了界定其范围并及《智能建筑工程验收规范》GB50339保持一致,本规范规定这些建筑设备的监控可划分为7个子系统。
18.1.2建筑设备监控系统设计应符合下列规定:1建筑设备监控系统应支持开放式系统技术,宜建立分布式控制网络;2应选择先进、成熟和实用的技术和设备,符合技术发展的方向,并容易扩展、维护和升级;3选择的第三方子系统或产品应具备开放性和互操作性;4应从硬件和软件两方面确定系统的可集成性;5应采取必要的防范措施,确保系统和信息的安全性;6应根据建筑的功能、重要性等确定采取冗余、容错等技术。
【注释】集散控制系统DCS虽然号称是分布式控制系统,但实际上只做到了半分布,现场设备层并没有实现彻底分布,控制依赖于控制器。
真正的分布式控制系统FCS中,现场的各测控点(传感器、执行器等)均是智能化的,因此可将DCS中现场设备层单向传输的4~20mA模拟量信号变为全数字双向多站的数字通信,即实现了现场设备层的全网络化;并省去了传统DCS所必需的输入/输出模块和现场控制站,即控制功能进一步分散到现场设备上。
虽然FCS是发展方向,但由于智能型数字化的传感器、执行器目前的价格仍偏高,近期建筑设备监控系统仍以选择半分布的DCS为宜。
建筑设备监控系统概述
一、简介
建筑设备监控系统是一种网络型的建筑设备管理系统,主要为建筑管
理者提供实时可视化的设备监控、管理及报警服务。
它可以建立基于物联
网(Internet of Things,IoT)的建筑设备互联网,实现实时的设备状
态检测、故障预警和故障分析,并且提供建筑物维护管理的可视化服务,
以及智能室内控制等建筑设备的自动管理功能。
二、主要功能
1、设备监控和报警:建筑设备监控系统可以实时监控建筑物的设备
运行状态,如站点电量、温度湿度监测、锅炉运行状态等,并及时发出报
警警报,以便及时采取措施处理故障。
2、设备维护管理:建筑设备监控系统可以实现建筑设备的可视化管理,从整个周期的设备安装、运行维护、应急处置等方面实现平台化管理,提供给建筑物管理者更多的管理便利。
3、室内智能控制:建筑设备监控系统可以实现室内智能控制,可以
就不同空间内的温度湿度、亮度等参数进行实时监测,并实现室内控制,
节能减排,提高空间管理的效率。
三、系统架构。
建筑设备监控系统检验内容及方法建筑设备监控系统是用于监测和控制建筑设备运行状态的系统,主要包括中央控制器、传感器、执行器、网络通信模块以及监控软件等组成部分。
为了确保监控系统的有效性和稳定性,需要进行定期的检验。
下面是建筑设备监控系统检验的内容及方法。
一、检验内容:1.系统硬件设备检验:包括对中央控制器、传感器、执行器等硬件设备的检查和测试,主要是检查设备是否正常工作、连接是否稳定、传感器的精度和准确性等。
2.网络通信设备检验:包括对网络通信模块的检查和测试,主要是检查网络连接是否正常、通信速度是否满足要求以及网络通信的稳定性。
3.监控软件检验:包括对监控软件的功能进行检查和测试,主要是检查监控软件是否可以正常运行、数据采集和处理的准确性以及报警功能的可靠性等。
4.监控系统的集成测试:对整个监控系统进行综合测试,包括对各个硬件设备、网络通信设备和监控软件的集成测试,主要是检查整个系统的稳定性、可靠性和可用性等。
5.安全性检验:包括对系统的安全性进行检查和测试,主要是检查系统是否存在安全漏洞、是否有足够的安全防护措施以及是否可以抵御网络攻击等。
6.数据备份和恢复测试:测试监控系统的数据备份和恢复功能,主要是检查备份是否成功、备份数据的完整性以及恢复数据的可靠性等。
二、检验方法:1.硬件设备检验方法:通过检查设备的外观和连接情况,观察指示灯的状态和读取设备的参数来判断设备是否正常工作。
可以使用专业的仪器和设备来测试传感器的精度和准确性。
