多重共线性
- 格式:pdf
- 大小:101.81 KB
- 文档页数:2
多重共线性多重共线性(multicollinearity )的特征● 多重共线性是指一个回归模型中的一些或全部解释变量之间存在有一种“完全”或准确的线性关系:0...2211=+++k k X X X λλλ其中k λλλ,...,,21为常数,但不同时为零。
● 0...2211≈+++k k X X X λλλ, 近似的多重共线性● 通过巴伦坦图做简单的描述。
共线性部分可用两圆圈的重叠部分来衡量。
重叠部分越大,共线性程度越高。
● 我们定义的多重共线性仅对X 变量之间的线性关系而言,它们之间的非线性关系并不违反无多重共线性的假设i i i i u X X Y +++=2210βββ多重共线性的后果●如果多重共线性是完全的,诸X变量的回归系数将是不正确的,并且它们的标准误差为无穷大●如果多重共线性是不完全的,那末,虽然回归系数可以确定,却有较大的标准误差,意思是,系数不能以很高的精确或准精确加以估计,这会导致:-参数估计不精确,也不稳定-参数估计量的标准差较大,影响系数的显著性检验●多重共线性产生的后果具有一定的不确定性●在近似的多重共线性的情况下,只要模型满足CLRM 假定,回归系数就为BLUE,但特定的样本估计量并不一定等于真值。
多重共线性的来源(1)许多经济变量在时间上由共同变动的趋势,如:收入,投资,消费(2)把一些经济变量的滞后值也作为解释变量在模型中使用,而解释变量和滞后变量通常相关,如:消费和过去的收入多重共线性一般与时间序列有关,但在横截面数据中也经常出现多重共线性的检验● 多重共线性是普遍存在的,造成的后果也比较复杂,对多重共线性的检验缺少统一的准则- 对有两个解释变量的模型,作散点图,或相 关系数,或拟和优度R平方。
- 对有多个解释变量的模型,分别用一个解释 变量对其它解释变量进行线性回归,计算拟 和优度22221,...,,k R R R- 考察参数估计值的符号,符不符合理论 - 增加或减少解释变量,考察参数估计值的变 化- 对比拟和优度和t检验值多重共线性的修正方法● 增加样本观测值,如果多重共线性是由样本引起的,可以通过收集更多的观测值增加样本容量。
第四章 多重共线性第一节 什么是多重共线性一、多重共线性的含义所谓多重共线性,不仅包括解释变量之间完全(精确)的线性关系,还包括解释变量之间近似的线性关系。
对于解释变量23,,,k X X X ,如果存在不全为零的数123,,,,k λλλλ ,能使得12233i i k ki X X X λλλλ++++ =0 ,(i =1,2,,n )——即解释变量的数据矩阵的列向量组线性相关。
则称解释变量23,,,k X X X 之间存在着完全的线性关系。
用数据表示,解释变量的数据矩阵为X =213112232223111k k nnkn X X X XX X X X X ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦当()r X <k 时,也说明解释变量23,,,k X X X 之间存在着完全的线性关系。
当存在完全共线性时,至少有一个变量(列向量)可以用其余的变量(列向量)线性表出。
在实际问题中,完全的共线性并不多见。
常见的情形是解释变量23,,,k X X X 之间存在不完全的共线性,这是指存在不全为零是数123,,,,k λλλλ ,使得12233λλλλ+++++ i i k ki i X X X v =0(i =1,2,,n )其中i v 是随机变量。
这表明此时解释变量之间只是一种近似的线性关系。
二、产生多重共线性的背景1.经济变量之间具有共同的变化趋势2.模型中包含滞后变量3.利用截面数据建立模型也可能出现共线性4. 样本数据自身的原因第二节 多重共线性产生的后果完全共线性时,矩阵X X '不可逆,参数估计式ˆβ=1()X X X Y -''不存在,OLS 无法应用。
不完全的共线性时,1()X X -'也存在,可以得到参数的估计值,但是对计量经济分析可能会产生一系列影响。
一、参数估计量的无偏性依然成立不完全共线性时ˆ()E β=1()E X X X Y -''⎡⎤⎣⎦=1()()E X X X X U β-''⎡⎤+⎣⎦=β+()1()X X X E U -''=β二、参数OLS 估计值方差扩大 如二元回归模型i Y =12233i i i X X u βββ+++中的2X 与3X 为不完全的共线性时,2X 与3X 之间的相关系数23r 可由下式给出223r=2232223()x x x x∑∑∑容易证明2ˆ()Var β=222223(1)i x r σ-∑3ˆ()Var β=222323(1)ixr σ-∑随着共线性的程度增加,23r 的绝对值趋于1,两个参数估计量的方差也增大。
多重共线性
1.含义:存在不全为0的1+p 个数p c c c c ,...,,,210,使得
0...22110=++++ip p i i x c x c x c c n
i ,...2,1=称自变量p x x x ,...,21之间存在着多重共线性
2.产生原因和背景:
1)当我们所研究的经济问题涉及到时间序列资料时,由于经济变量随时间往往存在共同的变化趋势,使得它们之间就容易出现共线性。
2)不同的观测误差也会引起异方差性
2)许多利用截面数据建立回归方程的问题常常也存在自变量高度相关的情形
3.带来的问题:
1)完全共线性下参数估计量不存在
2近似共线性下OLS 估计量非有效
3)参数估计量经济含义不合理
4)变量的显著性检验失去意义,可能将重要的解释变量排除在模型之外
5)模型的预测功能失效。
变大的方差容易使区间预测的“区间”变大,使预测
失去意义
4.多重共线性的检验:
1)方差扩大因子法
2)特征根判别法
3)直观判定法
5.消除多重共线性的方法:
1)剔除一些不重要的解释变量
2)增大样本量
课后习题
1.多重共线性对回归参数的估计有何影响?
答:1)完全共线性下参数估计量不存在;2)参数估计量经济含义不合理;
3)变量的显著性检验失去意义;4)模型的预测功能失效
2.具有严重多重共线性的回归方程能否用来作经济预测?
答:如果利用模型去作经济结构分析,要尽可能避免多重共线性;
如果利用模型去作经济预测,只要保证自变量的相关类型在未来时期中保持不变,即未来时期自变量间仍具有当初建模时数据的联系特征,即使回归模型中含有严重多重共线性的变量,也可以得到较好的预测结果;
如果不能保证自变量的相关类型在未来时期中保持不变,那么多重共线性就会对回归预测产生严重的影响。
3.多重共线性的产生与样本量的个数n,自变量的个数p有无关系?
答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。