第四章 流体动力学基本方程
- 格式:ppt
- 大小:1.71 MB
- 文档页数:82
流体动力学基本方程
“流体动力学基本方程”是将质量、动量和能量守恒定律用于流体运动所得到的联系流体速度、压力、密度和温度等物理量的关系式。
对于系统和控制体都可以建立流体动力学基本方程。
系统是确定不变的物质的组合;而控制体是相对于某一坐标系固定不变的空间体积,它的边界面称为控制面。
流体动力学中讨论的基本方程多数是对控制体建立的。
主要有连续方程、动量方程、动量矩方程和能量方程。
1、连续方程:ρ1v1A1=ρ2v2A2,式中ρ1、v1、ρ
2、v2分别为A1和A2截面上的流体平均密度和速度。
2、动量方程:单位时间内,流入控制体的动量与作用于控制面和控制体上的外力之和,等于控制体内动量的增加。
3、动量矩方程:单位时间内,流入控制体的动量与作用于控制体和控制面上的外力对某一参考点的动量矩之和,等于控制体内对同一点的动量矩的增加。
4、能量方程:单位时间内,流入控制体的各种能量与外力所作的功之和,等于控制体内能量的增加。
流体动力学基本原理的内容及成立条件一、流体动力学的基本概念流体动力学是研究流体在运动中所表现出来的各种力学现象的科学。
它是研究流体的物理性质、运动规律和应用的基础。
流体包括气体和液体,其特点是没有固定的形状,在受到外力作用时能够变形。
二、流体动力学基本方程1.连续性方程连续性方程描述了质量守恒原理,即在任意给定时刻,单位时间内通过任意给定截面积内的质量保持不变。
2.动量守恒方程动量守恒方程描述了牛顿第二定律,即物体受到外力作用时会发生加速度变化。
3.能量守恒方程能量守恒方程描述了能量守恒原理,即系统内总能量保持不变。
三、成立条件为了使上述基本方程成立,需要满足以下条件:1.连续性假设:假设流体是连续不断的介质,在微观尺度下不存在空隙或孔隙。
这个假设在实际应用中通常是成立的。
2.牛顿第二定律适用:流体的运动速度相对于光速较慢,所以牛顿第二定律可以适用于流体运动。
3.稳态假设:假设流体的物理状态在空间和时间上是恒定不变的。
这个假设在实际应用中通常是成立的。
4.不可压缩性假设:假设流体密度不随时间和位置而变化。
这个假设在实际应用中通常是成立的。
5.粘性效应:粘性是流体内部分子之间相互作用力导致的,它会影响流体的运动规律。
当流体处于高速运动状态时,粘性效应可以忽略不计;但当流体处于低速运动状态时,粘性效应就会显著影响流体运动规律。
四、结论综上所述,流体动力学基本原理包括连续性方程、动量守恒方程和能量守恒方程。
为了使这些基本方程成立,需要满足一定条件,如连续性假设、牛顿第二定律适用、稳态假设、不可压缩性假设以及粘性效应等。
这些基本原理和条件对于研究流体的物理性质、运动规律和应用具有重要意义。
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。