2.网络通信设备检验方法:通过测试网络连接的状态,使用网络性能测试软件对网络带宽和延迟进行测试,以及对通信模块进行功能测试来判断网络通信设备是否正常工作。
3.监控软件检验方法:通过测试监控软件的各项功能和报警功能,对监控软件进行功能测试和性能测试,以及对监控软件进行压力测试来判断监控软件是否正常工作。
4.监控系统的集成测试方法:通过模拟实际使用环境和实际运行情况进行测试,包括对整个系统的稳定性、可靠性和可用性进行测试,如网络断线重连、中央控制器的切换等。
18 建筑设备监控系统18.1 一般规定18.1.1 本章适用于建筑物(群)所属建筑设备监控系统(BAS)的设计。
BAS可对下列子系统进行设备运行和建筑节能的监测与控制:1 冷冻水及冷却水系统;2 热交换系统;3 采暖通风及空气调节系统;4 给水与排水系统;5 供配电系统;6 公共照明系统;7 电梯和自动扶梯系统。
【注释】 BAS按工作范围有两种定义方法,即广义的BAS和狭义的BAS。
广义的BAS即建筑设备自动化系统,它包括建筑设备监控系统、火灾自动报警系统和安全防范系统;狭义的BAS 即建筑设备监控系统,它不包括火灾自动报警系统和安全防范系统。
从使用方便的角度,可将狭义二字去掉,简称建筑设备监控系统为“BAS”。
建筑设备监控系统的主要监控对象是各类建筑设备,为了界定其范围并与《智能建筑工程验收规范》GB50339保持一致,本规范规定这些建筑设备的监控可划分为7个子系统。
18.1.2 建筑设备监控系统设计应符合下列规定:1 建筑设备监控系统应支持开放式系统技术,宜建立分布式控制网络;2 应选择先进、成熟和实用的技术和设备,符合技术发展的方向,并容易扩展、维护和升级;3 选择的第三方子系统或产品应具备开放性和互操作性;4 应从硬件和软件两方面确定系统的可集成性;5 应采取必要的防范措施,确保系统和信息的安全性;6 应根据建筑的功能、重要性等确定采取冗余、容错等技术。
【注释】集散控制系统DCS虽然号称是分布式控制系统,但实际上只做到了半分布,现场设备层并没有实现彻底分布,控制依赖于控制器。
真正的分布式控制系统FCS中,现场的各测控点(传感器、执行器等)均是智能化的,因此可将DCS中现场设备层单向传输的4~20mA模拟量信号变为全数字双向多站的数字通信,即实现了现场设备层的全网络化;并省去了传统DCS 所必需的输入/输出模块和现场控制站,即控制功能进一步分散到现场设备上。
虽然FCS是发展方向,但由于智能型数字化的传感器、执行器目前的价格仍偏高,近期建筑设备监控系统仍以选择半分布的DCS为宜。
建筑设备监控系统的控制对象涉及面很广,很难有一个厂家的相关产品都是性价比最高的。
因此,由多家产品组成系统时就存在一个产品开放性的问题。
开放系统建立在标准化与业界实际遵循的接口协议的基础上,这些标准与协议应为系统提供软件的可移植性、系统的互操作性。
可移植性是指第三方的应用软件能很方便地在系统所提供的平台上运行,保护用户的已有资源,减少应用开发、维护和人员培训的费用。
互操作性是指不同的控制设备或系统通过通信网互联后,能够有效地进行数据的传输,并在此基础上协同工作、共享资源。
现场设备的互操作性问题在行业达成现场总线标准化(如建筑设备监控方面的Lon Mark标准)共识后在一定范围内得到了解决,前提是不同厂家的产品完全按照既定的标准生产。
在建筑设备监控系统中,照明控制子系统、电梯控制子系统、自备发电机控制子系统等往往采用第三方产品。
这时互连两个异构网络的网关应尽量避免采用自己开发的方式,因为一般情况下,第三方设备供应商不公开自己的软件;即使公开,也有很多附加条件,如高额付费、签订保密协议等,给使用者带来诸多不便。
