双加压GP法生产稀硝酸(精)
- 格式:doc
- 大小:12.50 KB
- 文档页数:3
双加压法生产稀硝酸工艺流程:本法典型的工艺流程示于图2,图2 双加压法制稀硝酸流程(1)氨的氧化和热能回收氨和空气分别进入过滤器,以除去气体中夹带的固体粉尘和油雾等对氨氧化催化剂有害的杂质,净化后的气体经混合器混合(混合气中氨含量约9.5%(v))后进入氨氧化器,经与铂铑网接触,96%~97%(v)的氨被氧化为一氧化氮,气体的温度也上升至~860℃,此气体经氨氧化器下部的蒸气过热器和废热锅炉回收热量后出氨氧化反应器的温度约为400℃。
(2)NO的氧化及省煤器回收热量后,被冷却至约156℃。
当温度下降时,气体中的NO被氧化成NO2,然后进入水冷却器(Ⅰ),进一步冷却至40℃。
在这里,氧化氮(NOx)气体与冷凝水反应生成浓度约34%的稀硝酸。
酸气混合物经分离器分离,稀硝酸送入吸收塔。
由水冷器(Ⅰ)来的氧化氮气体,与来自漂白塔的二次空气相混合后进入氧化氮压缩机,被压缩至1.0MPa(表)。
气体经换热器被冷却至126℃,又经水冷却器(Ⅱ)进一步冷却至40℃后,氧化氮气体和冷凝酸一并送入吸收塔底部的氧化器继续氧化,在塔中氧化氮气体被水吸收生成硝酸,吸收塔的塔板上设有冷却盘管用以移走吸收热和氧化热,当塔内液体逐板流下时和氧化氮气体充分接触,酸浓度不断提高,在塔底部收集的酸浓度为65%~67%。
(3)漂白自吸收塔来的65%~67%的硝酸里溶入很多NOx 气体,被送至漂白塔顶部,用二次空气将NOx 气体从硝酸中吹出,引出的成品酸浓度为60%,含HNO2<0.01%,温度为62℃,经冷却至约50℃后,送往成品酸贮槽。
由吸收塔顶出来的尾气,经尾气预热器,被加热至约360℃,热气体进入尾气透平,可回收约60%的总压缩功,最后经排气筒排入大气。
排入大气的尾气中NOx 含量约为180 ppm 。
水 15%的氢氧化钠氨气循环气 空气98%的硫酸 循环气 -25℃冷冻盐水第二膜式吸收器 盐酸分离器 中 和 塔 稀酸分离器 干燥塔 压 缩 机 缓 冲 罐 机后冷凝器 热交换 器 冷 凝 器 粗氯化液 贮槽反应器 空冷器 第一膜式吸收器。
双加压法硝酸生产装置的主要工序双加压法硝酸生产装置的主要工序1.液氨蒸发工序,一般使用冷却水回收其中的冷量,用于移走吸收过程的反应热。
2. 空气压缩工序,空气经过过滤、压缩和精滤后与气氨混合进入下一工序。
3. 氨氧化工序,温度一般在850~900℃,燃烧热用于产生蒸汽,用来驱动蒸汽透平,和尾气透平一道为氧化氮压缩机和空压机提供动力,这四台动设备组成了所谓的“四合一”机组。
氧化产物经过冷却冷凝,进一步氧化成NO2和N2O4,放出热量。
分离冷凝酸后,氧化氮气体被进一步压缩,冷却,去吸收工序。
4NH3 + 5O2 = 4NO + 6H2O2NO + O2 = 2NO22NO2 = N2O44. 吸收工序,氧化氮气体在吸收塔内与水反应生成硝酸。
N2O4 + H2O +0.5O2 = 2HNO3加压氧化,加压吸收,是谓“双加压”工艺。
5. 漂白工序,用空气漂白稀硝酸中溶解的氧化氮,漂白是形象的说法,即把红酸漂白成无色透明的酸,基本原理就是气提技术。
双加压法为氨氧化在中压下进行,而酸吸收在高压下进行。
由于它具有氨消耗低,铂损耗少,单机组生产能力大,尾气中氮氧化物含量低等特点,目前已经成为世界普遍采用的硝酸生产工艺。
双加压法工艺叙述如下:1、氨空混合气的制备压力1.3MPa左右的液氨被送入蒸发器E101A/B中,被蒸发为气氨,其中约80%的液氨在A台蒸发器中,被循环于A台蒸发器和吸收塔冷却器E113上部之间的冷却水所蒸发。
剩余的液氨在B台蒸发器中用来自高压反应水冷器E111的冷却水所蒸发,用PIC101控制蒸发压力在0.5MPa。
