神经网络及深度学习(包含matlab代码)
- 格式:pdf
- 大小:1.57 MB
- 文档页数:24
在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
MATLAB神经网络与深度学习教程神经网络与深度学习是当今计算机科学领域最热门的研究方向之一。
在过去的几年中,深度学习通过其卓越的性能在众多领域中取得了突破性的进展,如图像识别、语音识别、自然语言处理等。
MATLAB作为一种功能强大的科学计算软件,在神经网络和深度学习领域也有着广泛的应用。
本文将以MATLAB为基础,介绍神经网络和深度学习的基本理论和实践。
第一章:MATLAB简介1.1 MATLAB基本概念1.2 MATLAB的应用领域1.3 MATLAB在神经网络和深度学习中的作用第二章:神经网络基础2.1 神经网络的定义和应用2.2 神经元和神经网络模型2.3 前向传播和反向传播算法2.4 MATLAB实现神经网络的基本步骤第三章:深度学习概述3.1 深度学习的定义和历史3.2 深度学习的基本框架3.3 深度学习的优势和挑战3.4 MATLAB在深度学习中的应用第四章:卷积神经网络 (CNN)4.1 CNN的基本原理和结构4.2 CNN在图像识别中的应用4.3 搭建和训练CNN的步骤4.4 MATLAB实现CNN的案例分析第五章:循环神经网络 (RNN)5.1 RNN的基本原理和结构5.2 RNN在自然语言处理中的应用5.3 搭建和训练RNN的步骤5.4 MATLAB实现RNN的案例分析第六章:深度学习模型的训练和优化6.1 数据预处理和特征工程6.2 激活函数和损失函数的选择6.3 参数初始化和正则化方法6.4 MATLAB实现深度学习模型的训练和优化技巧第七章:深度学习模型的评估和应用7.1 模型评估指标7.2 混淆矩阵和ROC曲线7.3 深度学习在实际应用中的案例7.4 MATLAB实现深度学习模型的评估和应用第八章:MATLAB深度学习工具箱8.1 神经网络工具箱的概述8.2 深度学习工具箱的概述8.3 MATLAB深度学习工具箱的使用方法8.4 MATLAB深度学习工具箱的案例展示总结:本文以MATLAB为基础,全面介绍了神经网络和深度学习的理论与实践。
实用标准文案MATLAB程序代码--bp神经网络通用代码matlab通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。
P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc(net.iw{1},net.b{1});net.adaptparam.passes=3;for a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc(net.iw{1},net.b{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0:0.025:5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。
精彩文档.实用标准文案P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');精彩文档.实用标准文案title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0)% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr %训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5);% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7)% 缺少1个训练参数:lr精彩文档.实用标准文案%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);net.trainparam.epochs=300; %最大训练次数(前缺省为10,自trainrp后,缺省为100)net.trainparam.lr=0.05; %学习率(缺省为0.01)net.trainparam.show=50; %限时训练迭代过程(NaN表示不显示,缺省为25)net.trainparam.goal=1e-5; %训练要求精度(缺省为0)%net.trainparam.max_fail 最大失败次数(缺省为5)%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6)%net.trainparam.time 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[1.5 3.6 6.7];精彩文档.实用标准文案net=newgrnn(P,T);%仿真验证p=4.5;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');精彩文档.