通常选择由主体设备供应商与第三方设备供应商联合生产的专用网关,由于是成熟产品,可靠性大大提高,价格也较低。
在DCS选型中还应注意以下问题:1 目前正是新老系统交接的时期,DCS的软件、硬件正由专用走向通用。
选用比较通用型的系统,一是价格比较低,二是以后的备品比较好买,维护费用会大幅度降低,与其它系统的互连不仅容易,而且互连费用也低;2 应该从DCS本身价格和预计所创效益角度来考虑经济性。
DCS有国产的和进口的,对相同档次而言,进口的控制功能强一些。
但国产DCS价格要比进口的低很多,也能满足基本技术要求。
另外,国产DCS开发比较晚,已经结合一些先进的技术,某些技术比国外还先进一些,系统结构也比某些进口的DCS还要合理一些;3 售后服务问题。
国外厂商通常情况下存在配品、备件供应价格高,且不能及时提供的问题。
在招标时,各厂商为了压低价格,DCS的利润比较低,但由于系统的运行、维护和升级通常严重依赖于原来的设备厂商,他们可以从配品、备件得到高额补偿。
因此,用户应选择实力雄厚的、技术力量强的、境内技术支持好的厂家;4 应采用经过验证的先进技术,如DCS的开放性和互连性;加操作密级和防火墙的应用;现场总线技术的应用和第三方软、硬件的支持等;5 在DCS选型中要考虑系统集成的需要。
18.1.3 设计建筑设备监控系统时,应根据监控功能需求设置监控点。
监控系统的服务功能应与管理模式相适应。
【注释】一般情况下,系统的功能越完善,要求的监控点就越多,但投资的费用就会越高。
系统的服务功能是与管理模式有关的。
例如,不同的管理模式,建筑设备监控系统、火灾报警系统与安全防范系统的集成可能有不同的方法,因此系统服务功能也各不相同。
18.1.4 建筑设备监控系统规模,可按实时数据库的硬件点和软件点点数区分,宜符合表18.1.4的规定。
表18.1.4 建筑设备监控系统规模【注释】在确定建筑设备监控系统网络结构、通信方式及控制方式时,系统规模的大小是需要考虑的主要因素之一。
因此,不同厂家的集散型计算机控制系统产品说明或综述介绍中,大多数都涉及规模划分问题,其共同点是以监控点的数量作为划分的依据。
但是各厂家都是根据各自产品的应用条件来描述规模大小的,有关系统规模大小的数量规定差异很大。
因此,表18.1.4给出一个系统规模量化标准作为参考。
该表的意义主要在于给出一个明确的量化标准,为后续条款的相关规定提供前提,而不在于其具体量化值。
18.1.5 建筑设备监控系统,应具备系统自诊断和故障报警功能。
【注释】自诊断是计算机控制系统所独具的功能。
所谓自诊断就是设计一个程序或电路,使其能够对系统本身或某个逻辑部件进行检查,如发现故障则自动报告并采取相应的措施。
为了保证计算机系统正常运行,其维护费用是很高的。
这些费用主要用于培训人员、编写文件、提供各种维护仪器和工具等方面。
系统越大、越复杂,所需的维护费用也越高。
从维护效率来讲,排除机器故障的时间越短越好,因为机器停机时间越长,给用户造成的损失就越大。
特别是在连续运行的系统中,过长的维护时间将严重影响设备运行甚至是不允许的。
维护费用昂贵和维修时间过长,主要是由于技术不熟练,不能迅速准确地判断和排除故障而造成的。
如果系统具备一个较好的系统自诊断功能,给维护人员提供较多的信息,以帮助他们迅速地分析、判断故障原因和地点,那么,不仅可以缩短维修时间,而且也避免了对维修人员技术水平的过高要求。
为此,系统自诊断应具备如下功能:1 系统发生故障时,能及时发出声光报警信号,能够提出故障所在部位;2 系统发生故障后,能保存系统的故障状态记录,以便维护人员进行分析;3 能自动启动相应故障处理程序。
18.1.6 当工程有智能建筑集成要求,且主管部门允许时,BAS应提供与火灾自动报警系统(FAS)及安全防范系统(SAS)的通信接口,构成建筑设备管理系统(BMS)。
