电机的发热和冷却
- 格式:ppt
- 大小:248.50 KB
- 文档页数:6
电机的冷却方式及其代号
一、概念部分:
1)冷却:电机在进行能量转换时,总是有一小部分损耗转变成热量,它必须通过电机外壳和周围介质不断将热量散发出去,这个散发热量的过程,我们就称为冷却。
2)冷却介质:传递热量的气体或液体介质。
3)初级冷却介质:温度低于电机某部件的气体或液体介质,它与电机的该部件相接触,并将其放出的热量带走。
4
5
6
7
8
1
3
气。
6、冷却方法代号的标记有简化标记法和完整标记法两种,我们应优先使用简化标记法,简化标记
7、比较常用的冷却方式有IC01、IC06、IC411
举例说明:IC411完整标记法为IC4A1A1
“IC”为冷却方式标志代号;
“4”为冷却介质回路布置代号(机壳表面冷却)
“A’’为冷却介质代号(空气)
第一个“1
第二个“1。
中小型电动机的温升——资料来自机械设计手册第三版并经整理发热与温升:电动机在运行过程中有能量损耗,可分为固定损耗和可变损耗。
固定损耗包括铁损和机械损耗,与负载大小无关,一般型电动机此项数值较小;可变损耗主要是铜损,是电机发热的主要热源,等于电流的平方乘以电阻。
损耗导致电机发热。
电机的温升:发热与散热达到平衡时电机温度与环境温度之差称为电动机的温升。
若以Q 代表单位时间内电动机的发热量;A代表电动机与环境温度相差1度时,单位时间内电动机的散热量,则温升稳定值∆T=Q/A达到温升稳定值所需的时间:理论上达到温升绝对稳定的时间是无限长的,实际上只能达到基本稳定。
所需要的时间与发热时间常数T有关。
若以C代表电机的热容量,即电动机温度升高1度所需的热量,则T=C/A (A的定义同上)T与电动机的构造和尺寸有关。
小型电动机(中心高80~315属于小型)一般为0.5小时左右,大型电动机(中心高大于630mm属于大型)一般为3~4小时。
电机的冷却时间常数为发热时间常数的2~3倍,采用强迫通风时,两者相等。
T并不就是温升的稳定时间。
温升按指数规律随时间的增加而逐渐趋于稳定值。
下表是根据公式计算出的温升与温升稳定值之比TB与时间的关系表列数据可以用来估计温升稳定值和大致达到温升稳定值所需的时间。
举例来说,如果某小型电动机的T=0.5小时,运行3xT=1.5小时的温升为35度,便可得到TB=0.95,则可以推算出温升稳定值为∆T=35/0.95=36.84度。
电机的绝缘等级与允许温升:电机的绝缘等级决定于所采用的材料的耐热等级。
若电机的主要部件采用不同耐热等级的绝缘材料,则其绝缘等级按绝缘材料的最低耐热等级考核。
一般用途的中小型电机常选用较低耐热等级的绝缘材料,如E级,B级;有特殊要求的如高温环境,频繁启动的电机,则采用较高耐热等级的绝缘材料,但有时为了提高电机的使用寿命与可靠性,往往也采用较高耐热等级的绝缘材料,但其温升按较低等级考核。
电机冷却技术哈尔滨大电机研究所刘维维一、电机的发热发电机作为一种能量转换机构,在工作过程中不可避免地要伴随能量的损耗。
主要包括:(一)磁通变化时,在铁芯内部产生的损耗——铁心损耗;(二)电流流经定子绕组是产生的损耗——绕组损耗;(三)电机工作过程中轴承等部件摩擦产生的损耗——机械损耗及附加损耗。
这些损耗绝大部分都以热量的形式散失的电机内部使其温度升高,最终导致电机效率降低、运行的经济性变差,使用寿命缩短。
在电机工作过程中表征其内部损耗的一个重要指标就是电机的温升,如何减少电机损耗,改善冷却条件使热量散发出去,将电机温升控制在一定范围内是一项必须给予高度重视的任务。
为此,从事电机研究的工作人员对电机的冷却方式在进行着不断的改进,努力寻求更高效更合理的冷却技术。