实用标准文案xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5);a3=radbas(p+2);a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试精彩文档.实用标准文案plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);精彩文档.实用标准文案title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Tc(i)))endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)精彩文档.实用标准文案for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Ac(i)))endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')P=[13, 0, 1.119, 1, 26.3;22, 0, 1.135, 1, 26.3;-15, 0, 0.9017, 1, 20.4;-30, 0, 0.9172, 1, 26.7;24,0,1.238,0.9704,28.2;3,24,1.119,1,26.3;0,52,1.089,1,26.3;0,-73,1.0889,1,26.3;1,28,0.8748,1,2 6.3;-1,-39,1.1168,1,26.7;-2, 0, 1.495, 1, 26.3;0, -1, 1.438, 1, 26.3;4, 1,0.4964,0.9021, 26.3;3, -1, 0.5533, 1.2357, 26.7;-5, 0, 1.7368, 1, 26.7;1, 0, 1.1045, 0.0202,26.3;-2, 0, 1.1168, 1.3764, 26.7;-3, -1, 1.1655, 1.4418,27.5;3, 2, 1.0875, 0.748, 27.5;-3, 0, 1.1068, 2.2092, 26.3;4, 1, 0.9017, 1, 13.7;3, 2, 0.9017, 1, 14.9;-3, 1, 0.9172, 1, 13.7;-2, 0, 1.0198, 1.0809, 16.1;0, 1, 0.9172, 1, 13.7]T=[1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1 ];%期望输出plotpv(P,T);%描绘输入点图像精彩文档.。
深度强化学习是一种结合了深度学习和强化学习的方法,可以用于解决复杂的决策问题。
Matlab是一种功能强大的科学计算软件,提供了丰富的工具和函数,可以很好地支持深度强化学习算法的实现。
本文将介绍深度强化学习算法的原理,并给出在Matlab上的实现代码。
一、深度强化学习算法介绍深度强化学习是一种用于训练智能体(agent)学习在复杂环境下做出最优决策的方法。
它结合了深度学习和强化学习的技术,通过神经网络来近似值函数和策略函数,从而实现对大规模状态空间和动作空间的建模和学习。
在深度强化学习中,智能体通过与环境的交互来不断优化其策略,以最大化累积奖励。
二、深度强化学习算法的实现在Matlab中,可以使用深度学习工具箱来实现深度强化学习算法。
下面是一个简单的深度Q网络(DQN)算法的实现代码:1. 定义神经网络模型。
```Matlablayers = [imageInputLayer([4 1 1])fullyConnectedLayer(24)reluLayerfullyConnectedLayer(24)reluLayerfullyConnectedLayer(2)regressionLayer];```2. 初始化深度Q网络模型。
```Matlabnet = dlnetwork(layers);```3. 定义训练参数。
```MatlabnumEpisodes = 1000; maxStepsPerEpisode = 200; miniBatchSize = 64; discountFactor = 0.99; learnRate = 0.001;```4. 开始训练。
```Matlabfor episode = 1:numEpisodes 初始化环境state = env.reset();for step = 1:maxStepsPerEpisode选取动作[action, stateValue] = chooseAction(net, state);与环境交互nextState, reward, isDone = env.step(action);计算目标Q值targetQ = reward + discountFactor * maxQValue(net, nextState) * ~isDone;计算损失dLoss = calculateLoss(net, state, action, targetQ);更新网络参数[net, loss] = adamupdate(net, dLoss, learnRate);endend```通过上面的代码,我们可以使用Matlab来实现深度强化学习算法,并在环境中学习最优策略。