约0.9m3/h的液体连续地用控制阀HC101控制,从E101A引至E101B,并通过就地调节将积存在E101B的水份排至辅助蒸发器E102中,用低压蒸汽蒸发,回收气氨。
残留物则间断排至排油罐R109中,E101A/B出口气氨经预过滤器R114过滤后,送入氨过热器E103中,用低压蒸汽加热,气氨温度由TRCA101控制。
年产30万吨稀硝酸工艺设计一、稀硝酸生产的主要原理解氨接触氧化法制硝酸的总反应式为:NH3+2O2===HNO3+H2O,反应可分三步进行:氨的接触氧化过程:在催化剂的作用下,将氨氧化为一氧化氮,其反应式为:4NH3+5O2====4NO+6H2O (1)一氧化氮氧化过程:将前一过程中生成的NO进一步氧化成NO2,其反应式为:2NO+O2====2NO2 (2)氮氧化物的吸收过程:用水吸收二氧化氮,从而得到产品硝酸,其反应式为:3NO2+H2O====2HNO3+NO (3)用此工艺可生产浓度为45%~60%的稀硝酸。
60年代后,硝酸生产的技术特点是,采用大型化组,适当的提高操作压力。
采用高效设备,降低原料及能量消耗,决尾气中氮氧化物的污染问题。
二、工艺条件的确定催化剂:铂系催化剂氨氧化工艺条件1.温度在不同温度下,氨氧化后的反应生成物也不同。
低温时,主要生成的是氮气。
650℃时,氧化反应速率加快,氨氧化率达90%;700~1000℃时,氨氧化率为95%~98%。
温度高于1000℃时,由于一氧化氮分解,氨氧化率反而下降。
在650~1000℃范围内,温度升高,反应速率加快,氨氧化率也提高。
但是温度太高,铂损失增大,同时对氧化炉材料要求也更高。
因此一般常压下,氧化温度取750~850℃,加压氧化取870~900℃为宜。
2.压力氨氧化反应实际上可视为不可逆反应,压力对于NO产率影响不大,但加压反有助于反应速度的提高。
在工业生产条件下,加压时氧化率比常压时氧化率低1%~2%。
尽管加压可导致氨氧化率降低,但由于反应速度的提高可使催化剂的生产强度增大。
尤其是压力提高可大大节省NO氧化和NO2吸收所用的昂贵不锈钢设备。
生产中究竟采用常压还是加压操作,应视具体条件而定。
一般加压氧化采用0.3~0.5MPa压力,国外有采用1.0MPa。
由于本设计选用全中压法,操作压力选为0.45MPa。
3.接触时间混合气体在铂网区的停留时间称为接触时间。
我国双加压法稀硝酸生产工艺技术浅析研究作者:李凤桐来源:《中国化工贸易·上旬刊》2020年第02期摘要:随着化工行业的不断发展,人们对稀硝酸的使用量也在逐渐提升,因此在稀硝酸的生产过程中逐渐改进了生产方法。
双加压法作为现阶段稀硝酸生产工艺的常见使用方法,在稀硝酸生产的过程中得到了广泛应用。
但是现阶段在双加压法的使用过程中,虽然能够确保尾气的排放量相对减少并且降低了原材料的消耗率,但是还存在一些问题,影响了双加压法在稀硝酸生产过程中的应用质量。
因此为了保障有效的改善稀硝酸生产质量和生产效率,本文通过分析双加压法在稀硝酸生产过程中的实际使用流程及出现的问题,探究如何通过改善双加压法的应用,提高稀硝酸的生产质量。
关键词:双加压法;稀硝酸;生产工艺;技术目前很多稀硝酸生产企业在生产稀硝酸时,还在使用低压法生产系统,低压法生产系统的使用不仅对环境造成了严重的污染,还会导致原材料的消耗率提高,从而增加了生产成本。
所以为了改善这一现状,我国对双加压法稀硝酸生产工艺进行了大力的推广。
通过双加压法生产工艺和生产系统的使用,不仅保证企业的生产规模能够逐步扩大,而且减少了企业对环境造成的污染程度,因此,有效的提高双加压法在稀硝酸生产工艺技术中应用的工艺水平,是现阶段稀硝酸生产管理人员的主要责任和义务。
相应的技术人员也要不断的改善双加压系统的运行效率,保障稀硝酸生产企业能够通过工艺技术的改善,获得更多的经济效益。
