《正数和负数》优秀教案
- 格式:doc
- 大小:66.34 KB
- 文档页数:5
正数和负数教学设计一等奖正数和负数教学设计一、教学背景和目标教学背景:本次教学是在小学四年级数学课上进行的,学生已经学习了较多的数学知识,包括整数的加减法等,但对于正数和负数的概念和运算还存在一定程度的困惑。
教学目标:1. 理解正数和负数的概念,能够用数轴表示正数和负数,能够将正数和负数进行比较。
2. 掌握正数和负数的加减法运算。
3. 培养学生的逻辑思维能力、解决问题的能力和团队协作意识。
二、教学重点和难点教学重点:1. 正数和负数的概念和表示方法。
2. 正数和负数的加减法运算。
教学难点:1. 正数和负数的概念的理解和抽象思维能力的培养。
2. 正数和负数的加减法运算的转化和计算方法的掌握。
三、教学过程1. 导入(5分钟)引导学生回顾已学过的整数知识,提出问题:“你们都知道整数是由正数和负数组成的,那么你们能告诉我正数和负数分别是什么吗?”引导学生思考,回答问题。
2. 概念讲解(10分钟)通过课件展示数轴,并解析数轴上的正数和负数表示,引导学生理解正数和负数的概念。
然后,给予学生一些实际生活中的例子,让学生触类旁通,进一步加深对正数和负数概念的理解。
3. 讨论与总结(15分钟)划分小组,让学生在组内讨论并总结正数和负数的性质和特点。
然后,每组派代表上台汇报讨论结果,并进行展示。
教师引导学生对各组汇报进行点评和总结,加深学生对正数和负数的理解。
4. 实际运用(20分钟)通过实际问题和数学游戏的形式,让学生进行正数和负数的加减法运算。
例如,让学生模拟银行账户的存取款操作,通过计算账户余额的正负值,巩固正数和负数的加减法运算。
5. 小结(5分钟)对所学内容进行小结,强调正数和负数的概念和加减法运算方法。
并布置针对正数和负数的练习题,进行课后复习和巩固。
四、教学评价针对教学目标,采取以下评价方式:1. 观察学生在课堂上的表现,包括思考的活跃程度、概念理解的准确程度和运算能力的掌握情况。
2. 通过小组讨论和汇报的评价方式,评估学生对于正数和负数概念的理解和表达能力。
正数和负数说课稿(优秀4篇)正数和负数说课稿篇一教学目标1、知识掌握目标:使学生了解和掌握正数、负数和零的意义。
2、技能能力目标:培养学生观察、分析、概括的逻辑思维能力和解决实际问题的能力。
培养创新意识和精神、培养学生合作意识。
3、德育目标:通过负数的。
引入,对学生进行爱国主义教育。
教材分析与处理、学情分析。
本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。
活泼好动,思维敏捷,表现欲强,但思考问题不全面等。
采用探索引导式的学习方式。
重点、难点:重点:正数、负数的意义及如何区别意义相反的量。
难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。
教学设计及依据:借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。
依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。
教学过程教学环节教学内容设计意图一、创设情境导入新课本节课中,首先呈现给学生的是两幅冬日雪景动画画面。
教师:同学们从这两幅动画中感觉到的是什么?谁能告诉我今天气温大约是多少度?动画里的温度大约是多少?能不能用我们所学过的数表示吗?学生:(天气比较冷20°C 零下10°C 不能)教师:正因为不能,为了解决这一问题,我们来学一些新数,从而引入新课题。
这两幅画符合学生的年龄特点,激发学生浓厚的学习兴起,给新知识的引入提供了一个丰富多彩的空间。
二、获得新知加深理解教师:像零下10°C我们可以记着“-10°C”读做“负的”。
正数和负数教案人教版优秀6篇作为一名教职工,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
那么大家知道正规的教案是怎么写的吗?下面这6篇正数和负数教案人教版是作者为您整理的正数和负数教案范文模板,欢迎查阅参考。
正数和负数教案篇一三维目标一、知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
二、过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
三、情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣。
教学重、难点与关键1.重点:正确理解正、负数的概念,能应用正数、 负数表示生活中具有相反意义的量。
2.难点:正数、负数概念的综合运用。
3.关键:通过对实例的进一步分析, 使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
教具准备投影仪。
教学过程四、复习提问课堂引入1.什么叫正数?什么叫负数?举例说明, 有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?五、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。
