大跨度建筑结构形式与建筑造型实例分析
- 格式:doc
- 大小:1.07 MB
- 文档页数:7
建筑构造作业——大跨度建筑结构形式与建筑造型实例分析大跨度建筑通常是指跨度在30m以上的建筑,我国现行钢结构规范则规定跨度60m以上结构为大跨度结构。
主要用于民用建筑的影剧院、体育场馆、展览馆、大会堂、航空港以及其他大型公共建筑。
在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。
大跨度建筑在古代罗马已经出现,如公元120到124年建成的罗马万神庙,成圆形平面,穹顶直径达43.5m,用天然混凝土浇筑而成,是罗马穹顶技术的光辉典范。
罗马万神庙虽然大跨度建筑在古代罗马已经出现,但是大跨度建筑真正得到迅速发展还是在19世纪后半叶以后,特别是第二次世界大战后的最近几十年中。
大跨建筑迅速发展的原因一方面是由于社会发展使建筑功能越来越复杂,需要建造高大的建筑空间来满足群众集会、举办大型的文艺体育表演、举办盛大的各种博览会等;另一方面则是新材料、新结构、新技术的出现,促进了大跨度建筑的进步。
一是需要,二是可能,两者相辅相成,相互促进,缺一不可。
19世纪后半叶以来,钢结构和钢筋混凝土结构在建筑上的广泛应用,使大跨建筑有了很快的发展,特别是近几十年来新品种的钢材和水泥在强度方面有了很大的提高,各种轻质高强材料、新型化学材料、高效能防水材料、高效能绝热材料的出现为建造各种新型的大跨度结构和各种造型新颖的大跨度建筑创造了更有利的物质技术条件。
大跨度建筑常用结构形式;大跨度常用建筑结构根据结构形式,受力构件排列组合不同可分平面平面机构体系和空间结构体系两大类,共有八种。
它们是:平面结构体系有拱、刚架以及桁(héng)架。
空间结构体系有网架、折板(薄壳)、悬索、膜结构以及混合结构。
拱是古代大跨度建筑的主要结构形式。
由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。
但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
房屋建筑学大跨度建筑构造大跨度建筑结构型式与建筑造型大跨度建筑结构型式与建筑造型结构是房屋的骨架,是形成建筑内部空间和外部形式的物质基础,结构是在特定的材料和施工技术条件下运用力学原理创造出来的。
某种新的结构一旦产生并在工程实践中反复出现时,便会逐渐形成一种崭新的建筑形式。
可见结构技术是影响建筑的重要因素,在大跨度建筑中尤其如此。
通过上述例子说明,在建筑设计中,选择结构型式不仅是结构工程师的工作,也是建筑师的职责,现代建筑的特点是建筑艺术与建筑技术的高度统一。
建筑师只有对各种结构形式的基本力学特征和适用范围有深入的了解才能自由地进行创作,把结构型式与建筑造型融为一体。
现就大跨度建筑常见的各种结构型式及其建筑造型作介绍。
一、拱结构及其建筑造型拱结构及其建筑造型(一)拱的受力特点、优缺点和适用范围拱是古代大跨度建筑的主要结构型式。
由于拱呈曲面形状,在外力作用下,拱内的变矩值可以降低到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。
但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
常见的方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。
很明显,这会使建筑的平面空间组合受到约束。
拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。
古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢桁架拱,跨度可达百米以上。
拱结构所形成的巨大空间常常用来建筑商场、展览馆、体育馆、散装货仓等建筑。