二、电机的冷却方式从现有的电机冷却系统来看,电机的冷却方式主要有气冷(空气冷却、氢气冷却)、气液冷以及液冷(冷却介质主要包括水、油、氟利昂等)几种。
一般来说,空气冷却主要应用于中小型电机,广泛应用于各种型号的水轮发电机,从微型水轮发电机到诸如委内瑞拉的724.5MW的巨型水轮发电机均采用空气冷却技术。
在国内同样有许多空冷机组,如葛洲坝二江电站的170MW低水头电机。
30年代末以前,几乎所有的汽轮发电机都是采用空气冷却的,直至目前为止,空气冷却在汽轮发电机的冷却中仍占重要地位。
氢气冷却最早是由美国通用公司在汽轮发电机上引入使用的,并且随着技术水平的提高逐渐在大容量的汽轮发电机上得到应用,同时,也从早期的仅限于绕组表面氢气冷却发展为定子氢内冷——氢气流过定子铜线中的空芯钢管带走热量,从而达到冷却的目的。
目前,氢气冷却主要应用于500MW以下的汽轮发电机组。
气液冷主要是应用于气冷不能满足散热要求的场合,由于液体具有相对于气体更大的比热和导热系统这些特点,用液体(主要是水)来替代部分气体使得冷却效果大为提升。
普遍采用的气液冷为水气冷却——空心的定子绕组采用液体(水)冷却,转子采用空气冷却。
电机学知识点总结电机,作为现代工业和日常生活中不可或缺的设备,其背后的电机学知识体系庞大而复杂。
下面我们来对电机学的重要知识点进行一番梳理。
首先,电机的分类是我们需要了解的基础。
电机主要分为直流电机和交流电机两大类。
直流电机结构相对简单,调速性能好,常用于对调速要求较高的场合,比如早期的电车和一些工业生产中的调速系统。
交流电机则又包括异步电机和同步电机。
异步电机结构简单、价格低廉、运行可靠,在工农业生产中应用广泛,像常见的风机、水泵大多采用异步电机驱动。
同步电机的转速与电源频率严格同步,具有功率因数可调等优点,常用于大型发电厂以及需要高精度转速控制的场合。
电机的工作原理是电机学的核心内容之一。
直流电机是依靠通电导体在磁场中受到电磁力的作用而转动。
其电磁转矩的大小与电枢电流和磁通成正比。
对于交流电机,异步电机是基于电磁感应原理工作的,定子绕组中通以三相交流电产生旋转磁场,转子绕组中的导体在旋转磁场的作用下产生感应电流,从而受到电磁力使转子转动。
同步电机则是通过转子磁场与定子旋转磁场的相互作用实现同步运行。
在电机的结构方面,无论是直流电机还是交流电机,都由定子和转子两大部分组成。
定子是电机的固定部分,主要包括定子铁芯、定子绕组等。
转子是电机的旋转部分,其结构形式则因电机类型的不同而有所差异。
例如,直流电机的转子有电枢铁芯、电枢绕组和换向器等;异步电机的转子有鼠笼式和绕线式两种,鼠笼式转子结构简单,绕线式转子则可以通过外接电阻来调节转速。
电机的参数也是非常重要的知识点。
比如,直流电机的主要参数有电枢电阻、电枢电感、励磁电阻和励磁电感等。
这些参数对于分析电机的性能和设计控制系统都有着至关重要的作用。
交流电机的参数则包括定子电阻、定子电感、转子电阻、转子电感以及互感等。
电机的运行特性是我们关注的重点之一。
直流电机的运行特性包括转速特性、转矩特性和效率特性等。
通过对这些特性的分析,可以了解电机在不同负载下的性能表现。
浅谈电动机的发热与冷却摘要:简要介绍电动机热量产生和传递的过程、对电动机正常运行产生的影响和电动机的冷却方式。
关键词:电动机发热热传导冷却电动机(简称电机)在能量转换过程中,其内部将同时产生损耗。
由于损耗的存在,一方面将直接影响到电机的效率和运行的经济性;另一方面,由于损耗的能量最终转化为热能,从而使电机各部分的温度升高。
这将直接影响到电机所用的绝缘材料的寿命,并限制电机的输出,严重时能够将电机烧毁。