负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.2.六个国家2001年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利- 2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走- 7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。
初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
正数和负数教案正数和负数教学反思优秀4篇初一上册数学《正数和负数》教案篇一一、教学目标1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。
2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、学会用正负数表示实际问题中具有相反意义的量。
二、教学重点和难点重点:正负数的概念难点:负数的概念三、教具投影片、实物投影仪四、教学内容(一)引入师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4这些数,我们把它叫做什么数?生:自然数师:为了表示“没有”,又引入了一个什么数?生:自然数0师:当测量和计算的结果不是整数时,又引进了什么数?生:分数(小数)师:可见数的概念是随着生产和生活的需要而不断发展的。
请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。
请学生用数表示这些量,遭遇表示困难。
师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。
[板书:1、1正数与负数](二)新课教学1、相反意义的量师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)(1) 汽车向东行驶2.5千米和向西行驶1.5千米;(2) 气温从零上6摄氏度下降到零下6摄氏度;(3) 风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义请学生举出一些相反意义的量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、正数与负数师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。
正数和负数优秀教案设计年级七年级学科数学课题 1.1正数和负数课型新授课时 1教学目标知识与技能1.了解正数与负数是从实际需要中产生的.2.理解正数、负数及0的意义,掌握正数、负数的表示方法.3.会用正数、负数表示具有相反意义的量.过程与方法1.通过探索和发现数学概念的过程,体会数学的逻辑性和结构美,初步学会与他人合作学习。
2.通过解决实际问题的过程,学会分析问题、解决问题的方法,提高逻辑思维能力。
情感、态度、价值观1.通过参与数学活动,体验学习数学的乐趣,形成积极探索的精神和态度。
2.通过数学学习,形成实事求是的态度和勇于探索的科学精神。
教学重点、难点会用正数、负数表示具有相反意义的量.学情分析在小学阶段,学生已经学习过自然数、小数和分数等相关概念,也在主题活动和项目学习中了解过负数,他们已经对正数和负数有了浅表的认识,尽管当时教材没有给出正数和负数的明确定义,但也使学生初步认识了常见数中的正数和负数,这些知识构成了本节内容新知的“最近发展区”七年级的学生正处于认知发展的关键时期,他们的抽象思维能力正在逐步发展,但对于较为抽象的概念和理论,仍需要借助具体的事物或情境进行理解和记忆,在本节内容的学习中,学生可能会对负数的概念感到困惑,但也会因为负数的引人而感受到数学的魅力和趣味性,教师在教学过程中应关注学生的情感状态,激发学生的学习兴趣和动机,帮助学生建立学习的信心.七年级的学生在学习能力和智力发展方面已经具备了一定的基础,能够通过观察、思考、实践等方式来获取知识和技能,但在思维方面,学生可能会遇到一些困难,如理解负数的概念、意义等,这些困难可能会导致学生在学习过程中产生挫败感或焦虑情绪,教师需关注学生的情绪,及时疏导,由于学生的个体差异较大,教师在教学过程中应因材施教,根据学生的实际情况进行有针对性的教学。
教学方法及学法指导讨论法、探究法、指导法教学媒体课本,黑板、多媒体教学通案教师活动学生活动教学过程(一)情境导入同学们,今天我们来学习第一章第一节课正数和负数。
正数和负数优质课教案第一章:正数和负数的引入教学目标:1. 让学生初步理解正数和负数的概念。
2. 培养学生用正数和负数表示实际问题。
教学内容:1. 引入正数和负数的概念。
2. 举例说明正数和负数的应用。
教学步骤:1. 引导学生回顾已学过的数的概念,如整数、分数等。
2. 提问:我们已经学过哪些数?还有其他的数吗?3. 引入正数和负数的概念,解释正数表示正向的量,负数表示负向的量。
4. 举例说明正数和负数的应用,如向上爬山的高度用正数表示,向下跌落的高度用负数表示。
教学评价:1. 学生能正确理解正数和负数的概念。
2. 学生能用正数和负数表示实际问题。
第二章:正数和负数的运算教学目标:1. 让学生掌握正数和负数的加减乘除运算规则。
2. 培养学生解决实际问题时运用正数和负数运算的能力。
教学内容:1. 正数和负数的加减乘除运算规则。
2. 举例说明正数和负数运算的应用。
