多重共线性模型的检验与矫正
- 格式:ppt
- 大小:1.11 MB
- 文档页数:24
多重共线性的检验方法
多重共线性(multicollinearity)是指在回归模型中,自变量之间存在高度相关或线性相关的情况。
由于存在多重共线性,导致模型的解释能力降低,预测结果不可靠。
因此,需要对回归模型中自变量之间的关系进行检验和分析。
下面介绍几种多重共线性的检验方法。
1. 相关系数矩阵法。
计算自变量之间的相关系数矩阵,判断是否存在较高的相关系数。
相关系数矩阵主要分为Pearson 相关系数和Spearman 相关系数,其中Pearson 相关系数适用于连续变量之间的关系,Spearman 相关系数适用于序数类或等距类别的变量之间的关系。
2. 变量膨胀因子(VIF)法。
VIF 是判断某个自变量对其他自变量的回归系数影响的程度。
如果某个自变量的VIF 值超过10,就表示需要对其进行检验和分析。
3. 特征值检验法。
通过计算相关系数矩阵的特征值和特征向量,判断模型是否存在多重共线性。
如果某个特征值较小,就表示存在多重共线性。
4. 条件数检验法。
条件数是相邻特征值之比的平方根。
如果条件数大于30,就表示模型存在多重共线性。
综上所述,多重共线性的检验方法有多种,不同的检验方法可以互相验证,得到更加准确的判断结果。
在实际应用中,可以根据具体情况选择合适的方法进行多重共线性的检验。
习题1.下表给出了中国商品进口额Y 、国内生产总值GDP 、消费者价格指数CPI 。
年份 商品进口额 (亿元)国内生产总值(亿元)居民消费价格指数(1985=100)1985 1257.8 8964.4 1001986 1498.3 10202.2 106.5 1987 1614.2 11962.5 114.3 1988 2055.1 14928.3 135.8 1989 2199.9 16909.2 160.2 1990 2574.3 18547.9 165.2 1991 3398.7 21617.8 170.8 1992 4443.3 26638.1 181.7 1993 5986.2 34634.4 208.4 1994 9960.1 46759.4 258.6 1995 11048.1 58478.1 302.8 1996 11557.4 67884.6 327.9 1997 11806.5 74462.6 337.1 1998 11626.1 78345.2 334.4 1999 13736.4 82067.5 329.7 2000 18638.8 89468.1 331.0 2001 20159.2 97314.8 333.3 2002 24430.3 105172.3 330.6 200334195.6117251.9334.6资料来源:《中国统计年鉴》,中国统计出版社2000年、2004年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
解:ln 3.6489 1.796ln 1.2075ln t t t Y GDP CPI =--+t= (-11.32) (9.93) (-3.415)20.988770.6.0.1124R F S E ===(2)你认为数据中有多重共线性吗?多重共线性的检验 1)综合统计检验法若 在OLS 法下:R 2与F 值较大,但t 检验值较小,则可能存在多重共线性。
多重共线性检验方法多重共线性是指自变量之间存在高度相关性,导致回归模型估计的不稳定性和不准确性。
在实际的数据分析中,多重共线性经常会对回归分析结果产生严重影响,因此需要采用适当的方法来检验和解决多重共线性问题。
本文将介绍几种常用的多重共线性检验方法,帮助读者更好地理解和处理多重共线性问题。
1. 方差膨胀因子(VIF)。
方差膨胀因子是一种常用的多重共线性检验方法,它通过计算自变量的方差膨胀因子来判断自变量之间是否存在多重共线性。
方差膨胀因子的计算公式为,VIF = 1 / (1 R^2),其中R^2是自变量对其他自变量的线性相关性的度量,VIF越大表示自变量之间的共线性越严重。
一般来说,如果自变量的VIF大于10,就可以认为存在严重的多重共线性问题。
2. 特征值和条件指数。
特征值和条件指数是另一种常用的多重共线性检验方法,它们是通过对自变量之间的相关矩阵进行特征值分解得到的。
特征值表示了自变量之间的共线性程度,而条件指数则可以用来判断自变量之间的共线性是否严重。
一般来说,特征值大于1或条件指数大于30就表示存在严重的多重共线性问题。
3. Tolerance(容忍度)。
容忍度是一种用来判断自变量之间共线性的指标,它是方差膨胀因子的倒数。
一般来说,如果自变量的容忍度小于0.1,就可以认为存在严重的多重共线性问题。
