固体物理-第七章 固体的磁性
- 格式:ppt
- 大小:332.50 KB
- 文档页数:70
固体材料的磁性研究近年来,固体材料的磁性研究在科学界引起了极大的关注。
磁性材料不仅在磁存储、磁传感器和电磁设备等领域有着广泛的应用,而且对于深入了解物质的性质和相互作用也起着关键的作用。
本文将就固体材料的磁性研究进行探讨。
首先,固体材料的磁性是由其中所含的磁性原子或离子所决定的。
磁性原子或离子具有自旋磁矩,其自旋在外加磁场的作用下产生磁矩的定向,从而呈现出磁性行为。
根据材料的磁性表现,可将固体材料分为顺磁性、抗磁性和铁磁性。
顺磁性材料中的磁矩与外加磁场平行或反平行,导致磁性的增强或削减。
顺磁性物质在外加磁场的作用下会产生磁化强度增加的现象,这种材料常见的例子有铁、铝和锶等元素。
抗磁性材料中的磁矩与外加磁场方向始终垂直,使材料在外加磁场作用下呈现出磁矩的减小。
抗磁性材料的一个例子是铜。
最重要的是铁磁性材料,铁磁性材料中的磁矩与外加磁场平行或反平行,可以自发地在无外加磁场时形成磁畴结构。
铁磁性材料的晶体结构中,磁矩呈现出有序排列的状态,即形成各向同性的磁畴。
在铁磁性材料中,磁畴之间存在磁畴壁,通过改变外加磁场的方向,可以通过壁移动或磁畴翻转的方式实现磁化翻转。
铁磁性材料常见的例子有铁、镍和钴等元素。
在固体材料的磁性研究中,单晶材料和多晶材料的磁性行为往往有所差异。
单晶材料中,由于晶体的各向异性,磁性行为往往更加复杂。
而多晶材料中,不同晶粒间的晶界会对磁性行为产生影响。
此外,对于一些非晶态或纳米晶材料,其磁性行为也具有独特的特点。
除了材料本身的特性外,外部条件对于固体材料的磁性研究也具有重要作用。
温度是一个重要的因素,温度的变化会导致材料的磁性行为发生改变。
低温下,材料往往呈现出强磁性,而高温下,材料可能失去磁性或呈现出顺磁性。
此外,压力和磁场等外部条件也会对材料的磁性行为产生明显的影响。
通过改变外部条件,可以实现对固体材料磁性的控制和调控。
固体材料的磁性研究不仅涉及到实验和观测,还需要理论模型的构建和计算模拟的开展。
固体物理中的磁性磁性是固体物理中一个非常重要且有趣的现象。
它是指物质在存在外部磁场的作用下,产生磁化强度并展示出相应的磁特性。
在本文中,我们将探讨固体物理中的磁性现象,并介绍其中的一些关键概念和应用。
一、磁矩的概念与分类磁矩是固体物体表现出磁性的根本性质。
磁矩可以分为两类:原子磁矩和宏观磁矩。
1. 原子磁矩原子磁矩是由原子中带电粒子(如电子)所产生的微小磁矢量。
它的大小与原子的电子结构有关。
根据原子磁矩的大小和方向,物质可以分为顺磁性、抗磁性和铁磁性。
- 顺磁性:顺磁性物质中的原子磁矩与外磁场方向相同,被外磁场激发后会增强磁化强度,如氧气和铜等。
- 抗磁性:抗磁性物质中的原子磁矩与外磁场方向相反,被外磁场激发后会减弱磁化强度,如银和铝等。
- 铁磁性:铁磁性物质中的原子磁矩与外磁场方向相同,但铁磁性物质在外磁场的作用下会呈现出一定的剩余磁化强度,如铁和镍等。
2. 宏观磁矩宏观磁矩是由大量原子磁矩的矢量和所构成的磁化强度。
物质的宏观磁矩可以进一步分为顺磁性、抗磁性和铁磁性。
- 顺磁性:顺磁性物质在外磁场的作用下会呈现出强磁化特性。
这种磁性主要源于物质内部原子磁矩的耦合和分布,如铁矿石及其合金等。
- 抗磁性:抗磁性物质在外磁场的作用下会呈现出阻止磁化的特性。
这种磁性主要源于物质内部原子磁矩的耦合和分布,如铜和铅等。
- 铁磁性:铁磁性物质在外磁场的作用下呈现出显著的剩余磁化强度,其磁矩可以保持,并在去除外磁场后不会消失,如铁和钴等。
二、固体磁性的产生机制固体物质的磁性是由其原子磁矩的相互作用和排列所决定的。
根据不同的磁性机制,固体材料可以进一步分为顺磁体、抗磁体和铁磁体。
1. 顺磁体顺磁体的磁性主要是由物质内部原子磁矩的排列和分布造成的,其磁矩在外磁场的作用下与外磁场方向一致,从而增强磁化强度。
顺磁体的磁矩大小与外磁场强度呈线性关系,磁化过程是连续的。
2. 抗磁体抗磁体的磁性也是由物质内部原子磁矩的排列和分布所决定的,其磁矩在外磁场的作用下与外磁场方向相反,从而减弱磁化强度。
固体的磁性 基础知识1. 磁性的一种分类方式根据磁化率χ的大小符号以及与温度、磁场的关系,可以把物质的磁性分成五类:(1)抗磁性,磁化强度与磁场方向相反,χ < 0,其值约为10-7~10-6;(2)顺磁性,磁化强度与磁场方向相同,χ > 0,其值约为10-6~10-5;(3)反铁磁性,χ > 0,其值约为10-4;(4)亚铁磁性,χ > 0,其值约为10-1~104;(5)铁磁性,χ > 0,其值约为10-1~106抗磁性的χ几乎与温度无关,其余均与温度有关;亚铁磁性和铁磁性为强磁性,其余为弱磁性。
2. 原子磁矩构成固体物质的原子中,电子磁矩比原子核的磁矩大三个数量级,所以电子磁矩对固体的磁性起主要作用。
2.1 独立原子的磁矩原子中电子的磁矩由轨道磁矩和自旋磁矩两部分组成。
电子的轨道磁矩为L 是电子的轨道角动量,µL 的绝对值为其中l 是电子轨道角动量量子数,µB 是波尔磁子,其大小为电子的自旋磁矩为 = -2L e mμL =(1)L Bl l 2B e m S e mμSS 是电子的自旋角动量,µS 的绝对值及其在z 方向的投影分别为如果原子中只有一个电子,则原子磁矩为J 是电子的总角动量。
如果原子中有多个电子,原子的总角动量有LS 耦合和JJ 耦合两种耦合方式,分别适用于原子序数比较小和原子序数比较大(Z > 80)的耦合方式。
常见的3d 族和4f 族元素,电子之间的轨道-轨道与自旋-自旋偶合较强,适合使用LS 耦合。
2.2 晶场效应原子结合成晶体后,原子的电子状态发生变化,价电子参与各种类型的键合,而处在格点位置的离子也不同于孤立离子,其电子状态因受周围离子所产生的静电场的作用而发生变化,这种静电场称为晶体电场,它所造成的影响称为晶场效应。
晶场效应有两种:一是离子中简并的电子态发生劈裂,二是电子的轨道角动量的贡献部分或者全部被冻结。