二氧化碳和氨复叠制冷的分析与研究
- 格式:pdf
- 大小:3.61 MB
- 文档页数:55
二氧化碳和氨复叠制冷的分析与研究的开题报告一、研究背景随着氟利昂等氟氯碳化合物及其替代品的逐渐淘汰,环保型制冷剂成为了人们关注的焦点。
其中,二氧化碳和氨是两种备受瞩目的环保型制冷剂。
二氧化碳的热力学性质良好,能够满足低温制冷需求;氨具有较高的制冷效率,但由于其具有毒性和易燃性,需要在安全使用方面进行特别关注。
因此,将二氧化碳与氨复叠使用,可以发挥二者的优点,达到更好的制冷效果。
二、研究内容本研究的主要内容是对二氧化碳和氨复叠制冷进行分析与研究。
具体研究内容包括:1. 二氧化碳和氨复叠制冷的基本工作原理和制冷性能分析。
2. 制冷系统的设计和优化,包括制冷剂的选择、制冷系统的结构设计和管路设计等。
3. 制冷系统的实验验证,包括实验参数的设定、实验数据的采集和分析,验证二氧化碳和氨复叠制冷的制冷性能与效果。
4. 制冷系统的经济性分析,包括成本分析、效益分析和环境影响分析等。
三、研究意义本研究的意义主要体现在以下方面:1. 对二氧化碳和氨复叠制冷技术的理论和实践进行深入探究,为其在工业生产中的应用提供理论支持和技术指导。
2. 通过对制冷系统的设计和优化,提高系统的制冷效率和经济效益,减少对环境的负面影响。
3. 探索和发展更加环保、高效的制冷技术,为推动环保型制冷技术进步和促进可持续发展做出贡献。
四、研究方法本研究采用理论与实验相结合的方法,具体实施方案如下:1. 系统调研,搜集国内外相关文献,了解国内外二氧化碳和氨复叠制冷技术的研究现状和发展趋势。
2. 确定研究内容和方法,进行制冷系统的设计和优化,并开展实验验证。
3. 分析实验数据,评估制冷系统的制冷性能、经济性和环境影响。
4. 归纳总结研究成果,撰写开题报告和论文。
五、预期成果本研究预期达到以下成果:1. 深入探究二氧化碳和氨复叠制冷技术的理论和实践,为其在工业生产中的应用提供理论支持和技术指导。
2. 通过对制冷系统的设计和优化,提高系统的制冷效率和经济效益,减少对环境的负面影响。
《R1270/CO2复叠式制冷系统热力学分析与研究》摘要:因此在满足换热要求的基础上,还应适当将系统冷凝温度和蒸发温度减小,继而通过减小系统损获得更大COP,损主要产生在压缩和节流阶段,会引发较大压力损失,除了低温级冷凝温度,系统高温级质量流量也受系统冷凝温度影响,会随着冷凝温度升高而增加,促使高低温级质量流量比增加任继鹏孙远新张良摘要:针对R1270/CO2复叠式制冷系统,本文结合系统循环原理和制冷剂物性完成了系统热力学分析模型的建立,通过对系统热力学性能展开分析提出了适当降低冷凝温度和提高蒸发温度的优化建议,从而使系统维持良好运行性能,满足冷链管理需求。
关键词: R1270/CO2;复叠式制冷系统;热力学分析引言:复叠式制冷系统由两个单级制冷循环复叠而成,可以划分为高温级系统和低温级系统,利用冷凝蒸发器连接。
其中,高温端制冷剂采用R1270,低温端制冷剂采用CO2,均能在冷凝蒸发器中完成蒸发过程。
而系统R1270蒸汽会进入相应压缩机,通过冷凝器实现热量传递,完成从高温端→压缩机→冷凝器→膨胀阀→冷凝蒸发器的循环过程。
系统CO2液体将进入节流装置,在蒸发器中对被冷却介质的热量进行吸收,在压缩机中完成从低温端→压缩机→冷凝蒸发器→膨胀阀→蒸发器的循环过程。
在理想状态下,系统高温端制冷循环得到的蒸发制冷量与低温端循环得到的冷凝热负荷相等。