4. 相关系数和散点图。
除了上述的定量方法,我们还可以通过观察自变量之间的相关系数和绘制散点图来判断是否存在多重共线性。
如果自变量之间的相关系数接近1或-1,或者在散点图中存在明显的线性关系,就可能存在多重共线性问题。
5. 多重共线性的解决方法。
一旦发现存在多重共线性问题,我们可以采取一些方法来解决。
例如,可以通过删除相关性较强的自变量、合并相关性较强的自变量、使用主成分分析等方法来减轻多重共线性的影响。
此外,还可以使用岭回归、套索回归等方法来处理多重共线性问题。
总之,多重共线性是回归分析中常见的问题,需要及时进行检验和处理。
时间 地点 实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 19945218.1 9572.7 19480.7 2964.7 11985029242.2550431995 6242.2 12135.8 24950.6 3728.8 121121 36748.2 45821 1996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
多重共线性检验方法多重共线性是多元回归分析中常见的问题,指的是自变量之间存在高度相关性,导致回归系数估计不准确甚至失真。
在实际应用中,多重共线性可能会对模型的解释能力和预测能力造成严重影响,因此需要采取相应的检验方法来识别和应对多重共线性问题。
一、多重共线性的影响。
多重共线性会导致回归系数估计不准确,增大回归系数的标准误,降低统计推断的准确性。
此外,多重共线性还会使得模型的解释能力下降,使得模型对自变量的解释变得模糊不清,降低模型的预测能力。
因此,识别和解决多重共线性问题对于保证模型的准确性和稳定性至关重要。
二、多重共线性的检验方法。
1. 方差膨胀因子(VIF)。
方差膨胀因子是一种常用的多重共线性检验方法,它通过计算每个自变量的方差膨胀因子来判断自变量之间是否存在多重共线性。
通常情况下,方差膨胀因子大于10时,就表明存在严重的多重共线性问题。
2. 特征值检验。
特征值检验是通过计算自变量矩阵的特征值来判断自变量之间是否存在多重共线性。
当特征值接近0或者为0时,就表明存在多重共线性问题。
3. 条件数(Condition Number)。
条件数是通过计算自变量矩阵的条件数来判断自变量之间是否存在多重共线性。
通常情况下,条件数大于30就表明存在多重共线性问题。
4. 相关系数和散点图。
通过计算自变量之间的相关系数和绘制散点图来初步判断自变量之间是否存在多重共线性。
当自变量之间存在高度相关性时,就可能存在多重共线性问题。
三、处理多重共线性的方法。
1. 剔除相关性较强的自变量。
当自变量之间存在高度相关性时,可以考虑剔除其中一个或者几个相关性较强的自变量,以减轻多重共线性的影响。
2. 主成分回归分析。
主成分回归分析是一种处理多重共线性的方法,它通过将自变量进行主成分变换,从而降低自变量之间的相关性,减轻多重共线性的影响。
3. 岭回归和套索回归。
岭回归和套索回归是一种通过对回归系数进行惩罚来减轻多重共线性影响的方法,通过引入惩罚项,可以有效地缩小回归系数的估计值,减轻多重共线性的影响。
检验多重共线性的方法多重共线性是指在多元回归模型中,自变量之间存在高度相关性,导致模型中的自变量之间互相冗余。
多重共线性会影响回归模型的稳定性和解释能力,降低模型的准确性和可靠性。
因此,检验多重共线性是进行多元回归分析中必不可少的一步。
本文将介绍常用的检验多重共线性的方法。
首先,我们可以通过计算自变量之间的相关系数矩阵来初步判断是否存在多重共线性。
相关系数矩阵包含了自变量之间的两两相关系数,如果相关系数高于0.7或者-0.7,就说明存在较强的线性相关性。
这种初步判断方法虽然简单,但并不可靠,因为它只是衡量了两两变量之间的线性相关关系,不能反映出多个变量的综合影响。
其次,我们可以利用方差膨胀因子(VIF)来检验多重共线性。
VIF是用来衡量自变量之间相关性的指标,计算方法是对每个自变量回归于其他自变量,得到残差平方和,并计算得到VIF值。
一般来说,VIF值大于10就表明存在较强的多重共线性。
但需要注意的是,VIF值受样本量的影响,样本量较小时,即使存在较强的相关性也不一定导致VIF值大于10。
此外,我们还可以利用特征值方法检验多重共线性。
特征值方法将相关系数矩阵进行特征值分解,得到矩阵的特征值和特征向量。
如果存在较强的多重共线性,那么相关系数矩阵的特征值将会非常小。
一般来说,特征值小于1表示存在多重共线性。
不过,特征值方法对于大样本量的数据集较为适用,对于小样本量的数据集可能会出现较大的误差。