教学步骤:1. 引导学生回顾已学过的整数运算规则,如加减乘除。
2. 提问:我们已经知道整数的运算规则,正数和负数的运算规则是什么呢?3. 讲解正数和负数的加减乘除运算规则,如正数加负数等于负数,正数减负数等于正数等。
4. 举例说明正数和负数运算的应用,如购物时使用信用卡的透支额度。
教学评价:1. 学生能正确进行正数和负数的运算。
2. 学生能运用正数和负数运算解决实际问题。
第三章:正数和负数的应用教学目标:1. 让学生学会在实际问题中运用正数和负数。
2. 培养学生解决实际问题时运用正数和负数的意识。
教学内容:1. 实际问题中正数和负数的应用。
2. 举例说明正数和负数在实际问题中的应用。
教学步骤:1. 引导学生回顾已学过的实际问题,如购物、旅行等。
2. 提问:我们在实际问题中是如何运用正数和负数的呢?3. 讲解实际问题中正数和负数的应用,如购物时支付金额、旅行时计算里程等。
4. 举例说明正数和负数在实际问题中的应用,如计算电话费、水费等。
教学评价:1. 学生能在实际问题中正确运用正数和负数。
正数和负数教案优秀5篇《正数和负数教案》篇一学习目标1、了解负数是从实际需要中产生的;2、能判断一个数是正数还是负数,理解数0表示的量的意义;3、会用正负数表示实际问题中具有相反意义的量。
重点难点重点:正、负数的概念,具有相反意义的量难点:理解负数的概念和数0表示的量的意义教学流程师生活动时间复备标注一、导入新课我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活。
老师刚才的介绍中出现了一些数,它们是些什么数呢?[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
所以,数产生于人们实际生产和生活的需要。
在生活中,仅有整数和分数够用了吗?二、新授1、自学章前图、第2 页,回答下列问题数-3,3,2,-2,0,1.8%,-2.7%,这些数中,哪些数与以前学习的数不同?什么是正数,什么是负数?归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。
根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+1/3,…,就是2、0.5、1/3,…。
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值。
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.2、自学第23页,回答下列问题大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?0有什么意义?归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
3、用正负数表示具有相反意义的量:自学课本34页有哪些相反意义的量?请举出你所知道的相反意义的量?“相反意义的量”有什么特征?归纳小结:一是意义相反,二是有数量,而且是同类量。
初一数学《正数和负数》教案(精选9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初一数学《正数和负数》教案(精选9篇)教师要以东风化雨之情,春泥护花之意,培育人类的花朵,绘制灿烂的春天。
正数和负数教学设计〔共13篇〕第1篇:正数和负数教学设计一、课题引入为了让学生更好地理解正数与负数的概念,作为老师有必要理解数系的开展.从数系的开展历程来看,微积分的根底是实数理论,实数的根底是有理数,而有理数的根底那么是自然数.自然数为数学构造提供了坚实的根底.对于数的开展(也即数的扩大),有着两种不同的认知体系.一是数的自然扩大过程,如图1所示,即数系开展的自然的、历史的体系,它反映了人类对数的认识的历史开展进程;另一是数的逻辑扩大过程,如图2所示,即数系开展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.二、课题研究在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种详细的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.假如把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是意义相反的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数负数.我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个+号,比方在5的前面添加一个+号就成了+5,把 +5称为一个正数,读作正5.在正数的前面添加一个-号,比方在5的前面添加一个-号,就成了-5,所有按这种形式构成的数统称为负数.-5读作负5,-5000读作负5000.于是收入5000元可以记作5000元,也可以记作+5000元,同时支出5000元就可以记作-5000元了.这样具有相反意义的两个数量就有了不同的表达方式.利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些具有相反意义的量.