高数第五章空间解析几何
- 格式:doc
- 大小:1.45 MB
- 文档页数:24
高等数学中的空间解析几何一、引言空间解析几何是高等数学中的重要分支之一,它研究的是空间中的点、直线、平面等几何对象的性质和相互关系。
在实际应用中,空间解析几何广泛应用于物理学、工程学、计算机图形学等领域。
本教案将从基本概念入手,逐步展开论述空间解析几何的相关内容。
二、点与向量1. 点的坐标表示- 在直角坐标系中,点的坐标表示为(x, y, z),其中x、y、z分别表示点在x轴、y轴、z轴上的投影。
- 点的坐标可以用向量表示,即P = x*i + y*j + z*k,其中i、j、k分别是x轴、y轴、z轴的单位向量。
2. 向量的基本性质- 向量的模:向量AB的模表示为|AB|,定义为AB的长度。
- 向量的方向角:向量AB的方向角表示为(α, β, γ),其中α、β、γ分别表示向量AB与x轴、y轴、z轴的夹角。
- 向量的共线性:若向量AB与向量CD平行或共线,则存在实数k,使得AB = kCD。
三、直线与平面1. 直线的方程- 点向式方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的点向式方程为(x, y, z) = (x0, y0, z0) + t(a, b, c),其中t为实数。
- 参数方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中t为参数。
- 一般方程:直线L的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
2. 平面的方程- 点法式方程:平面π上一点P的坐标为(x0, y0, z0),且法向量n = (A, B, C)垂直于平面π,则平面π的点法式方程为Ax + By + Cz + D = 0,其中D = -Ax0 -By0 - Cz0。
- 一般方程:平面π的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
高等数学教学教案第五章向量与空间解析几何授课序号012(x =b ,即b b a=,、向量的运算, 见图5-14. 以向量的终点为起点,b 向量的终点为终点的对角线向量为向量的差()b -.设λ是一个数,向量a a λ=,方向与0a =是零向量;a a a λ=,方向与1=-时,(又设α、β、γ为与三坐标轴正向之间的夹角分别为向量a cos a α=cos a cos a 、cos γ称为向量a 的方向余弦,通常用它表示向量的方向(()21a x y y =--22xa a ++(aa=、数量积 给定向量a 与b ,我们做这样的运算:a 与b 及它们的夹角与,即cos cos a b a b a b α== Pr j Pr j a b b a b b a ==; 2cos ,a a a a a a a ⋅==;)若0a ≠,0b ≠,则0a b ⋅=⇔、向量积 若由向量a 与b 所确定的一个向量c 满足下列条件:()()()y z z y x z z x x y y x a b a b i a b a b j a b a b k =---+-)x y zxyzi j k a a a j k a a a b b b += 向量的混合积(,x a a =a =a a cos AB θ=.定理2 两个向量的和在轴上的投影等于两个向量在轴上的投影的和(()4,3,1M 、()7,1,2M 及例4设()111,,A x y z 和AM MB=,y 和z .例5 设3m=,4k j -(2) a b的夹角θ; (3)b.液体流过平面S上面积为A的一个区域,液体在这区域上各点处的流速均为(液体的比重为ν都垂直的单位向量授课序号021212cos n n A A n n A B θ⋅==+)2-、(2 M授课序号03,其中(s m =12s s s s m ⋅=(),,A B C ,则n ,因此Am n +=.授课序号04。