除了上述方法,还可以通过偏回归系数的标准误差来检验多重共线性。
当自变量之间存在多重共线性时,偏回归系数的标准误差将会变得非常大,说明对自变量的估计不够精确。
通过计算偏回归系数的标准误差,我们可以判断自变量之间是否存在多重共线性。
此外,还可以通过将自变量进行逐步回归来检验多重共线性。
逐步回归是指将自变量逐个加入回归模型,根据自变量的显著性和增加的解释方差决定是否保留。
如果在逐步回归过程中,自变量的系数发生了剧烈变化或者不再显著,说明存在多重共线性。
多重共线性检验与修正数据来源:《中国统计年鉴2014》12-10、4-3、12-4、12-5、12-8、Eviews操作:1、基本操作:(1)录入数据:命令:data y l m f a ir(y代表粮食产量,l代表第一产业劳动力数量,m代表农业机械总动力,f代表化肥施用量,a代表农作物总播种面积,ir为有效灌溉面积/农作总播种面积得出的灌溉率)(2)做线性回归:命令:LS y c l m f a ir2、检验多重共线性(1)方差膨胀因子判断法在生成的线性回归eq01中,view—coefficient diagnostics—variance inflation factors看生成表格中的Centered VIF,发现L、M、F、A、IR的方差膨胀因子都很大,说明存在严重多重共线性。
(eg:L的Centered VIF指以L为因变量,M、A、F、IR为自变量所做出的辅助回归的判定系数R²,然后1/1-R²得出的值。
)(由课本内容可知,当完全不共线性时,VIF=1;完全共线性时,VIF=正无穷)(2)相关系数矩阵判断法命令:cor l m f a ir这个是通过看各个解释变量之间的相关系数来判断是否存在多重共线性的。
可以看到大多数解释变量之间两两相关系数都大于0.9。
相关系数极大说明解释变量之间存在很高的相关性,因而也就很可能存在共线性。
3、修正多重共线性(1)逐步回归排除引起共线性的变量①菜单栏操作在生成的线性回归eq01中,Estimate—Method—STEPLS接下来会出现两个框框,上面的框框是固定住不做逐步回归的变量,一般设定为y和c下面的框框是需要进行逐步回归选择是否剔除的变量,这里填入l m f a ir 然后出来一个新的表格,这个表格已经自动选择了可以保留的变量l a f,剔除了m ir②命令栏操作命令:STEPLS y c @ l m f a ir这条命令其实和菜单栏操作的意思一样,stepls代表采用逐步回归方法,@前的y、c代表固定不做逐步回归的变量,@后的l、m、f、a、ir代表要做逐步回归的变量出来的结果和菜单栏操作的结果是一样的。
计量经济学实验报告题目:关于多重共线性模型的检验和处理方法姓名:张飞飞学号:2008163050专业:工商管理指导教师:崔海燕实验时间: 2010-12-22二○一○年十二月二十五日关于多重共线性模型的检验和处理的方法一、实验目的:掌握多重共线性模型检验和处理的方法二、实验原理:判定系数检验法、逐步回归法、解释变量、相关系数检验三、实验步骤:1.创建一个新的工作文件:打开Eviews软件,点击File下的New File,创建一个新的工作文件,选择Annual,在Start Date栏中输入1983,在End date栏中输入2000,点击OK,点击保存,完成创建新的工作文件。
2.输入数据:点击Quick下的Empty Group,导入中国粮食生产函数模型的具体数据,命名被解释变量为Y,解释变量为X1、X2、X3、X4、X5,其中:Y表示粮食产量;X1表示农业化肥施用量;X2表示粮食播种面积;X3表示成灾面积;X4表示农业机械总动力;X5表示农业劳动力.点击Name保存数据,命名为Group01。
3.采用普通最小二乘法估计模型参数:点击Quick下的Estimate Equation,输入方程y c x1 x2 x3 x4 x5.点击OK,生成EQ1. 如下表所示:从结果可以看出:R-squared的值为0.982798,拟合优度比较高(一般为0.9以上),F-statistic 的值为137.1164,也比较大,说明模型上存在多重共线性,但无法看出变量之间的关系。
4.进行多重共线性检验:主要运用综合统计检验和采用解释变量之间的相关系数进行检验。
由综合统计检验法(步骤3),可以看出存在多重共线性,继而进行解释变量之间的相关下系数检验。
点击Quick下的Groupstatistics,选择Correlations,打开Series List界面,输入X1 X2 X3 X3 X4 X5,点击OK,生成Group02,结果如下图:从结果可以看出:X1和X4之间的相关系数为0.960278,最接近1,说明X1和X4之间存在高度相关性。