再如,某个机器零件的实际尺寸比设计尺寸大0.5 mm就可以表示成0.5mm,或+0.5mm;假如另一个机器零件的实际尺寸比设计尺寸小0.5 mm,那么就可以表示成-0.5 mm了.在一次足球比赛中,假如甲队赢了乙队2个球,那么可以把甲队的净胜球数记作+2,把乙队的净胜球数记作-2.借助实际例子可以让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地硬造出来的一种新数.三、稳固练习例1 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?思路分析^p :收入与支出是一对具有相反意义的量,可以用正数或负数来表示.一般来说,把收入4800元记作+4800元,而把与之具有相反意义的量支出1600元记作-1600元.特别提醒:通常具有增加、上升、零上、海平面以上、盈余、上涨、超出等意义的数量,都用正数来表示;而与之相对的、具有减少、下降、零下、海平面以下、亏损、下跌、缺乏等意义的数量那么用负数来表示.再如,假设游泳池的水位比正常水位高5cm,那么可以将这时游泳池的水位记作+5cm;假设游泳池的水位比正常的水位低3cm,那么可以将这时游泳池的水位记作-3cm;假设游泳池的水位正好处于正常水位的位置,那么将其水位记作0cm.例2 周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元日期周二周三周四周五开盘+0.16 +0.25 +0.78 +2.12收盘-0.23 -1.32 -0.67-0.65当日收盘价试在表中填写周二到周五该股票的收盘价.思路分析^p :以周二为例,表中数据+0.16所表示的实际意义是周二该股票的开盘价比周一的收盘价高出了0.16元;而表中数据-0.23那么表示周二该股票收盘时的收盘价比当天的开盘价降低了0.23元.因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进展计算:周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.例3 甲、乙、丙三支球队以主客场的形式进展双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.甲乙丙甲3∶2 2∶2乙2∶33∶1丙3∶10∶1试计算甲、乙、丙三个队各自的总净胜球数.思路分析^p :由表中数据可知:甲队主场以3∶2赢乙队,甲队有1个净胜球;甲队客场又以3∶2赢乙队,又增加了1个净胜球.甲队与乙队的两场比赛中甲队净胜球的总数为2.甲队与丙队的两场球,甲主场以2∶2与丙队握手言和,甲队净胜球数为0;甲客场以1∶3负给了丙队,这场球甲队的净胜球数为-2.甲队与丙队的两场比赛中甲队净胜球数为-2.总之,甲队与乙队两场比赛的净胜球数为2,与丙队的两场比赛净胜球数为-2;这样甲队总净胜球数为零.相信同学们根据上面的分析^p ,自己也能说出乙队总净胜球数为1,丙队总净胜球数为-1.老师可以让学生来试试说说看.特别提醒:股票的涨跌、球赛的胜负都是当今日常生活中经常遇到的实际问题,作为当代中学生应该主动去接触或理解一些与之相关的实际问题,以丰富学生的生活阅历.同时也充分说明数学本身就是生活的一局部,要尽可能地调动学生的积极性,把我们所学的数学用到实际生活中去.例4 春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用适宜的方法来表示这条河流河水的变化情况.思路分析^p :从上面的表达可见河水的水位是先上涨了,随后又下降了,水位最终又回到了原来的位置.也就是说最终水位的改变量是零,或者说水位的总变化量是零.与最初的水位相比先上涨的15cm,可以记作+15cm,而随后又下降了15cm,可以记作-15cm,这样水位又回到了原来最初的位置,水位的总变化量是零,即这个变化量为(+15cm)+(-15cm)= 0cm.特别提醒:在表示具有相反意义的量时,假如某个量经两次或屡次变化后又回到了最初状态,就可以用0来表示总变化量;或者说这个量的最终变化量是零.对于初一的学生来说,零的内涵极其丰富,因此需要特别关注,在以后讨论有理数的相反数、绝对值、有理数的运算时,需要提醒学生重视零的一些性质,并关注零在这些概念或运算中所扮演的角色.四、考虑问题培养良好的阅读习惯和进步阅读才能,是数学教学过程中需要引起重视的一个重要方面.教学中,我们发现学生绝对不会做的题目很少,但由于没有把问题看懂而造成的不会做的题目却相对较多.一旦老师帮助学生把问题弄明白是怎么一回事之后,学生往往都会说这题其实不难,我也会做,只是没有认真读题罢了.怎样才能在尽可能短的时间内让学生有效获取题目呈现给我们的信息,做高效的阅读者?这是需要老师认真考虑的问题。
正数和负数
知识技能:
借助生活中的实例,理解正数与负数的意义,体会引入负数的必要性,感悟数学知识与现实生活中的密切联系;
数学思考:
能识别正数与负数;
解决问题:
能应用正、负数表示现实世界中具有相反意义的量。
情感态度:
体会数学发展是生活实际的需要,激发学生学习数学的兴趣。
教学重点:
能应用正、负数表示现实世界中具有相反意义的量。
教学难点:
知道0是一个特殊的数,能举出实例说明它的意义。
教学过程:
1、情境导入
本章引言中,表示温度、产量增长率、收支情况时,既要用到数3,1.8%,3.5等,还要用到-3,-2.7%,-4.5,-1.2等,它们各表示什么实际意义呢?这里出现的新数叫什么呢?
