第2章无机材料晶体结构及与材料性能的关系
- 格式:pdf
- 大小:5.17 MB
- 文档页数:75
第 2 章结晶结构一、名词解释1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体2.空间点阵与晶胞:空间点阵是几何点在三维空间内周期性的重复排列晶胞:反应晶体周期性和对称性的最小单元3.配位数与配位多面体:化合物中中心原子周围的配位原子个数成配位关系的原子或离子连线所构成的几何多面体4.离子极化:在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶:同一物质在不同的热力学条件下具有不同的晶体结构化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构6.正尖晶石与反尖晶石:正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。
反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。
二、填空与选择1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。
2.空间点阵是由 C 在空间作有规律的重复排列。
( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。
4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 ,八面体空隙数为 12 ,四面体空隙数为 6 。
5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。
一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。
不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。
6.在离子晶体中,配置于正离子周围的负离子数(即负离子配位数),决定于正、负离子半径比(r +/r -)。
第一章物理基础知识与理论物理性能本质:外界因素(作用物理量)作用于某一物体,如:外力、温度梯度、外加电场磁场、光照等,引起原子、分子或离子及电子的微观运动,在宏观上表现为感应物理量,感应物理量与作用物理量呈一定的关系,其中有一与材料本质有关的常数——材料的性能。
晶体结构:原子规则排列,主要体现是原子排列具有周期性,或者称长程有序。
非晶体结构:不具有长程有序。
点阵:晶体内部结构概括为是由一些相同点子在空间有规则作周期性无限分布,这些点子的总体称为点阵。
晶体由(基元)沿空间三个不同方向,各按一定的距离(周期性)地平移而构成,(基元)每一平移距离称为周期。
晶格的共同特点是具有周期性,可以用(原胞)和(基失)来描述。
分别求立方晶胞、面心晶胞和体心晶胞的原胞基失和原胞体积?(1)立方晶胞:(2)面心晶胞(3)体心晶胞晶体格子(简称晶格):晶体中原子排列的具体形式。
晶列的特点:(1)一族平行晶列把所有点包括无遗。
(2)在一平面中,同族的相邻晶列之间的距离相等。
(3)通过一格点可以有无限多个晶列,其中每一晶列都有一族平行的晶列与之对应。
(4 )有无限多族平行晶列。
晶面的特点:(1)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平行晶面. (2)所有的格点都在一族平行的晶面上而无遗漏;(3)一族晶面平行且等距,各晶面上格点分布情况相同;(4)晶格中有无限多族的平行晶面。
格波:晶体中的原子在平衡位置附近的微振动具有波的形式。
色散关系:晶格振动谱,即频率和波矢的关系。
声子:晶格振动的能量是量子化的,晶格振动的量子单元称作声子,声子具有能量ħ ,与光子的区别是不具有真正的动量,这是由格波的特性决定的。
声学波与光学波的区别:前者是相邻原子的振动方向相同,波长很长时,格波为晶胞中心在振动,可以看作连续介质的弹性波;后者是相邻原子的振动方向相反,波长很长时,晶胞中心不动,晶胞中的原子作相对振动。
德布罗意假设:一切微观粒子都具有波粒二象性。
《无机材料科学基础》教学大纲英文课程名称: Foundation of Inorganic Material Science课程编号:0711305总学时:88(其中理论课学时:74 实验学时:14)总学分:5.5先修课程:物理化学、晶体学适用专业:无机非金属材料工程开课单位:材料科学与工程学院无机非金属材料工程教研室执笔人:梁忠友审校人:来启辉一、课程教学内容绪论材料的发展动向及本课程的重要地位;本课程的特色及基本要求。
第一章晶体化学基本原理原子半径和离子半径;球体紧密堆积原理,六方堆积和立方堆积;配位数和配位多面体;离子的极化对化学键和结构的影响;电负性,估计化学键;鲍林规则。