什么是多重共线性如何进行多重共线性的检验多重共线性是指在统计模型中,独立变量之间存在高度相关性或者线性依赖关系,从而给模型的解释和结果带来不确定性。
在回归分析中,多重共线性可能导致系数估计不准确、标准误差过大、模型的解释变得复杂等问题。
因此,对于多重共线性的检验和处理是非常重要的。
一、多重共线性的检验多重共线性的检验可以通过以下几种方式进行:1. 相关系数矩阵:可以通过计算独立变量之间的相关系数,判断它们之间的关系强度。
当相关系数超过0.8或-0.8时,可以视为存在高度相关性,即可能存在多重共线性问题。
2. 方差扩大因子(VIF):VIF是用来检验自变量之间是否存在共线性的指标。
计算每一个自变量的VIF值,当VIF值大于10或者更高时,可以视为存在多重共线性。
3. 条件数(Condition index):条件数也是一种用来检验多重共线性的指标。
它度量了回归矩阵的奇异性或者相对不稳定性。
当条件数超过30时,可以视为存在多重共线性。
4. 特征值(Eigenvalues):通过计算特征值,可以判断回归矩阵的奇异性。
如果存在特征值接近于零的情况,可能存在多重共线性。
以上是常用的多重共线性检验方法,可以根据实际情况选择合适的方法进行检验。
二、多重共线性的处理在检测到存在多重共线性问题后,可以采取以下几种方式进行处理:1. 去除相关性强的变量:在存在高度相关变量的情况下,可以选择去除其中一个或多个相关性较强的变量。
2. 聚合相关变量:将相关性强的变量进行加权平均,得到一个新的变量来替代原来的变量。
3. 主成分分析(PCA):主成分分析是一种降维技术,可以将相关性强的多个变量合并成为一个或多个无关的主成分。
4. 岭回归(Ridge Regression):岭回归是一种缓解多重共线性的方法,通过加入一个正则化项,来使得共线性变量的系数估计更加稳定。
5. Lasso回归(Lasso Regression):Lasso回归也是一种缓解多重共线性的方法,通过对系数进行稀疏化,来选择重要的变量。
实验名称:多重共线性的检验与处理实验时间:2011.12.10实验要求:主要是学习多重共线性的检验与处理,主要是研究解释变量与其余解释变量之间有严重多重共线性的模型,分析变量之间的相关系数。
通过具体案例建立模型,然后估计参数,求出相关的数据。
再对模型进行检验,看数据之间是否存在多重共线性。
最后利用所求出的模型来进行修正。
实验内容:实例:我国钢材供应量分析通过分析我国改革开放以来(1978-1997)钢材供应量的历史资料,可以建立一个单一方程模型。
根据理论及对现实情况的认识,影响我国钢材供应量 Y(万吨)的主要因素有:原油产量X1(万吨),生铁产量X2(万吨),原煤产量X3(万吨),电力产量X4(亿千瓦小时),固定资产投资X5(亿元),国内生产总值X6(亿元),铁路运输量X7(万吨)。
(一)建立我国钢材供应量的计量经济模型:(二)估计模型参数,结果为:Dependent Variable: YMethod: Least SquaresDate: 11/02/09 Time: 16:09Sample: 1978 1997Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.C 139.2362 718.2493 0.193855 0.8495X1 -0.051954 0.090753 -0.572483 0.5776X2 0.127532 0.132466 0.962751 0.3547X3 -24.29427 97.48792 -0.249203 0.8074X4 0.863283 0.186798 4.621475 0.0006X5 0.330914 0.105592 3.133889 0.0086X6 -0.070015 0.025490 -2.746755 0.0177X7 0.002305 0.019087 0.120780 0.9059R-squared 0.999222 Mean dependent var 5153.350Adjusted R-squared 0.998768 S.D. dependent var 2511.950S.E. of regression 88.17626 Akaike info criterion 12.08573Sum squared resid 93300.63 Schwarz criterion 12.48402Log likelihood -112.8573 F-statistic 2201.081Durbin-Watson stat 1.703427 Prob(F-statistic) 0.000000由此可见,该模型可绝系数很高,F检验值2201.081,明显显著。