(二)拱的型式拱结构按组成和支座方式不同分为三铰拱、两铰拱和无铰拱三种。
(三)拱结构的建筑造型拱结构的造型主要取决于矢高大小和平衡拱推力的方式。
拱的矢高对建筑的外部轮廓形象影响最大。
矢高小的拱,外形起伏变化小,呈扁平状,结构占用的空间小,但水平推力和拱身轴力都偏大。
而矢高大的拱,外形起伏变化强烈,产生的水平推力和轴向力都较小,但拱身材料耗费量多,拱下形成的内部空间大,拱曲面坡度很陡,当采用油毡屋面时,容易出现沥青流淌和油毡滑移现象。
第三章大跨度建筑构造1龙江(Loongle)浙江林学院园林学院2009年秋概述大跨度建筑——大百科全书中关于大跨度建筑的定时是:跨度在30米以上的建筑,主要有民用建筑影剧院、体育场馆、展览馆、大会堂、航空港等。
最早的大跨度建筑可以追溯到古罗马的万神庙,公元120~124年建成‘圆形平面,穹顶直径达到43.3米,用天然混凝土浇筑而成。
大跨度建筑常用结构形式☐大跨度常用建筑结构根据结构形式,受力构件排列组合不同可分平面平面机构体系和空间结构体系两大类,共八种。
它们是:☐平面结构体系有拱、刚架以及桁(héng)架。
☐空间结构体系有网架、折板(薄壳)、悬索、膜结构以及混合结构。
☐拱是一种推力结构:在竖向荷载下产生水平推力;☐拱是一种无矩结构:通过合理拱轴可使杆件无弯矩;☐拱可充分利用材料抗压强度,断面小、跨度大。
1 拱及拱券结构特点早期罗马人在建筑中使用的拱券拱券在早期建筑中的应用拱券美国蒙哥马里体育馆用平行拱支承屋面覆盖圆形平面墨西哥马达莱纳体育中心体育宫用四道相交的拱支承屋面覆盖接近正方形的平面两片刚性拱支撑屋面索网两片交叉拱作为索网边缘构件在体育建筑中的拱2 刚架结构刚架结构特征、优缺点和适用范围:☐刚架是横梁和柱以整体连接方式构成的一种门形结构。
由于梁和柱是刚性节点,在竖向荷载作用下柱对梁有约束作用,因而能减少梁的跨中弯矩;同样,在水平荷载作用下,梁对柱也有约束作用,能减少柱内的弯矩。
☐由于刚架结构受力合理,轻巧美观,能跨越较大的跨度,制作又很方便,因而应用非常广泛。
一般用于体育馆、礼堂、食堂、菜场等大空间的民用建筑,也可用于工业建筑。
刚架结构跨度尺寸☐跨度①实腹式:50~60米②格构式两铰刚架:60~120米③格构式无铰刚架:120~150米④折线弓形刚架:40~50米高15~20米☐断面①实腹式梁高h=(1/12~1/20)L设预应力拉杆h=(1/30~1/40)L②折线弓形刚架梁高、柱宽(1/15~1/25)L钢制刚架结构的玻璃暖房钢制刚架结构的飞机库某室内体育馆的木构刚架及天窗某刚架结构车站桁架结构3☐桁架是由杆件组成的一种格构式结构体系。
大跨度建筑结构形式与建筑造型实例分析作业一、引言大跨度建筑是指横跨一定距离的建筑结构,通常用于体育馆、机场、展览馆等场所。
大跨度建筑的结构形式和建筑造型直接影响着其整体的设计风格和功能性。
本文将通过分析几个实际案例,来探讨大跨度建筑的结构形式和建筑造型。
二、实例分析1.鸟巢体育馆鸟巢是2024年北京奥运会的主要场馆之一,该建筑由于其独特的设计和大跨度的结构形式而备受瞩目。
鸟巢采用了网格状的结构形式,结构支撑系统以大量的钢材和钢索构成,形成了像鸟巢一样的外观。
这种结构形式使得鸟巢能够跨越大距离,同时又能够承受复杂的力学负荷。
建筑造型方面,鸟巢采用了流线型的造型,形象生动地展现了建筑的力学特点和灵活性。
2.在野外博物馆在野外博物馆是位于美国亚利桑那州的一个知名景点,该建筑展示了独特的结构形式和建筑造型。
在野外博物馆的结构形式采用了大跨度的钢结构,构建了一个拱形天篷状的建筑。
这种结构形式使得建筑可以跨越大距离,同时又能够保持建筑的稳定性和坚固性。
建筑造型方面,该建筑外观简洁大方,与周围的自然环境相融合,给人一种和谐、自然的感觉。
3.埃菲尔铁塔埃菲尔铁塔是法国巴黎的一座标志性建筑,以其独特的结构形式和建筑造型而闻名于世。