1 双加压法在稀硝酸生产过程中的应用在双加压法的实际使用过程中,需要设定双加压法系统的运行温度,而现阶段大部分系统就会将运行温度设定为20摄氏度左右,在20摄氏度进行系统运行过程中所排放的尾气,含酸量相对较高,并且由于尾气吸收塔的压差在0.05兆帕左右,因此导致在尾气的排出过程中会出现过多的酸性气体。
同时出口的温度大概在140摄氏度左右,近口的温度大概在350摄氏度左右,氧化氮压缩机的出口压力为0.8兆帕,出口工作压力为0.3兆帕,总的出风量为6万立方米每小时。
15kt/a稀硝酸双加压法生产装置工艺设计简介化学工程与工艺08160310 盛华毛丽萍副教授摘要本设计从描述硝酸的基本性质和其发展前途开始先论述了生产稀硝酸的必要性,然后对其生产方法进行简述和论证,最后选择了双加压生产法。
而后对此方法进行了从工艺流程到计算和选型的详细描述。
如稀硝酸的生产原理、工艺流程、生产过程的影响因素、化工工艺计算、氧化器的工艺设计及附属设备的选择、车间布置设计。
本设计还增加了尾气治理,针对不同的需要采用不同的治理办法。
最后本设计还对所采用的生产方法进行了总结和讨论。
关键词:稀硝酸;双加压法;吸收塔;工艺计算;尾气处理AbstractThe design started from the description HNO3s basic properly and its future development to elaborate first the necessity produced the thin HNO3 , and then carried on the summary and the proof to its production method . Finally selected the double-pressurizing method for diluted HNO3 .Then has carried on to describe this method from the technical process to the calculation and choice detailed . For example , the thin nitric acid’s production principle, the technical process , production process’s influencing factor , chemical technology calculation , the design of oxidation equipment and appurtenance’s choice , workshop design . This design also increased the exhaust gas treatment , the different treatment approaches would be used in different needs . Finally , the production method that used in this design had been aggregated and discussed .Keywords: Dilute nitric acid;double-pressurizing method;Absorption tower;Technology Calculation;Exhaust processing一、选题依据及意义硝酸是基本化学工业重要的产品之一,产量在各类酸中仅次于硫酸。
1生产工艺原理1.1概述本硝酸装置包括日产500吨100%硝酸所有设备。