MATLAB中的深度学习与卷积神经网络原理引言深度学习是当今最热门的领域之一,不仅在学术界引起了广泛的关注,也在实际应用中展现出了巨大的潜力。
而卷积神经网络(CNN)作为深度学习的重要工具之一,被广泛应用于图像识别、自然语言处理等领域。
在本文中,我们将探讨MATLAB中深度学习与卷积神经网络的原理和应用。
一、深度学习基础深度学习是机器学习的一个分支,其核心思想是通过构建多层神经网络并使用大规模数据进行训练,从而达到自动学习和提取高阶抽象特征的目的。
深度学习模型通常包含输入层、隐藏层和输出层,其中隐藏层的数量决定了模型的深度。
通过不断调节模型的权重和偏置,深度学习算法可以在训练数据上进行优化,从而实现对未知数据的准确预测。
MATLAB提供了丰富的深度学习工具箱,包括神经网络、卷积神经网络、循环神经网络等。
这些工具箱提供了一系列函数和算法,可以方便地构建、训练和评估深度学习模型。
二、卷积神经网络(CNN)原理卷积神经网络是深度学习中非常重要的模型之一,其设计灵感来自生物学中的视觉系统。
CNN通过局部感受野、权重共享和下采样等操作,实现对图像数据中的特征进行高效提取。
在MATLAB中,我们可以使用convnet工具箱构建和训练卷积神经网络。
首先,我们需要选择网络的结构,包括卷积层、池化层和全连接层等。
接下来,我们可以通过调节网络的超参数,如学习率、批量大小和正则化参数等,来优化网络的性能。
三、使用MATLAB进行图像分类图像分类是深度学习的一个重要应用领域,其目标是根据图像的内容将其归类到预先定义的类别中。
在MATLAB中,我们可以使用CNN工具箱快速构建图像分类器。
首先,我们需要准备一个包含大量图像和对应标签的数据集。
然后,我们可以使用MATLAB的图像预处理函数对数据进行处理,如缩放、裁剪和增强等。
接下来,我们可以使用CNN工具箱构建一个卷积神经网络,并将数据集分为训练集和测试集。
在训练过程中,我们通过不断更新网络的参数来最小化损失函数,从而使得网络对训练数据的预测结果和真实标签之间的差异最小化。
神经网络及深度学习(包含matlab代码).pdf
神经网络可以使用中间层构建出多层抽象,正如在布尔电路中所做的那样。
如果进行视觉模式识别,那么第1 层的神经元可能学会识别边;第2 层的神经元可以在此基础上学会识别更加复杂的形状,例如三角形或矩形;第3 层将能够识别更加复杂的形状,以此类推。
有了这些多层抽象,深度神经网络似乎可以学习解决复杂的模式识别问题。
正如电路示例所体现的那样,理论研究表明深度神经网络本质上比浅层神经网络更强大。
《深入浅出神经网络与深度学习》PDF+代码分析
《深入浅出神经网络与深度学习》PDF中文,249页;PDF英文,292页;配套代码。
提取码: 6sgh
以技术原理为导向,辅以MNIST 手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。
学完后,将能够通过编写Python 代码来解决复杂的模式识别问题。
MATLAB中常见的深度学习技术介绍深度学习作为人工智能领域的重要分支,近年来取得了显著的发展,并在各个应用领域展现出了强大的能力。
作为一种流行的编程语言和开发环境,MATLAB为深度学习研究和应用提供了强大的支持和丰富的工具。
本文将介绍MATLAB中常见的深度学习技术及其应用。
一、卷积神经网络(Convolutional Neural Networks,CNN)卷积神经网络是深度学习领域最常用的模型之一,特别适用于处理图像和视频数据。
MATLAB提供了丰富的工具箱和函数,支持构建、训练和部署卷积神经网络。
通过使用MATLAB的深度学习工具箱,可以轻松地构建CNN模型,并利用GPU加速进行训练和推理。
此外,MATLAB还提供了预训练的神经网络模型,可以直接应用于各种图像分类、目标检测、语义分割等任务。
二、循环神经网络(Recurrent Neural Networks,RNN)循环神经网络是一种能够处理序列数据的深度学习模型,常被应用于语音识别、自然语言处理、时间序列预测等领域。
在MATLAB中,可以利用深度学习工具箱构建各种类型的循环神经网络,例如简单循环神经网络(Simple Recurrent Neural Network,SRN)、长短期记忆网络(Long Short-Term Memory,LSTM)和门控循环单元(Gated Recurrent Unit,GRU)等。
这些网络模型提供了丰富的功能和灵活性,可以满足不同应用场景的需求。
三、深度强化学习(Deep Reinforcement Learning)深度强化学习结合了深度学习和强化学习的技术,旨在让机器能够通过与环境交互,自动学习获取最优策略。
在MATLAB中,可以利用深度强化学习工具箱构建各种强化学习模型,并通过神经网络进行值函数估计和策略优化。
深度强化学习可以应用于机器人控制、自动驾驶、游戏智能等领域,具有广泛的应用前景。
四、生成对抗网络(Generative Adversarial Networks,GAN)生成对抗网络是一种通过两个网络相互博弈的方式,实现对抗性训练和生成新样本的技术。