该建筑采用了大跨度的钢结构,通过各种大小不同的钢材构成。
这种结构形式使得建筑能够跨越大距离,同时又能够承载大风荷载和重力负荷。
建筑造型方面,埃菲尔铁塔外观造型美观,线条流畅,给人一种轻盈、优雅的感觉。
三、结论通过上述实例的分析可以看出,大跨度建筑的结构形式和建筑造型是相互关联的。
合理的结构形式可以支撑大跨度建筑的功能和安全性,而独特的建筑造型则能够突出建筑的设计风格和艺术性。
在大跨度建筑的设计中,需要考虑结构形式和建筑造型的协调性,以达到功能与美观的统一未来,随着科学技术的进步和建筑设计理念的不断发展,大跨度建筑的结构形式和建筑造型将会更加多样化和创新化。
我们可以期待更多独特的大跨度建筑出现,为人们创造更好的空间体验和艺术享受。
大跨度建筑结构形式与建筑造型实例分析【摘要】:结构是房屋的骨架,是形成建筑内部空间和外部形式的物质基础,结构是在特定的材料和施工技术条件下运用力学原理创造出来的。
某种新的结构一旦产生并在工程实践中反复出现时,便会逐渐形成一种崭新的建筑形式。
可见结构技术是影响建筑空间形式及造型的重要因素,在大跨度建筑中尤其如此。
对刚架结构、网壳结构、拱形结构、悬索结构、网架结构、薄壳结构、桁架结构七种大跨度建筑结构形式的特点进行分析,对建筑结构的创新及建造带有中国色彩的大跨度建筑具有重要的意义。
关键词:大跨度建筑结构造型大跨度建筑在人类的发展中一直在发展,这象征着人类对结构的探索欲和对于技术的不断先进追求。
大跨度空间结构是目前发展最快的结构类型。
大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。
而大跨度结构的表现形式是多种多样的,近年来,由于现代技术的支撑和新型材料的加盟,网架、网壳、管桁结构等大跨空间钢结构获得了广泛应用。
然而,要保证大跨空间钢结构得以健康发展,还必须加快一系列空间结构行业标准的制定,加强钢结构企业资质认证与管理,提升大跨空间钢结构的设计、制作、安装水平。
结构新材料的应用进一步推动了大跨空间钢结构的发展。
在普通碳素钢获得大量应用的同时,不锈钢、铝合金、膜材也在许多大跨度建筑中获得了应用。
国际上已有许多专业生产公司建成了较多的铝合金结构。
我国天津大学、同济大学、上海现代设计集团、中国建筑科学研究院等已开始进行基础性研究和工程实践,积极进行产品研制、开发。
不锈钢材料(含铬量>12%的铁基耐蚀合金)是随着对装饰与防腐要求的提高而在空间结构中获得应用的,它集装饰、受力、防腐于一体的特点倍受青睐。
鉴于目前不锈钢材料的价格远高于普通钢材,近年来一些单位已研制成功在普通碳素钢管基础上外包不锈钢皮而形成的复合技术,开发出不锈钢复合钢管网架,并进行了一些工程实践。
既保持了不锈钢与普通碳素钢的优点,又大幅度降低造价,取得了较好的技术经济效果。
计算技术的进步为大跨空间钢结构的发展也创造了有利条件。
近年来计算技术有了长足的进步,许多单位研制开发了商品化专用设计程序,它们都是建立在理论研究与大量工程实践的基础上而推向市场的。
它们一般都具有完善的前后处理功能,可在微机上进行复杂的空间网格结构设计。
有的软件除用于空间网格结构外,也可用于索、杆、梁体系的设计分析。
这些程序的推出为大跨空间钢结构设计提供了有效手段,也为大跨空间钢结构的推广应用创造了有利条件。
其中不少软件曾在国内许多大型空间钢结构工程的设计中发挥重要作用。
在大跨空间钢结构获得迅猛发展之际,强化质量管理,加快制定行业标准,提升企业管理水平提到了重要议事日程。
目前与大跨空间钢结构相关的规程、规范已逐步趋于完善。
如钢结构设计规范,经过修改后将进一步完善,使管桁等大跨空间钢结构的设计更有依据。
网壳结构技术规程的编制将使网壳结构的设计与施工建立在更为可靠的基础上。
其他各类规程、规范和标准等正在制定或逐步完善之中。