习题5・31•指出下列平面位置的特点:(1)5x - 3z +1 = 0(2)x + 2y - 7z = 0(3)y + 5 = 0(4)2),- 9z = 0(5)x-y-5 = 0(6)x = 0. 解⑴平行于屛由.⑵过原点.⑶平行于平面.⑷ 过兀轴.(5)平行于z轴•⑹0〃平面.2.求下列各平面的方程:⑴平行于y轴且通过点(1,-5,1)和(3,2,-2);(2)平行于O私平面且通过点(5,2,-8);(3)垂直于平面兀-4y + 5z = 1且通过点(-2,7,3)及(0,0,0);⑷垂直于Oyz平面且通过点(5,-4,3)及(-2,1,8).1j k解⑴—(0 ,l,0),* = (2,7,-3),n= 0 1 0 =(-3,0,-2).27-3_3O_1)_2(Z_1)=0,3JC +2Z_5=0.⑵y = 2.i j k(3)a = (1,-4,5), 6 = (-2,7,3),n = 1 -4 5 = (-47,-13,-1).-2 7 347x+13y+ 1 = 0.i j k(4)“ = (1,0,0),〃 = (-7,5,5),〃= 1 0 0 =(0,-5,5) = 5(0, -1,1).-7 5 5_(y + 4) + (z_3) = 0,y_z + 7 = 0.3.求通过点A(2,4,8), B(-3,1,5)及C(6,—2,7)的平面方程.解 a = (一5, —3,—3),〃 = (4,-6,-1).i j kn= -5 -3 -3 =(-15,-17,42),4 -6 -1一15(兀一2) —17(y — 4) + 42(z — 8) = 0,15x + 17y —42z + 238 = 0.4.设一平而在各坐标轴上的截距都不等于零并相等,且过点(5, -7, 4),求此平而的方程.解—+ —+ — = 1, —H—+ — = l,a = 2, x + y + z — 2 = 0.a, a a a a a5已知两点4(2,-1,-2)及〃(8,7,5),求过B且与线段AB垂直的平面.解〃 =(6, & 7).6(x-8) + 8(y-7) + 7(z-5) = 0,6x + 8y + 7z-139 = 0.6.求过点(2,0, -3)且与2兀-2y + 4z + 7 = 0,3x+y-2z + 5二0垂直的平面方程.i j k解 n= 2 -24 =(0,16,8) = 8(0,2,l).2y + (z + 3) = 0,y + z + 3 = 0. 3 1 -27.求通过兀轴且与平面9兀-4y-2z + 3 = 0垂直的平面方程. 解 By + Cz=0,—4B —2C = 0,取B = 1,C = —2,y —2z = 0.8•求通过直纟划:{;;工:二5地:仁鳥平行的平面方程. i j ki j k 解a = 1 0 2 = (-6,1,3), 6 = 1 -1 0= (1,1,1), 0 3-10 1 -1 i j kn - -6 13 =(-2,9,-7).用z ()= 0代入厶的方程,得x° =4,>\} =-8/3.1 1 1 -2(x-4) + 9(^ + 8/3)-7(z) = 0,-2x + 9y-7z + 32 = 0.x = 3r + 89.求直线厶:* +彳=•' +1 = __与直线/ :< y = f + l 的交点坐标,3 24 _ 小, z = + 6并求通过此两直线的平面方程.解求两条直线交点坐标:3r + 8 + 3 / + 1 + 1 2/ + 6 —2 \\ t t A 163 24 3 2 23 i j kn= 3 2 4 = (0,6, -3) = 3(0,2, -l).2(y +1) - (z - 2) = 0,2y - z + 4 = 0.3 1 2 10•求通过两直线厶=^ = 凹和厶:土 = □=三的平面方程. 1 2 -1 1 -4 2 -2i j k解 两直线平行•平面过点(1,-1,-1)和(-2,2,0).川=2 — 1 1 = (—4,—5,3).-33 1一4(兀一 l)-5(y + l) + 3(z + l) = 0,-4x — 5y + 3z + 2 = 0.11证明两直线厶:口和是异面直线*-121 - 0 1 -2证首先,两直线的方向向量(-1,2,1)和(0,1,-2)不平行.x 二 _2l 2< y 二1+t —―二匕〜 力+ 3J = 5』= 0,矛盾.故两直线无公共点.-1 2 1 X Q = 一& 儿=一一牛交点(一8占弓)两-直线不平行,又无交点,故是异面直线. 