高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第10章第52讲排列与组合
- 格式:ppt
- 大小:951.50 KB
- 文档页数:38
第八章 解析几何第41讲 直线的斜率与方程A 应知应会一、 选择题1. (2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( )A. 3x +4y +15=0B. 3x +4y +6=0C. 3x +y +6=0D. 3x -4y +10=02. 直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3 的倾斜角的取值范围是 ( ) A. ⎣⎡⎦⎤π6,π3 B. ⎣⎡⎦⎤π4,π3 C. ⎣⎡⎦⎤π4,π2 D. ⎣⎡⎦⎤π4,2π33. (2019·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A. π4B. π3C. 2π3D. 3π44. 如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. (2019·张家口模拟)若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3 x -y =33 的倾斜角的2倍,则( )A. m =-3 ,n =1B. m =-3 ,n =-3C. m =3 ,n =-3D. m =3 ,n =1二、 解答题6. 求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.7. 求适合下列条件的直线方程.(1) 经过点P(3,2),且在两坐标轴上的截距相等;(2) 求过点(2,1)且在x轴上的截距与在y轴上的截距之和为6的直线方程.B巩固提升一、填空题1. 直线x+3y+1=0的倾斜角是________.2. 过点P(2,3)且在两坐标轴上截距相等的直线方程为________.3. 已知直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.4. (2019·江苏姜堰中学)已知△ABC的三个顶点A(-5,0),B(3,-3),C(0,2),则BC边上中线所在的直线方程为________.二、解答题5. (2019·启东检测)已知直线l:(2+m)x+(1-2m)y+4-3m=0.(1) 求证:不论m为何实数,直线l过一定点M;(2) 过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.6. 如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=12x上时,求直线AB的方程.(第6题)第42讲两条直线的位置关系A应知应会一、选择题1. 若直线2x+3y-1=0与直线4x+my+11=0平行,则m的值为()A. 83 B. -83 C. -6 D. 62. 若直线l过点(3,1)且与直线2x-y-2=0平行,则直线l的方程为()A. 2x-y-5=0B. 2x-y+1=0C. x+2y-7=0D. x+2y-5=03. (2019·石家庄模拟)若直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k 的值为()A. -24B. 24C. 6D. ±64. 若直线a1x+b1y=2和a2x+b2y=2交于点P(3,2),则过点A(a1,b1),B(a2,b2)的直线方程是()A. 2x+3y-2=0B. 3x+2y-2=0C. 3x+2y+2=0D. 2x+3y+2=05. 已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m =-2”是“l1∥l2”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件二、解答题6. 已知三角形三边所在的直线方程分别为2x-y+4=0,x+y-7=0,2x-7y-14=0,求边2x-7y-14=0上的高所在的直线方程.7. 已知△ABC的顶点B(2,1),C(-6,3),其垂心为H(-3,2),求顶点A的坐标.B 巩固提升一、 填空题1. 若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.2. 如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a =________.3. 已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________.4. (2019·南通中学)已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =________.二、 解答题5. (2019·海门实验中学)已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得:(1) l 1∥l 2;(2) l 1⊥l 2.6. 已知点P (a ,b )在x ,y 轴上的射影分别为点A ,B .(1) 求直线AB 的方程;(2) 求过点P 且垂直于AB 的直线m 的方程.第43讲 距离公式与对称问题A 应知应会一、 选择题1. 点A (2,5)到直线l :x -2y +3=0的距离为( )A. 25B. 55C. 5D. 2552. 两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( )A. 235B. 2310C. 7D. 723. 已知坐标原点关于直线l 1:x -y +1=0的对称点为A ,设直线l 2经过点A ,则当点B (2,-1)到直线l 2的距离最大时,直线l 2的方程为( )A. 2x +3y +5=0B. 3x -2y +5=0C. 3x +2y +5=0D. 2x -3y +5=04. 已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 的最大距离为3,则12a +2c的最小值为( ) A. 92 B. 94C. 1D. 9 5. (多选)在平面直角坐标系中,定义d (P ,Q )=|x 1-x 2|+|y 1-y 2|为两点P (x 1,y 1),Q (x 2,y 2)之间的“折线距离”,则下列命题中为真命题的是( )A. 