随着科技水平的进步与建筑技术的不断发展,现今建筑物的跨度和规模越来越大,目前,尺度能达到150m以上的超大规模建筑已非个别;并且它们结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。
大跨度建筑通常是指跨度在 30 米以上的建筑,主要用于民用建筑的影剧院、体育场、展览馆、大会堂、航空港以及其他大型公共建筑在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房中。
一、大跨度建筑常见结构形式建筑从产生之日起就是技术与艺术的统一体。
建筑的造型应该也必须是结构形态的真实反映。
传统的建筑模式,无论从西方古典建筑,还是中国的古典建筑,其产生和演变都离不开结构技术的主线。
在近现代建筑的形成和发展过程中,结构的发展更起到了极大的促进作用。
下面我们将对大跨度建筑常见结构形式进行一下简单介绍以及应用举例。
1、拱结构拱是古代大跨度建筑的主要结构形式。
由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。
但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
常见方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。
很明显,这会使建筑的平面空间组合受到约束。
拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。
古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢衍架拱,跨度可达百米以上。
拱结构所形成的巨大空间常常用来建造商场、展览馆、体育馆、散装货仓等建筑。
2、刚架结构刚架是横梁和柱以整体连接方式构成的一种门形结构。
由于梁和柱是刚性结点,在竖向荷载作用下柱对梁有约束作用,因而能减少梁的跨中弯矩。
同样,在水平荷载作用下,梁对柱也有约束作用,能减少柱内的弯矩。
刚架结构比屋架和柱组成的排架结构轻巧,可以节省钢材和水泥。
由于大多数刚架的横梁是向上倾斜的,不但受力合理,且结构下部的空间增大,对某些要求高大空间的建筑特别有利。
同时,倾斜的横梁使建筑的屋顶形成折线形,建筑外轮廓富于变化。
由于刚架结构受力合理,轻巧美观,能跨越较大的跨度,制作又很方便,因而应用非常广泛。
一般用于体育馆、礼堂、食堂、菜场等大空间的民用建筑,也可用于工业建筑,但刚架结构的刚度较差,当吊车起重量超过100KN 时不宜采用。
3、椼架结构椼架是由杆件组成的一种格构式结构体系。
杆件与杆件的结合假椼架定为铰结,所以在外力作用下杆件内力为轴向力(拉力或压力),而且分布均匀,故椼架结构比梁结构受力合理。
椼架的杆件内力是轴向力,而梁的内力主要是弯矩,且分布不均匀,梁的断面大小常以最大弯矩处的断面尺寸为整个梁的断面大小,因此梁的材料强度未得到充分利用。
椼架内力分布均匀,材料强度能充分利用,减少材料耗量和结构自重,使结构跨度增大。
所以椼架结构式大跨度建筑常用的一种结构形式,主要用于体育馆、影剧院、展览馆、食堂、菜场、商场等公共建筑。
为了使椼架的规格统一,有利于工业化施工,建筑的平面形式宜采用矩形或方形。
网架是一种由很多杆件以一定规律组成的网状结构。
它具有下列优点:杆件之间互相起支撑作用,形成多向受力的空间结构,故其整体性强、稳定性好、空间刚度大,有利于抗震;当荷载作用于网架各节点上时,杆件主要承受轴向力,故能充分发挥材料的强度,节省材料;网架结构高度小,可以有效的利用空间;结构的杆件规格统一,有利于工厂化生产;网架形式多样,可创造丰富多彩的建筑形式。
网架结构主要用来建造大跨度公共建筑的屋顶,适用于多种平面形状,如圆形、方形、三角形、多边形等各种平面建筑。
折板结构是以一定倾斜角度整体相连的一种薄板体系。