12.将下列直线方程化为标准方程及参数方程:[2x+y-z + l = 0 [x-3z + 5 = 0(1* ⑵彳[3x - y + 2z - 8 = 0; [y - 2z + 8 = 0.i j k解(1)〃= 2 1 -1 =(1,-7,-5).3-12V — 7 + 1 = 0⑴中令兀0=0,{ 解Z得儿=6,Zo=7・-y+ 2z-8 = 0;标准方程—q・1 -7 -5x = t参数方程:< y = 6-lt,-oo <t < +oo.z = l-5ti j k(2)(1加=1 0 -3 =(3,2,1).0 1 -2⑵中令z° = 0,直接得x° = -5, y Q = -8.标准方程出二凹二工3 2 1x ——5 + 3t参数方程:* >' = -8 + 2r,-co<t < +oo.z = t13•求通过点(32-5)及乂轴的平面与平面3x-y-7z + 9 = 0的交线方程・ ■I j k解地第一个平面的法向量〃二1 0 0 =(0,5,2), 3 2 -5平面方程5y + 2z = 0.直线方程严+ 2*°[3 兀-y-7z + 9 = 0.i j k直线的方向向量a =0 5 2 =(一336-15) = 3(-112-5)・3 -1 -7直线方程:r 匕14 •当D 为何值时,直线产? £弓与0z 轴相交?[x + 4y-z + D = 0解直线F :y + 2z-6弓与Oz 轴相交O 存在(0,0,勺)在此直线上,[x + 4y-z + £> = 0f2z o -6 = O <=> < u> £> =知=3. Ho+o=o15.试求通过直线人:£一2":弓并与直线Z. = 2平行的平面方程.[3y — z + 8 = 0 *•匕 _y + 6 = 0i J k解厶的方向向&a = 1 0 -2 =(6丄3).0 3-1i J 平面的法向量/i =6 1 1 1 Q 在的方程中令z ()二0得X 。
一、空间解析几何知识点速记一、空间解析几何1、向量代数●向量的线性运算向量加法:三角形法则或平行四边形法则:1)交换律a +b =b +a ;2)结合律(a +b )+c =a+(b +c )实数与向量的运算法则:设λ、μ为实数,则有:c=a+b1)结合律λ(μa )=μ(λa )=(λμ)a ;2)分配律(λ+μ)a =λa +μa ;λ(a +b )=λa +λb 空间直角坐标系r M OM xi yj zk x y z −−→↔==++↔(,,);设a =(a x ,a y ,a z ),b =(b x ,b y ,b z )则有1)a +b =(a x +b x ,a y +b y ,a z +b z )2)a -b =(a x -b x ,a y -b y ,a z -b z )3)λa =(λa x ,λa y ,λa z )4)b //a ⇔b =λa⇔(b x ,b y ,b z )=λ(a x ,a y ,a z )⇔zzyy xx a b a b a b ==5)向量模:222||z y x ++=r 6)两点间的距离:→212212212)()()(||||z z y y x x AB AB -+-+-==方向角:非零向量r 与三条坐标轴的夹角α、β、γ称为向量r 的方向角方向余弦:cos ||x r α=,cos ||y r β=,cos ||z r γ=●向量的数量积:a ·b =|a ||b |cos θ几何意义:数量积a ·b 等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。
1)a·a =|a |22)a ⊥b ⇔a·b =012120x x y y ⇔+=3)交换律:a·b =b·a ;4)分配律:(a +b )⋅c =a ⋅c +b ⋅c5)(λa )·b =a·(λb )=λ(a·b ),(λa )·(μb )=λμ(a·b ),λ、μ为数高 数6)a·b =a x b x +a y b y +a z bzcos ||||a b a b θ++⋅=●向量的向量积:c =a ⨯b c 的模|c |=|a ||b |sin θ,其中θ为a 与b 间的夹角;c 的方向垂直于a 与b 所决定的平面,c 的指向按右手规则从a 转向b 来确定。