采用GRANDEPAROZSSE(GP)所用的硝酸双加压法工艺,其特点是在低压下进行氨氧化,在高压下进行氧化氮气体吸收。
两个主要的工艺步骤如下:----在一定压力下:氨氧化成氮氧化物;----在一定压力下:氧化氮气体氧化和吸收。
1.2氨氧化进入氧化炉的氨-空混合气在作催化剂铂或铂合金网上发生定向氧化。
整个氧化反应如下:NH3+5/4O2→ NO+3/2H2O+226392.8KJ (1)通过反应(1)得到NO反应发生在810℃~900℃,在高温下该反应热力学动力学不稳定。
根据催化剂的操作条件,会发生其它降低一氧化氮收率的反应;在催化剂存在的条件下若温度过高氨会分解:NH3→1/2 N2+3/2H2 (2)催化剂网温度过高(过热)及接触时间过长会促NO分解以及氨的彻底氧化:NO→1/2 N2+1/2O2 (3)NH3+3/4O2→ 1/2N2+3/2H2O+316990.8 KJ (4)NH3+3/2NO→ 5/4N2+3/2H2O (5)反应(4)是最容易发生的。
在给定的氨空混合气流量下,为了获得最大的NO产率,铂网温度的控制就通过调整氨空比来实现。
1.3 NO氧化主要的氮氧化物如下:NO :一氧化氮NO2:二氧化氮N2O3:三氧化二氮N2O4:四氧化二氮由反应(1)形成的NO与水不起反应,因而必须氧化成NO2。
不过它会与NO2生成少量的N2O3。
NO2在温度低于200℃时很稳定,在温度低于100℃很快生成N2O4。
N2O4与水反应生成亚硝酸HNO2和硝酸HNO3,NO氧化反应如下:NO+1/2O2→ NO2+56521.7KJ (6)反应(6)是NO与O2之间的均相反应,不需催化剂,这是一个缓慢的三分子反应,温度升高时平衡会向反方向进行。
该反应具有负温度系数,当温度低于500℃时就会有氧化反应发生,随着温度降低及压力升高反应会加速。
双加压法稀硝酸生产工艺技术分析论文双加压法稀硝酸生产工艺技术分析论文1双加压法稀硝酸生产工艺技术概述稀硝酸生产工艺的进步,很大程度上依赖于机械制造、材料研发、催化剂技术等快速发展,截至目前,国内的稀硝酸工业生产已经实现了自动化、标准化和经济性。
换个角度分析,在不同的技术发展阶段,也产生了相应的生产工艺。
从早期的常压法、综合法,到全中压法、全高压法,再到最先进的双加压法,我国的硝酸生产工艺不断进步,但关键要素是通过控制铵的氧化范畴来进行生产。
本质上来说,硝酸由于其较活跃的特性,产品生产的关键环节及流程控制,包括原料消耗、生产规模、经济技术等内容,其中,氨的消耗最为明显,其影响了整个硝酸生产过程中成本的85%,由此不难判断加强氨的利用率是提高硝酸工业的重要手段。
1.1常规稀硝酸生产工艺常规的稀硝酸生产工艺主要是常压法和综合法,这两种方法的执行环境对压力温度要求并不突出,缺点十分明显,例如吸收不充分、硝酸纯度低、尾气排放量大、能源消耗大等。
这是由于压力设备技术发展较为落后的前提造成的,目前国内基本淘汰了此类生产方式。
1.2全中压和全高压法首先,全中压指的是在0.5MPa左右的压力状态下促使氨、氧气、氮气的反应来制造硝酸,工艺流程较为简单,可以显著提升硝酸的转化率。
相比于常规的稀硝酸制造工艺而言,方法简单、投资少、占地小、纯度高,单纯地就产品生产而言是十分优越的;但全中压法的显著缺点是,缺乏尾气处理功能,直接排入大气之后会造成严重的.酸性气体污染。
在上世纪三十年代到四十年代,全中压法是我国主要采用的硝酸技术,目前也面临淘汰。
其次,全高压法指的是在.9MPa左右的压力下进行氨、氧气和氮气的化合反应来生产硫酸,这种工艺对设备的抗压性有一定的要求,除此之外和全中压法基本类似;利用全高压法可以实现收集高纯度硝酸的需求,同时减少尾气的排放,但由于压力过大会阻碍氨、氧之间的反应,导致大量的催化剂消耗。