因此,一要在设计时注意合理减少电机的损耗;二要努力改善冷却条件,使热量能有效地、尽快地散发出去。
1.电机热量的产生、传导与散出电机中的热源主要是绕组及其铁芯中的损耗。
绕组和铁芯内部均会产生热量,绕组中的损耗与电流的平方成正比。
铁芯内部的热量是由涡流而产生的。
绕组中所产生的热量借传导作用,从铜线穿过绝缘层传到铁芯上,再加上铁芯中产生的热量,一起由铁芯传到电枢的表面,然后借助于对流及辐射作用,把热量散发到周围的空气中。
根据热传导知识可知,热量都是从高温部位传向相对低温部位。
从这样的热传导途径中,可以得出这样的结论:绕组的温度通常总是高于铁芯的温度。
若想降低绕组的温升,一方面要增强电机内部的传热能力,另一方面应该增强部件表面的散热能力。
为了使电机绕组内部热量比较容易地传导到散热表面,应该设法选择导热性能好、耐压强度高、绝缘性能好的绝缘材料。
要求在保证绝缘性能的情况下,降低绝缘层的厚度。
同时,还应设法清除线槽内的导热性能不佳的空气层,如:用油漆等来充填导线与铁芯的间隙。
这样做不仅可以改善导热性能,又可以增强电机的绝缘性能以及机械性能。
电机表面的散热能力与散热表面的面积、空气对冷却表面的速度等因素有关。
一般是采用增大散热面积、改善表面散热性能、增加冷却介质的流动速度以及降低冷却介质的温度等措施来增加散热能力。
电动机在运行时,若温度超过一定的值,首先损坏的是绕组的绝缘。
因为电机中的绝缘材料是耐热性能最差的部分。
电机冷却 问题:文献涉及产品电机怎样冷却?解答 / 措施 / 注释:电机可用如下方式冷却: 表面冷却 通过封闭的初级冷却回路(内部风冷回路或导热管), 电机内部产生的热量可传导至其封闭的外部 表面。
表面冷却电机的中空散热筋或散热管创建了内部冷却回路,它可将大部分的转子损耗以及定子 绕组头上的铜损直接传导至其机壳上的散热筋。
这样就可以通过外部冷却回来将其耗散掉。
自然冷却,对流冷却,自由冷却 由于电机上部或内部的热空气上升所产生的自然空气对流从而产生冷却作用 。
电机通过热辐射来耗散的热量, 可以忽略不计。
冷却强度如何, 取决于电机及安装位置的设计。
若电机轴水平,自然冷却电机可以通过环形排部的散热筋散热。
热空气可以在散热筋间向上自 由流动。
自然冷却电机大且重,由于缺少强制冷却气流,此类电机易脏,因此维护时需要注意。
代码 IC 00 IC 0A0 简图 冷却回路布置 自由冷却回路 "静音冷却": 无外部风扇IC 410 IC 4A1A0表面冷却自冷却 通过设备自身移动冷却介质从而实现冷却的方法。
冷却介质移动速度与电机速度相关: -- 基于转子自身的流量增强作用 -- 通过直接安装于转子的风扇组件 -- 通过由设备直接驱动的风扇或泵类设备 代码 简图 次级冷却介质的移动IC 411 IC 4A1A1自冷却 电机轴上的外部风扇 如: 1LA8 / 1LA4外部冷却 通过外置的组件完成冷却, 此组件自身包括独立驱动的电机这样就能保证冷风恒定且与主电机 速度无关。
代码 简图 冷却回路布置开放冷却回路的外部冷却 IC 06 IC 0A6 自由冷却回路 冷却介质 = 环境空气 如: 1G.5 / 1G.6 / 1PL6IC 16 IC 1A6通过管道输送冷却介质IC 26 IC 2A6通过管道排出冷却介质 = 环境空气IC 36 IC 3A6通过管道输送和排出冷却介质代码简图冷却回路布置外部冷却, 主冷却回路封闭, 次冷却回路开放IC 416 IC 4A1A6表面冷却 冷却介质 = 环境空气 如: 1PQ8 / 1PQ4IC 516 IC 5A1A6内置热交换器 冷却介质 = 环境空气通过相对运动冷却 此种类型是通过环境空气(冷却介质)与机械设备间的相对运动来冷却。