1系统制冷剂的物性分析系统高温端制冷剂R1270属于HCs制冷剂,ODP和GWP分别为0和20,给臭氧层带来的破坏微乎其微,带有环境友好性特点。
R1270临界温度为92℃,临界压力为4.5MPa,汽化潜热达439kJ/kg。
然而从安全性角度来看,该物质安全系数为A3,所以需要对其热力学性质进行分析,确定能否在制冷系统中使用。
系统低温端制冷剂CO2属于天然工质,ODP和GWP分别为0和1,带有环境友好性特点。
在冷链行业应用,由于CO2拥有稳定化学性质,无毒不可燃,所以具有较好安全性,安全系数为A1,即便泄露也不会引发污染。
R744-R717复叠式制冷系统的热力学分析摘要:本文对R744-R717复叠式制冷系统的热力学特性进行了分析,目的是优化该系统的设计和工艺参数。
本文中考虑的设计和工艺参数包括(1)高温氨循环中的冷凝温度、过冷度、蒸发温度和过热度;(2)复叠式换热器中的换热温差;(3)低温二氧化碳循环中的蒸发温度、过热度、冷凝温度和过冷度。
基于过冷度、过热度、蒸发温度、冷凝温度和复叠式换热器中的温差建立了多线性的数学表达式,旨在得到最大的COP值,同时,得到了最优化的高温循环蒸发温度和R717与R744的质量流量的比率。
关键词:制冷系统;压缩系统;复叠式系统;氨;二氧化碳;R744;计算;性能;优化1.引言两级式复叠式制冷系统(见图1)适合于工业应用,尤其适合于食物冷冻间蒸发温度在-30℃—-50℃的超市制冷工业。
在此系统中,两个单独的制冷系统由复叠式冷凝器连接在一起。
复叠式制冷系统的高温级制冷剂可以由氨(R717)、丙烷(R290)、丙烯(R1270)、乙醇或者R404A来充当。
相反,二氧化碳被用于低温级循环。
氨是一种易得的自然工质,但是由于其可燃性和毒性,限制了它的应用。
丙烷、丙烯和乙醇的缺点是他们具有高度的可燃性。
乙醇的蒸发和冷凝压力均低于环境压力,这会导致气体泄露进系统内部。
然而,毒性和可燃性所带来的风险可以通过选取合适的用于超市和厂区的高温循环温度将这些风险降到最低。
二氧化碳的缺点是当临界温度在31℃时,它的压力就高达7.4MPa,这为管道的设计带来了难度。
因此,将二氧化碳用于低温级循环是经济可行的。
传统的直接膨胀低温制冷系统在冷凝器和蒸发器之间存在大的压差,这直接导致压缩机的压缩效率和容积效率的下降。
另外,全球变暖所带来的一系列问题促使超市所有者必须采取环保的,能提供更低温度的制冷系统。
因此,自然工质在超市制冷工业中的应用引起了大家的注意,尤其是以二氧化碳为低温级循环制冷剂的复叠式制冷系统最为被大家看好。
氨二氧化碳复叠制冷原理
嘿,朋友们!今天咱来聊聊氨二氧化碳复叠制冷原理。
这玩意儿啊,就好像是一场奇妙的接力赛!
氨呢,就像是个大力士,力气特别大,能在低温环境下发挥强大的制冷作用。
而二氧化碳呢,就像是个灵活的小助手,和氨配合得那叫一个默契。
你想啊,在制冷的过程中,氨先在低温部分努力工作,把温度降下来。
这时候二氧化碳就上场啦,它接着氨的任务,继续把制冷的事儿干得妥妥的。
这不就像接力赛中,前面的选手拼命跑了一段,然后把接力棒交给后面的选手,继续向前冲嘛!
氨二氧化碳复叠制冷原理的好处可多啦!它能让制冷效果更好,更稳定。
就好比你想要一杯冰凉的饮料,用这个原理制冷就能快速给你变出一杯透心凉的美味来。
而且啊,这种制冷方式还很节能呢!你说神奇不神奇?就好像你开车,用了一种特别好的驾驶技巧,能让车子跑得又快又省油。
咱再想想,要是没有氨二氧化碳复叠制冷,那夏天我们可咋过呀?那些需要低温保存的食物不就容易坏了吗?那些需要特定温度环境的生产过程不就没法顺利进行了吗?这后果可不敢想啊!