1.3双加压法工艺分析很显然,全中压法和全高压法在不同领域的优势,构成了“双加压”的特点。
双加压法稀硝酸工艺技术要点分析摘要:双加压法是稀硝酸生产工艺中十分先进的一项技术,该生产工艺具有着明显的优势,首先其尾气排放量相对较少,而且具有较高的氧化率,铂耗也相对较低,因此逐渐在各国的稀硝酸生产过程中得到了有效应用。
本文针对双加压法稀硝酸工艺技术要点进行分析,介绍了双加压法稀硝酸生产工艺的主要技术特点和生产工艺技术,探讨了生产工艺中的一些常见问题,并提出具体的解决对策,希望能够为相关工作人员起到一些借鉴。
关键词:双加压法;稀硝酸工艺;技术要点稀硝酸主要是指浓度低于68%的硝酸,其具有着较强的氧化性和腐蚀性,属于无机酸,而且具有酸的相关通性,在工业生产过程当中具有着十分重要的应用。
近些年来,虽则我国经济的快速发展和科学技术水平的不断提升,硝酸工业在高新材料研发以及新能源利用等方面也取得了十分显著的成绩,更是成为我国经济发展过程当中不可或缺的一项重要原材料。
而对于稀硝酸的生产工艺,也是相关工作人员不断研究和一项内容,通过完善其生产工艺,可以进一步提升稀硝酸的生产效率和生产质量[1]。
一、双加压法稀硝酸生产工艺技术特点分析双加压法具有着十分明显的优势,因此相关企业也在快速地完善其内部技术改造,而此项生产工艺技术的主要特点具体包括以下几个方面。
(一)氨的利用率、转化率高在双加压法装置和生产工艺当中,氧化炉的设计十分独特,可对漩涡流的产生进行阻止,使气体能够在氧化空间内得到均匀分布。
而氧化炉内部的气体分布器则可以充分保障气体在铂网催化剂表面进行均匀流过,使氧气和氨气可以充分接触,确保氨气可以得到充分反应,而且还能够产生相应的温度差,使氨的氧化率和氮氧化合物的转化率得到极大的提高。
(二)减少催化剂的消耗量在双加压法工艺当中,原料可以得到充分的融合,使催化剂的催化作用得到提高,这样一来催化剂的使用量也可以得到减少,能够降低生产成本。
(三)一氧化氮吸收率较高硝酸在具体的生产工艺过程当中,通过高压能够加快的一氧化氮的氧化,从而生成不稳定的硝酸根,而当硝酸中氮元素含量增加后,可以使硝酸的纯度得到提升。
GP硝酸生产工艺常见问题及处理措施发表时间:2018-12-04T11:30:52.957Z 来源:《防护工程》2018年第25期作者:陈志强[导读] 本文以天利高新己二酸厂10.5万吨硝酸装置为模型简要叙述了70年代GP双加压法硝酸工艺设计上的不足及操作要点,通过优化操作,在无法实施设备改造的前提下,减缓了因设计不足造成的设备损坏或生产事故。
陈志强新疆天利高新石化股份有限公司己二酸厂新疆独山子 833600摘要:本文以天利高新己二酸厂10.5万吨硝酸装置为模型简要叙述了70年代GP双加压法硝酸工艺设计上的不足及操作要点,通过优化操作,在无法实施设备改造的前提下,减缓了因设计不足造成的设备损坏或生产事故。
关键词:GP 双加压法硝酸问题 0引言近几年来,我国硝酸工业进入高速发展期,总产量每年以高于18%的速度增长,新增装置的技术含量提高,装置规模增大,酸浓度提高,新技术得到广泛地应用。
新增加的装置主要以双加压法为主,双加压法硝酸装置以总产量大、单机规模大、能耗低、综合经济指标优等特点,已成为我国硝酸发展的主力和今后发展的方向。
在我国已经投产和正在设计安装的29套双加压法生产装置中,GP的双加压法生产工艺为25套,伍德工艺为2套,凯米特工艺为2套。
因此,我国的双加压法硝酸工艺现以GP双加压法硝酸工艺为主体。
然而在实际生产运行过程中我们也可以发现,GP工艺在工艺设计上也存在一些问题,本文主要针对新疆天利高新己二酸厂硝酸装置生产过程中存在的问题进行阐述,通过优化部分操作,达到装置平稳安全运行的目的。