折板结构通常用钢筋混凝土建造,也可用钢丝网水泥建造。
经济跨度9-4M。
4、折板结构折板结构由折板和横隔构件组成,在波长方向,折板犹如一块折板折叠起伏的钢筋混凝土连续板,折板如同一钢筋混凝土梁,其强度随折板的矢高(f)而增加。
横隔构件的作用是将折板在支座处牢固地结合在一起,如果没有它,折板会坍塌而破坏。
横隔构件可根据建筑造型需要来设计,如钢筋混凝土横隔板、横隔梁等。
折板的波长不宜太大,否则板太厚,不经济,一般不应大于 12M。
跨度与波长之比大于等于1时成为长折板,小于1时成为短折板。
为了获得良好的力学性能,长折板的矢高不宜小于跨度的1∕15-1∕10,短折板的矢高则不宜小于波长的 1∕8.。
折板结构呈空间受力状态,具有良好的力学性能,结构厚度薄,省材料,可预置装配,省模板,构造简单。
折板结构可用来建造大跨度屋顶,也可用作外墙。
5、薄壳结构薄壳结构是用混凝土等刚性材料以各种曲面形式构成的薄板结成薄壳结构,呈空间受力状态,主要承受曲向内的轴内力,而弯矩和扭矩很小,所以混凝土强度能得到充分利用。
由于是空间结构,强度和刚度都非常好。
薄壳厚度仅为其跨度的几百分之一。
而一般的平板结构厚度至少是跨度的几十分之一。
所以薄壳结构具有自重轻、省材料、跨度大、外形多样的优点,可用来覆盖各种平面形状的建筑物屋顶。
但大多数薄壳结构的形体较复杂,多采用现浇施工,费工、费时、费模板,且结构计算较复杂,不宜承受集中荷载,这些缺点在一定程度上影响了它的推广作用。
分类:柱面薄壳:是单向有曲率的薄壳,由壳身、侧边缘构件和横隔组成。
圆顶薄壳:是正高斯曲率的旋转曲面壳,由壳面与支座环组成,壳面厚度做得很薄,一般为曲率半径的1/600,跨度可以很大。
支座环对圆顶壳起箍的作用,并通过它将整个薄壳搁置在支承构件上。
双曲扁壳(微弯平板):一抛物线沿另一正交的抛物线平移形成的曲面,其顶点处矢高与底面短边边长之比不应超过1/5。
双曲扁壳由壳身及周边四个横隔组成,横隔为带拉杆的拱或变高度的梁。
适用于覆盖跨度为20~50米的方形或矩形平面(其长短边之比不宜超过2)的建筑物。
双曲抛物面壳:一竖向抛物线(母线)沿另一凸向与之相反的抛物线(导线)平行移动所形成的曲面。
此种曲面与水平面截交的曲线为双曲线,故称为双曲抛物面壳。
工程中常见的各种扭壳也为其中一种类型,因薄壳结构容易制作,稳定性好,容易适应建筑功能和造型需要,所以应用较为广泛。
薄壳结构的建筑造型是以各种几何曲面图为基本特征,基本形式为圆筒形、圆球形、双曲面抛物型。
他与传统的梁、板。
架一类结构相比,在造型上独具特色,容易给人以新奇感,突出建筑物的个性。
6、网格结构网格结构是一种由多种杆件以一定规律通过节点组成的空间结构。
网架杆件主要承受轴力作用,杆件截面尺寸相对较小,这些空间交汇的杆件又互为支撑,将受力杆件与支承系统有机地结合起来,因而用料经济。
由于结构组合规律性强,杆和节点形状、尺寸相同,便于工厂化生产和工地安装。
网架结构一般是高次超静定结构,具有较高安全储备,能较好的承受集中荷载、动力荷载和非对称荷载,抗震性能好。
网架结构能够适应不同跨度、不同支承条件的公共建筑和工业厂房的要求,也能适应不同建筑平面及其组合。
网架结构最大的优势体现在大中跨度的屋盖结构,这时采用网架比采用门式刚架及钢屋架更经济合理。
网架结构是由很多杆件从两个方向或几个方向有规律的组成的高次超静定空间结构。
它改变了一般平面桁架受力体系,能承受来自各个方向的荷载。
7、悬索结构悬索结构是由柔性受拉索及边缘构件或支承塔架所组成的承重结构。
悬索结构是一种受力比较合理的建筑结构形式,将悬索结构与简支梁两者的受力情况进行对比,就可以看出这种合理性。
简支梁在竖向荷载作用下,上纤维压应力的合力与下纤维拉应力的合力组成了截面的内力矩,合力间的距离即为内力臂,它总在截面高度的范围内,因此要提高梁的承载能力,就意味着要增加梁的高度。