2、问题探究
探究一理解正数与负数的意义,体会引入负数的必要性
活动
师问:刚才出现的数中,哪些数大于0?学生举手抢答
总结:
把大于0的数叫正数,在一个正数前可加“+”(正)号,也可不加正号。
师问:-3,-2.7,-4.5,-1.2等数与正数有何区别?学生举手抢答
总结:
在正数前加上符号“-”(负)的数叫做负数,“-”号读作“负号”,
不叫“减号”。
师问:0是正数吗?是负数吗?为什么?学生讨论后小组代表回答
总结:0既不是正数,也不是负数,0是正数与负数的分界。
探究二 能识别正数与负数
活动
例1 下列各数哪些是正数?哪些是负数?
-1,2.5,+43,0,-3.14,120,-1.732,-27
中,正数是______________;负数是______________。
解:在-1,2.5,+43,0,-3.14,120,-1.732,-27
中,负数有:-1,-3.14,-1.732,-27;正数有:2.5,+43
,120;0既不是正数也不是负数. 练习:
下列各数:-0.5,-10,+100, π,0,1000
1-,85,其中: 负数有 ; 非负数
有 ;
自然数有 。
解: 下列各数:-0.5,-10,+100, π,0,10001-,8
5,其中 负数有:-0.5,-10,10001-;非负数有:+100, π,0,85;自然数有:+100,0.
探究三 能应用正、负数表示现实世界中具体相反意义的量
活动
例2 (1)一个月内,小明体重增加2千克,小华体重减少1千克,小强体
重无变化,写出他们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,
德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长
7.5%,写出这些国家这一年商品进出口总额的增长率。
解:(1)这个月小明体重增长2千克,小华体重增长-1千克,小强体
重增长0千克.
(2)六个国家这一年商品进出口总额的增长率是:美国增长-6.4%,
德国增长1.3%,法国增长-2.4%,英国增长-3.5%,意大利增长0.2%,中国增长7.5%
练习:
请你说出下面每句话的实际含义:
(1)重庆市夜晚的气温上升了C ︒-3;
(2)某企业一季度盈利了120-万元;
(3)将手表指针逆时针旋转2-圈.
解:(1)重庆市夜晚的气温下降了C ︒3,(2)某企业一季度亏损了120
万元;(3)将手表指针顺时针旋转2圈。
活动②
例3 如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降
0.5m 时水位变化记作( )
A .0m
B .0.5m
C .-0.8m
D .-0.5m
解:因为水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水
位变化记作-0.5m
练习:
(1)节约20千瓦·时电记作+20千瓦·时,则浪费10千瓦·时电应记
作 ;
(2)如果-500元表示亏本500元,则+300元表示 ;
(3)一只乒乓球超出标准质量0.01克记为+0.01克,那么-0.02克表示 课堂总结
(1)大于0的数是正数,在正数前加上“-”号的数是负数;
(2)0和正数统称非负数,0和负数统称非正数;
(3)0既不是正数也不是负数;
(4)当问题中出现表示相反意义的量时,可用正、负数来表示。
作 业
教科书第五页第2题
1、下列各数:9,-3,-65,0,+3
2,+1,-3.5,0.2,其中正数有( )
A 、5个
B 、4个
C 、3个
D 、2个
2、“神十”发射时,在点火前5秒记为-5秒,那么火箭点火发射后10秒应记为( )
A、-10秒 B.-1秒 C.+5秒 D.+10秒
3、下列说法正确的有()
①不是负数的数一定是正数;②带有“+”正号的数是正数,带有“-”的
数是负数;③任意一个正数,前面加“-”号,就是一个负数;④小于零的数是负数;⑤a
一定是负数。
A、1个
B、2个
C、3个
D、4个
4、如果零上2℃记作+2℃,那么零下3℃记作()
A、-3℃
B、-2℃
C、+3℃
D、+2℃。