若点A (-1,3),B (1,0),则有d (A ,B )=5B. 到原点的“折线距离”等于1的所有点的集合是一个圆C. 若点C 在线段AB 上,则有d (A ,C )+d (C ,B )=d (A ,B )D. 到M (-1,0),N (1,0)两点的“折线距离”相等的点的轨迹是直线x =0二、 解答题6. (2019·江苏启东中学)已知直线l :y =12x -1. (1) 求点P (3,4)关于l 对称的点Q ;(2) 求l 关于点(2,3)对称的直线方程.7. 已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4).(1) 证明:直线l 过某定点,并求该定点的坐标;(2) 当点P 到直线l 的距离最大时,求直线l 的方程.B 巩固提升一、 填空题1. 已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________.2. 直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________.3. 已知l 1,l 2是分别经过A (2,1),B (0,2)两点的两条平行直线,当l 1,l 2之间的距离最大时,直线l 1的方程是________.4. “c =5”是“点(2,1)到直线3x +4y +c =0的距离为3”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)二、 解答题5. 已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1) 若点A (5,0)到l 的距离为3,求l 的方程;(2) 求点A (5,0)到l 的距离的最大值.6. 已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1) 求a 的值;(2) 能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2 ∶5 ?若能,求点P 的坐标;若不能,说明理由.第44讲 圆的方程A 应知应会一、 选择题1. (2019·太原模拟)若两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是( )A. ⎝⎛⎭⎫-15,1B. ⎝⎛⎭⎫-∞,-15 ∪(1,+∞) C. ⎣⎡⎭⎫-15,1 D. ⎝⎛⎦⎤-∞,-15 ∪[1,+∞) 2. (2019·长沙模拟)已知三点A (1,0),B (0,3 ),C (2,3 ),则△ABC 外接圆的圆心到原点的距离为( )A. 53B. 213C. 253D. 433. 方程|x |-1=1-(y -1)2 所表示的曲线是( )A. 一个圆B. 两个圆C. 半个圆D. 两个半圆4. (2019·邯郸一模)若x ,y 满足约束条件(x -1)2+(y -1)2≤1,则x 2+y 2的最小值为( )A. 2 -1B. 3-22C. 2 +1D. 3+225. (2019·黄冈调研)若长度为定值4的线段AB 的两端点分别在x 轴正半轴和y 轴正半轴上移动,P (x ,y )为△OAB 的外心轨迹上一点,则x +y 的最大值为( )A. 1B. 4C. 2D. 22二、 解答题6. 已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410 .(1) 求直线CD 的方程;(2) 求圆P 的方程.7. 已知圆经过点A (2,-3)和B (-2,-5).(1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程.B巩固提升一、填空题1. 若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a=________.2. 已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,6)在圆C内,则m的取值范围为________.3. (2019·南师附中)经过三点A(-1,0),B(3,0),C(1,2)的圆的面积S=________.4. 已知点A(-2,0),B(0,2).若点M是圆x2+y2-2x+2y=0上的动点,则△ABM面积的最小值为________.二、解答题5. 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1) 求线段AP中点的轨迹方程;(2) 若∠PBQ=90°,求线段PQ中点的轨迹方程.6. 如图,已知圆O的直径AB=4,定直线l到圆心的距离为4,且直线l垂直于直线AB,点P 是圆O上异于A,B的任意一点,直线P A,PB分别交l于M,N两点.(1) 若∠P AB=30°,求以MN为直径的圆的方程;(2) 当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.(第6题)第45讲直线与圆、圆与圆的位置关系课时1直线与圆相关问题A应知应会一、选择题1. 以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为()A. (x-2)2+(y+1)2=3B. (x+2)2+(y-1)2=3C. (x-2)2+(y+1)2=9D. (x+2)2+(y-1)2=92. (2019·湖南十四校二联)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O 为坐标原点),且△AOB为等腰直角三角形,则实数a的值为()A. 6或-6B. 5或-5C. 6D. 53. “a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为()A. 相离B. 相切C. 相交D. 不确定5. (多选)(2019·合肥模拟)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A. 3x+4y-12=0B. 4x-3y+9=0C. x=0D. 4x+3y+9=0二、解答题6. (2019·启东模拟)已知直线l:kx-y+k-3=0与圆x2+y2=12交于A,B两点,过A,B 分别作l的垂线与x轴交于C,D两点,若|AB|=43,求|CD|.7. 