1 70年代GP工艺生产过程中出现的主要问题(1)在70年代GP双加压法硝酸生产工艺中,氧化炉-废热锅炉采用巴布考克锅炉型式,此种锅炉相对于拉芒特锅炉过热段盘管布置在铂网下方,受热气流影响较大,特别是开停工过程中,热应力变化对盘管造成很大损伤,盘管泄露甚至爆管事故在同类装置中时有发生。
天脊集团900吨/天硝酸装置过热段盘管曾出现一年内多次泄露现象。
双加压GP 法生产稀硝酸
采用两台氧化炉并联操作。
生成的气体再经冷凝吸收,制得稀硝酸产品。
氧化中压,吸收高压
(1 氨利用率高,炉顶设计有特殊气体分布器,能使氨空气混合气均匀分布于铂网表面,氨氧化率可达96.7%、NOx 吸收率可达99.8%,氨的总利用率为
96.5%;
(2 铂消耗低,因铂网温度分布均匀,从而减少了铂网局部过热所产生的铂挥发损失;
(3 NO氧化度高,由于NOx 吸收采用1.3~1.5MPa 的操作压力,加快NO 气体的速度,在不设专用氧化塔的情况下,通过设备、管道内空间的净化,使进入吸收塔气体中NO 氧化度达到90%~97.8%;
(4 尾气中NOx 含量低,由于加压、低温吸收,对NO 氧化及NOx 吸收都很有利,尾气出口中NOx 含量能降低到100mL /kL 以下,不需要设尾气处理装置。
四、硝酸生产常见的事故模式
(1 NH3和空气在接触设备、混合器及管道内生成易爆的混合气体而发生爆炸;
(2 生产车间、厂区内聚集有大量氨和氧化氮气体,使职工中毒;
(3 生成亚硝酸盐-硝酸盐,并沉积下来,从而在氧化气体鼓风机、透平压缩机器和接触设备的点火部件及管道等处发生爆炸;
(4 当浓缩器燃烧室内加入过量液体或气体燃料时,稀硝酸浓缩工段会形成易爆的气体空气混合物或蒸气-空气混合物,燃料如不及时燃烧,则可能在燃烧室内发生爆炸;
5 当氧气从直接合成法生产浓硝酸的系统中冲出,或氧气进入被有机物质污染的设备时,在未经脱酯处理以及沾有油污的设备和管道表面可能发生燃烧;
(6 氧气和硝酸与有机物接触或与含有棉花,石蜡等有机物质的石棉衬垫及填料接触而发生燃烧;
(7 由于浓硝酸和混酸有机物质接触引起燃烧和爆炸;
(8 液体氧化氮与氨混合而发生爆炸。
氧化炉安全控制技术
保证点火时动作迅速准确。
如果点火时间过长,将使未参加反应的氨漏入系统中,遇酸则生成硝酸铵和亚硝酸铵,产生爆炸源。
此外,在开车和正常运转时,要严格控制混合气中氨的含量不超过12%,以防爆炸。
氨在常温常压时的爆炸极限为15.5%~27%,温度提高,其爆炸下限下移。
如100℃时,下限则为14.5%,氧化炉的操作温度在800~900℃,其爆炸下限还要降低。
因此,开车前要对氨、空气自动调节器、氧化炉温度和氨浓度高限报警器及停车联锁装置仔细检查,并经试验保证灵敏可靠,且需仪表人员在场监视。
• 氧化炉开车的初期,由于温度低,氧化率低,容易使未反应的氨滑过铂网而进
入系统,从而生成硝酸铵和亚硝酸铵。
加之一氧化氮在温度为325℃时,还会使硝酸铵分解成为亚硝酸铵,增加了铵盐爆炸的危险性。
因此,在开车的初期,当炉温未达到正常温度时,反应后的气体应经稀硝酸洗涤或放空。
• 氧化系统生成的少量铵盐(硝酸铵和亚硝酸铵容易在透平压缩机处积聚,铵盐
超过规定值时,应在透平入口加蒸汽吹洗,在设备大、中、小修时,要彻底清理,消除隐患。
操作中如发现铵盐存在,严重时应立即停车处理。
过氧化物:含有过氧基-O - O -的化合物,非常不稳定
的物质,火灾爆炸危险性较大。
分解爆炸性:含有过氧基(-O - O -),由于过氧键结合力弱,断裂时所
需的能量不大,过氧基是极不稳定的结构,对热、振动、冲击或摩擦都极为敏感,当受到轻微外力作用时即分解。
易燃性:多数过氧化物很容易燃烧,而且燃烧迅速而猛烈。
人身伤害性:与眼睛接触产生伤害
• 各类过氧化物稳定性的变化程序为:酮的过氧化物<二乙酰过氧化物<过醚<二
烃基过氧化物。