第七章 协方差分析
- 格式:ppt
- 大小:1.17 MB
- 文档页数:84
方差分析方差分析(Analysis of Variance,简称ANOVA),又称"变异数分析〞或"F检验〞,是R.A.Fisher创造的,用于两个及两个以上样本均数差异的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状。
造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
方差分析的作用一个复杂的事物,其中往往有许多因素互相制约又互相依存。
方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最正确水平等。
方差分析是在可比拟的数组中,把数据间的总的"变差〞按各指定的变差来源进展分解的一种技术。
对变差的度量,采用离差平方和。
方差分析方法就是从总离差平方和分解出可追溯到指定来源的局部离差平方和,这是一个很重要的思想。
经过方差分析假设拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。
假设要得到各组均数间更详细的信息,应在方差分析的根底上进展多个样本均数的两两比拟。
方差分析的分类及举例一、单因素方差分析〔一〕单因素方差分析概念理解步骤是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。
这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。
这些问题都可以通过单因素方差分析得到答案。
单因素方差分析的第一步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。
单因素方差分析的第二步是剖析观测变量的方差。
方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。
据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两局部,用数学形式表述为:SST=SS A+SSE。
第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。
将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。
统计学中的方差分析与协方差分析统计学中的方差分析和协方差分析是两个重要的统计学方法,被广泛运用于数据分析和研究中。
本文将介绍方差分析和协方差分析的定义、应用场景以及计算方法,以便读者更好地了解和运用这两种统计学工具。
一、方差分析方差分析是一种用于比较两个或多个样本均值差异是否显著的统计方法。
其主要目的是检验不同组之间的均值是否存在显著性差异,从而确定各组之间是否存在显著差异。
在进行方差分析时,需要满足以下几个前提条件:独立性、正态性、方差齐性和组间误差的独立性。
满足这些前提条件的数据可以采用方差分析方法进行分析。
方差分析可以分为单因素方差分析和双因素方差分析。
单因素方差分析是一种比较多个独立样本均值差异的统计方法,而双因素方差分析是一种比较两个或更多个自变量对因变量均值差异影响的统计方法。
方差分析的计算方法主要包括计算组内平方和、组间平方和以及均方和。
利用这些统计指标可以进一步计算F值,并与临界值比较,从而判断差异的显著性。
二、协方差分析协方差分析是一种用于比较两个或多个随机变量之间的差异性的统计方法。
其主要目的是评估变量之间的相关性以及其对因变量的影响程度。
协方差分析通常用于分析两个或多个自变量对一个因变量的影响,从而确定自变量的变化对因变量的差异是否具有显著性影响。
在进行协方差分析时,同样需要满足一定的前提条件,如独立性、线性关系和正态性等。
只有当数据满足这些条件时,才能使用协方差分析进行统计分析。
协方差分析的计算方法主要包括计算协方差矩阵、相关系数以及模型拟合度。
通过对这些统计指标的计算和分析,可以判断变量之间的相关性以及自变量对因变量的影响程度。
三、方差分析与协方差分析的应用场景方差分析和协方差分析在实际数据分析和研究中有着广泛的应用。
在社会科学研究中,方差分析通常用于比较不同组别之间的差异,如教育水平对收入的影响、治疗方法对病情的影响等。
而协方差分析则更多地应用于经济学、金融学以及市场调研等领域。