第二章晶体结构与晶体中的缺陷第一节典型结构类型氯化钠型、金刚石型、氯化铯型、闪锌矿型、纤锌矿型、萤石型、金红石型、碘化镉型、刚玉型、钙钛矿型、尖晶石型。
第二节硅酸盐晶体结构岛状结构、组群状结构、链状结构、层状结构、架状结构。
第三节晶体结构缺陷,点缺陷、固溶体、非化学计量化合物,固溶体研究方法;线缺陷,包括螺旋位错和刃位错。
第三章熔体与玻璃体第一节熔体结构——聚合物理论,第二节熔体性质粘度和表面张力。
第三节玻璃通性各向同性;介稳性;熔融态向玻璃态转化的可逆性与渐变性;熔融态向玻璃态转化时物理、化学性质随温度变化的连续性。
第四节玻璃的形成玻璃态物质的形成方法简介;玻璃形成的热力学、动力学,结晶化学条件;第四节玻璃的结构晶子学说;无规则网络学说。
第五节常见玻璃类型硅酸盐玻璃;硼酸盐玻璃。
第四章表面与界面第一节固体的表面固体的表面特征;晶体表面结构;固体表面能;第二节界面行为,润湿与粘附;吸附与表面改姓;第三节晶界晶界结构与分类;多晶体的组织;晶界应力。
第四节粘土—水系统胶体化学粘土的荷电性;离子吸附与交换;电动性质;胶体性质;瘠性料的悬浮与塑化。
第五章相平衡。
第一节硅酸盐系统相平衡的特点热力学平衡态与非平衡态;硅酸盐系统中的组分、相及相律。
第二章晶体结构【例2-1】计算MgO和GaAs晶体中离子键成分的多少。
【解】查元素电负性数据得,,,,则MgO离子键%=GaAs离子键%=由此可见,MgO晶体的化学键以离子键为主,而GaAs则是典型的共价键晶体。
【提示】除了以离子键、共价键结合为主的混合键晶体外,还有以共价键、分子间键结合为主的混合键晶体。
且两种类型的键独立地存在。
如,大多数气体分子以共价键结合,在低温下形成的晶体则依靠分子间键结合在一起。
石墨的层状单元内共价结合,层间则类似于分子间键。
正是由于结合键的性质不同,才形成了材料结构和性质等方面的差异。
从而也满足了工程方面的不同需要。
【例2-2】 NaCl和MgO晶体同属于NaCl型结构,但MgO的熔点为2800℃, NaC1仅为80l℃,请通过晶格能计算说明这种差别的原因。
【解】根据:晶格能(1)NaCl晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=1,e=1.6×10-19 库仑,,r0==0.110+0.172=0.282nm=2.82×10-10 m,m/F,计算,得:E L=752.48 kJ/mol(2)MgO晶体:N0=6.023×1023个/mol,A=1.7476,z1=z2=2,e=1.6×10-19库仑,r0==0.080+0.132=0.212 nm=2.12×10-10 m,m/F,计算,得:E L=3922.06 kJ/mol则:MgO晶体的晶格能远大于NaC1晶体的晶格能,即相应MgO的熔点也远高于 NaC1的熔点。
【例2-3】根据最紧密堆积原理,空间利用率越高,结构越稳定,但是金刚石的空间利用率很低,只有34.01%,为什么它也很稳定?【解】最紧密堆积的原理只适用于离子晶体,而金刚石为原子晶体,由于C-C共价键很强,且晶体是在高温和极大的静压力下结晶形成,因而熔点高,硬度达,很稳定。
第二章 材料科学与工程的四个基本要素 MSE 四要素;– 使用性能,材料的性质,结构与成分,合成与加工两个重要内容;– 仪器与设备,分析与建模§2。
1 性质与使用性能 1。
基础概念2。
性质与性能的区别与关系 3。
材料的失效分析4. 材料(产品)使用性能的设计5. 材料性能数据库6. 其它问题2。
1。
1基础内容 材料性质:是功能特性和效用的描述符,是材料对电.磁.光.热。
机械载荷的应。
材料性质描述• 力学性质;强度,硬度,刚度,塑性,韧性物理性质;电学性质,磁学性质,光学性质,热学性质 化学性质;催化性质,防化性质结构材料性质的表征——-—材料力学性质 强度:材料抵抗外应力的能力.塑性:外力作用下,材料发生不可逆的永久性变形而不破坏的能 力。
硬度:材料在表面上的小体积内抵抗变形或破裂的能力。
刚度:外应力作用下材料抵抗弹性变形能力。
疲劳强度:材料抵抗交变应力作用下断裂破坏的能力.抗蠕变性:材料在恒定应力(或恒定载荷)作用下抵抗变形的能力。
韧性:材料从塑性变形到断裂全过程中吸收能量的能力.6强度范畴刚度范畴塑性范畴韧性范畴应力应 变2.1.1基础内容7材料的物理性质磁学性质光学性质电学性质· 导电性 · 绝缘性 · 介电性· 抗磁性 · 顺磁性 · 铁磁性· 光反射 · 光折射 · 光学损耗 · 光透性热学性质· 导热性 · 热膨胀 · 热容 · 熔化注:上面只列出了材料的主要物理性质2.1.1基础内容物理性质的交互性———-材料应用的关键点现代功能材料不仅仅表现出单一的物理性质,更重要的是具备了特 殊的物理交互性。
例如: 电学———-机械电致伸缩 机械————电学压电特性 磁学————机械磁致伸缩 电学————磁学巨磁阻效应 电学——-—光学电致发光 性能定义在某种环境或条件作用下,为描述材料的行为或结果,按照特定的 规范所获得的表征参量。