所以说啊,氨二氧化碳复叠制冷原理可真是个宝啊!它就像我们生活中的一个默默无闻但又超级重要的英雄,悄悄地为我们的生活带来便利和舒适。
你说,我们是不是应该好好感谢这个神奇的制冷原理呢?是不是应该好好珍惜它给我们带来的好处呢?我觉得啊,我们真的应该对它多一些了解,多一些关注,这样我们才能更好地利用它,让我们的生活变得更加美好呀!你们说是不是这个理儿呢?。
氨双级与二氧化碳压缩制冷系统NH3双级+CO2压缩制冷系统中CO2是作为载冷剂向设计冷库、食品冷冻等人工环境输送冷量。
与CO2/NH3复叠式不同,NH3双级+CO2系统在CO2循环过程中无压缩机,CO2工质只是作为载冷剂在内部流动,由CO2循环水泵或者自然循环提供动力即可。
CO2载冷剂在循环中进行相变换热,与一般的载冷剂相比可以大大减少流量,并且在低温下仍然具有较大传热系数和较小的运动黏度。
该制冷系统相比于普通的NH3双级压缩制冷系统可以大大减少NH3的充注量,并且用CO2代替NH3向外界供冷,使得氨制冷系统可以远离公共场所和人群密集的区域。
NH3双级+CO2制冷系统热力循环过程即由一个NH3双级制冷循环和一个CO2载冷剂的循环组成,NH3双级+CO2制冷系统一次节流中间完全冷却的两级压缩制冷循环压焓图,内部制冷工质为NHCO2/NH3复叠式系统与NH3双级+CO2系统在原理上有着根本不同,CO2/NH3复叠式系统的为两个不同工质的制冷循环,即使蒸发冷凝器中的热量传递无任何外界损耗,两种工质仍然存在6℃左右的换热温差,这使得该系统的COP偏小;NH 3双级+CO2系统的制冷工质为氣,在一个大气压下其蒸发温度为239.56K(-33.59C),若要获得更低的蒸发温度,则蒸发器内形成负压,容易造成空气渗入使制冷剂变质的现象,这就限制了该系统的最低蒸发温度;NH3双级+CO2系统的蒸发冷凝器存在6℃左右的换热温差,在相同的供冷温度下,会要求比CO2/NH3复叠式系统更低的蒸发温度,使得系统COP的下降。
上海冰函制冷科技有限公司(简称冰函制冷)位于中国第一大城市上海,集中美德技术为一体的合资企业。
德国工业化进程已日趋完善,工业4.0也已经进入中德合作新时代,冰函制冷拥有国际上最先进的低温传热科研技术和德国工业的实践印证。
冰函制冷将会以优秀的研发团队、完善的管理团队和无微不至的售后服务体系为中国工业4.0做出贡献。
NH3/CO2复叠制冷系统实验研究
王炳明;于志强;姜韶明;王超;吴华根;邢子文
【期刊名称】《冷藏技术》
【年(卷),期】2009(000)003
【摘要】对NH3/CO2复叠式制冷系统进行了性能实验,并对NH3/CO2复叠系统、两级NH3系统以及单级NH3系统的性能进行了比较。
结果表明,当co2冷凝温度升高时,复叠系统的COP先增大后降低;随着冷凝蒸发器中换热温差的降低、CO2蒸发温度的升高,系统COP逐渐升高。
在较低的蒸发温度下,NH3/CO2复叠系统的COP高于两级NH3、单级NH3系统。
结果表明自然工质的NH3/CO2复叠式制冷系统在低温工况下具有良好的应用前景。
【总页数】4页(P22-25)
【作者】王炳明;于志强;姜韶明;王超;吴华根;邢子文
【作者单位】西安交通大学能源与动力工程学院,西安710049;烟台冰轮股份有限公司,烟台264000
【正文语种】中文
【中图分类】TB61
【相关文献】
1.用于大型冷库的NH3/CO2复叠式制冷系统的自动控制方案 [J], 孟大伟;赵广涛;姜韶明;李明柱;庄丽
2.介绍一种新型的低温冷藏库制冷系统-CO2/NH3复叠式制冷系统 [J], 周启瑾
3.NH3/CO2复叠制冷系统中CO2螺杆压缩机的研发 [J], 王炳明;李建风;吴华根;邢子文
4.CO2/NH3喷射复叠制冷系统的性能模拟 [J], 郭珊;杜垲;江巍雪;李阳
5.NH3和CO2制冷剂及其复叠式制冷系统 [J], 孔德霞
因版权原因,仅展示原文概要,查看原文内容请购买。
