著名的生物学家达尔文曾经说过:“最有价值的知识,就是关
于方法的知识”.
,是数学知
识、数学技能的本质体现,是解决数学问题的金钥匙,具有
“四两拨千斤”之效.因此掌握基本的数学思想方法,不仅是学
习数学的基本要求,而且能够使数学能力不断提高,从而在中
考中取得好成绩.
中考中常用到的数学思想方法有:
等.在中考复
分类讨论思想
例3 (2016·淮南模拟)按下列程序进行运算(如图).
规定:程序运行到“判断结果是否大于244”为一次运算.若 x=5,则运算进行 4 次才停止;若运算进行了5次才停 止,则x的取值范围是 2<x≤4 .
【解析】本题为程序信息题,通过转化借用一元一次不等式组求解问题.
(1)x=5,第1次: 5×3-2=13;第2次:13×3-2=37;第3次:37×3-2=109;第4 次:109×3-2=325>244,停止.
才停止,x的取值范围是2<x≤4.
转化思想
例4:试比较 x 2与 x 的大小
y y x2
y x
1
-1 0 1
x
数形结合思想
例5 (2016·广西河池)如图的三角形纸片中,AB=AC,BC=12
cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为
EF,那么BF的长为
cm.
例5 (2016·广西河池)如图的三角形纸片中,AB=AC,BC=12
整体思想
例2 (2016·哈尔滨)在等腰直角三角形ABC
中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则
AP的长为 13或 10 .
【解析】∵∠ACB=90°,AC=BC=3,分类:如图1,当PC