【注释】建筑管理系统(BMS)的主要功能是把建筑设备监控系统(BAS)、火灾自动报警系统(FAS)及安全防范系统(SAS)集成到一个统一的信息平台上,建立统一的管理员操作界面,对纳入集成系统的所有设施进行统一的监测和控制,为跨系统的事件处理和决策提供综合的信息依据。
18.2 建筑设备监控系统网络结构18.2.1 建筑设备监控系统,宜采用分布式系统和多层次的网络结构。
并应根据系统的规模、功能要求及选用产品的特点,采用单层、两层或三层的网络结构,但不同网络结构均应满足分布式系统集中监视操作和分散采集控制(分散危险)的原则。
大型系统宜采用由管理、控制、现场设备三个网络层构成的三层网络结构,其网络结构应符合图18.2.1的规定。
中型系统宜采用两层或三层的网络结构,其中两层网络结构宜由管理层和现场设备层构成。
小型系统宜采用以现场设备层为骨干构成的单层网络结构或两层网络结构。
各网络层应符合下列规定:1 管理网络层应完成系统集中监控和各种系统的集成;2 控制网络层应完成建筑设备的自动控制;3 现场设备网络层应完成末端设备控制和现场仪表设备的信息采集和处理。
图18.2.1 建筑设备监控系统的三层网络系统结构【注释】纵观控制系统的发展史,不难发现,每一代新的控制系统都是针对老一代控制系统存在的不足而推出的更完善的解决方案。
模拟仪表控制系统在20世纪六、七十年代占主导地位,但是随着控制系统中设备的日趋大型化,测控参数日益增多,稍大一点的系统,长长的仪表屏上分散的显示仪表和操作旋钮往往使得操作运行人员顾此失彼甚至无法工作。
随着计算机图像显示技术的发展,使计算机控制系统在集中显示操作方面与模拟系统相比有着天然优势,因此集中式计算机控制系统在20世纪七、八十年代占了主导地位。
当时,受计算机技术发展水平的限制,集中式计算机控制系统各回路的控制运算往往由同一台计算机集中完成,这就造成了危险集中,使系统的可靠性下降。
由于上述两种控制系统都采用一对一的配线方式,这使得大量的电缆需要集中到控制室,布线工作量很大,且线路长,信号损失和干扰也都比较大,因此,这两种系统都难以用在大型系统上。
鉴于使用数字通信网络可以克服一对一配线存在的一点对一点、单向、单一信号的低效率数据传递模式的缺点,在一根电缆上可以进行多点对多点、双向、多种数据的信息交换,因此,数字通信网络为大系统的发展提供了坚实的基础。
而且,数字通信网络技术与计算机技术的快速发展还为计算机分布式控制提供了可能性,20世纪八、九十年代占主导地位的集散控制系统(DCS)就是这样实现了分散控制(危险分散)。
但是遗憾的是,当时不同的DCS 厂家为达到垄断经营的目的而采用各自专用的控制通信网络,不同厂家的DCS之间以及DCS与上层Intranet、Internet信息网络之间难以实现网络互联和信息共享,且造价昂贵。
在这种情况下,用户当然迫切要求计算机控制系统实现开放性和降低成本。
现场总线控制系统(FCS)正是顺应以上潮流诞生的,它用现场总线这一开放的、具有互操作性的网络将现场各控制器及仪表设备互连,同时将控制功能彻底下放到现场,降低了安装成本和维护费用。
由上述可知,数字通信网络适用于大型控制系统,但控制系统的大型化必然带来通信网络的复杂化,使系统的设计难度加大。
人们在遇到难题时往往将其分解成若干个容易处理的子问题,然后分而治之逐个解决,这种结构化设计方法是工程设计中常用的一种手段,分层就是大系统分解的最好方法之一。
因此,对于一个大型的控制系统,往往采用多层次的网络体系结构,例如工业控制中采用4层结构(过程控制层、控制管理层、生产管理层和经营管理层),建筑设备控制系统相对简单,通常采用3层结构(管理网络层、控制网络层和现场网络层)或更少的层次结构。