二氧化碳复叠制冷效率二氧化碳(CO2)是一种常见的气体,在自然界中广泛存在。
然而,近年来,随着全球气候变化问题的日益突出,科学家们开始研究如何利用二氧化碳作为一种环保的冷却剂。
二氧化碳复叠制冷技术应运而生,被认为是一种高效的制冷方式。
二氧化碳复叠制冷技术是利用二氧化碳的特殊物理性质实现制冷的过程。
二氧化碳在常温常压下是一种气体,但当压力增加时,它会转化为液体或固体。
这种特性使得二氧化碳可以很容易地被压缩和释放,从而实现制冷效果。
与传统的制冷剂相比,二氧化碳具有许多优势。
首先,二氧化碳是一种天然的物质,不会对环境造成污染。
相比之下,传统的制冷剂如氟利昂会破坏臭氧层,对大气环境有害。
其次,二氧化碳的价格相对较低,易于获取。
而传统的制冷剂价格较高,需要专门的生产和管理。
此外,二氧化碳的制冷效果较好,可以适用于各种不同的制冷需求。
二氧化碳复叠制冷技术的工作原理是通过压缩和扩张二氧化碳气体来实现制冷效果。
首先,二氧化碳气体被压缩成高压液体,然后通过扩张阀放松,使其迅速膨胀成气体。
这个过程中,气体吸收热量,从而使周围环境变得更凉爽。
二氧化碳复叠制冷技术的制冷效率主要取决于压缩机的性能。
压缩机是将气体压缩成液体的关键设备。
目前,研究人员已经开发出了高效的压缩机,可以实现更高效的制冷效果。
此外,二氧化碳复叠制冷技术还可以结合其他制冷技术,如换热器和蒸发器,进一步提高制冷效率。
二氧化碳复叠制冷技术在实际应用中有着广泛的潜力。
例如,在超市和商场的制冷设备中,使用二氧化碳可以降低能耗,实现节能减排。
此外,二氧化碳复叠制冷技术还可以应用于汽车空调和工业制冷等领域,为人们的生活和生产带来更多的便利。
然而,二氧化碳复叠制冷技术也存在一些挑战。
首先,二氧化碳在常温下的制冷效果较差,需要较高的压力才能达到理想的制冷效果。
其次,二氧化碳的传热性能较差,需要优化换热器的设计。
此外,二氧化碳的安全性也需要重视,因为高压二氧化碳可能对人体和设备造成危险。
二氧化碳复叠制冷效率引言:随着全球气候变暖和能源短缺的问题日益突出,人们对于高效能源利用和环保技术的需求也越来越迫切。
在这个背景下,二氧化碳复叠制冷技术因其高效、环保的特点备受关注。
本文将详细介绍二氧化碳复叠制冷技术的原理、优势以及在实际应用中的效率。
一、二氧化碳复叠制冷技术的原理二氧化碳复叠制冷技术是一种基于物理原理的制冷方法。
其原理基于二氧化碳的特殊性质,利用压缩机将二氧化碳气体压缩成高压气体,然后通过冷凝器将其冷却成液态,再通过膨胀阀使其进入蒸发器,此时二氧化碳液态变为气态,吸收周围热量,从而实现制冷效果。
二、二氧化碳复叠制冷技术的优势1. 高效能源利用:相比传统的制冷剂,二氧化碳具有更高的传热系数和更低的蒸发温度,使得制冷效果更好。
同时,二氧化碳的循环过程中热力损失较小,能够提高能源利用效率。
2. 环保节能:二氧化碳是一种天然的制冷剂,不会对大气层造成破坏,不会产生温室气体和臭氧层破坏物质,对环境友好。
此外,二氧化碳的循环过程中不需要使用化学物质,减少了对环境的污染。
3. 适应性强:二氧化碳复叠制冷技术可以适应不同的工作条件和制冷需求。
无论是低温制冷还是高温制冷,二氧化碳都能够发挥出较好的效果。
4. 安全性高:二氧化碳是一种无毒、非燃性的制冷剂,使用过程中不会对人体和设备造成伤害。
与传统的制冷剂相比,二氧化碳更加安全可靠。
三、二氧化碳复叠制冷技术在实际应用中的效率1. 制冷效果:二氧化碳复叠制冷技术具有良好的制冷效果。
由于二氧化碳的传热系数较高,其能够更快速地降低温度,实现快速制冷的效果。
2. 能源利用效率:二氧化碳复叠制冷技术相比传统的制冷技术,能够更高效地利用能源。
由于二氧化碳的循环过程中能量损失较小,能够减少能源消耗,提高能源利用效率。
3. 维护成本:由于二氧化碳复叠制冷技术不需要使用化学物质,减少了设备维护和更换的成本。
同时,由于二氧化碳的安全性高,也减少了事故和故障引起的维修费用。