已知圆C经过点A(2,-1),与直线x+y=1相切,且圆心在直线y=-2x上.(1) 求圆C的方程;(2) 已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.B 巩固提升一、 填空题1. (2019·衡水调研)过M (-3,1),N (0,a )两点的光线经y 轴反射后所在直线与圆x 2+y 2=1存在公共点,则实数a 的取值范围为________.2. (2019·扬州期末)已知直线l :y =-x +4与圆C :(x -2)2+(y -1)2=1相交于P ,Q 两点,则CP → ·CQ → =________.3. 已知过点P ⎝⎛⎭⎫32,32 的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,当∠ACB 最小时,直线l 的方程为________,∠ACB =________.4. (2019·启东考前卷)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 在点B 处的切线在x 轴上的截距为________.(第4题)二、 解答题5. 已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5).(1) 求过点A 的圆的切线方程;(2) 点O 是坐标原点,连接OA ,OC ,求△AOC 的面积S .6. 已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1) 求k 的取值范围;(2) 直线l 能否将圆C 分割成弧长的比为13的两段弧?若能,求出直线l 的方程;若不能,请说明理由.课时2圆与圆的位置关系A应知应会一、选择题1. 圆C1:x2+y2+4x+8y-5=0与圆C2:x2+y2+4x+4y-1=0的位置关系为()A. 相交B. 外切C. 内切D. 外离2. 已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A. {1,-1}B. {3,-3}C. {1,-1,3,-3}D. {5,-5,3,-3}3. 若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b应满足的关系式是()A. a2-2a-2b-3=0B. a2+2a+2b+5=0C. a2+2b2+2a+2b+1=0D. 3a2+2b2+2a+2b+1=04. 两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r等于()A. 5B. 4C. 3D. 225. 已知A={(x,y)|x2+y2=1},B={(x,y)|(x-5)2+(y-5)2=4},则A∩B等于()A. ∅B. {(0,0)}C. {(5,5)}D. {(0,0),(5,5)}二、解答题6. 已知圆A:x2+y2+2x+2y-2=0,若圆B平分圆A的周长,且圆B的圆心在直线l:y =2x上,求满足上述条件的半径最小的圆B的方程.7. 圆O1的方程为x2+(y+1)2=4,圆O2的圆心坐标为(2,1).(1) 若圆O1与圆O2外切,求圆O2的方程;(2) 若圆O1与圆O2相交于A,B两点,且|AB|=22,求圆O2的方程.B 巩固提升一、 填空题1. 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________.2. 已知线段AB 的长为2,动点C 满足CA → ·CB →=λ(λ<0),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值是________.3. (2019·江苏天一中学)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.4. 如图,在平面四边形ABCD 中,AB =4,AD =2,∠DAB =60°,AC =3BC ,则边CD 长的最小值为________.(第4题)二、 解答题 5. (2019·江苏准阴中学)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1) 求M 的轨迹方程;(2) 当|OP |=|OM |时,求l 的方程及△POM 的面积.6. (2019·泰州中学)在平面直角坐标系xOy 中,过点P (0,1)且互相垂直的两条直线分別与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1) 若AB =327 ,求CD 的长;(2) 若CD 中点为E ,求△ABE 面积的取值范围.(第6题)第46讲 椭圆A 应知应会一、 选择题1. 过点A (3,-2)且与椭圆x 29 +y 24 =1有相同焦点的椭圆的方程为( )A. x 215 +y 210 =1B. x 225 +y 220 =1 C. x 210 +y 215 =1 D. x 220 +y 215 =12. 设F 1,F 2分别是椭圆x 225 +y 216 =1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A. 4B. 3C. 2D. 53. (多选)已知P 为椭圆x 25 +y 24 =1上一点,以点P 及焦点F 1,F 2为顶点的三角形的面积为S ,则( )A. 若S =1,则满足条件的点P 有4个B. 若S =2,则满足条件的点P 有2个C. 若S =5 ,则满足条件的点P 有2个D. 若S =12 ,则满足条件的点P 有4个4. 若中心为(0,0),一个焦点为F (0,52 )的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是( ) A. 2x 275 +2y 225 =1 B. x 275 +y 225 =1C. x 225 +y 275 =1D. 2x 225 +2y 275 =15. 已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A. 35B. 12C. 23D. 34二、 解答题6 . 分别求出满足下列条件的椭圆的标准方程.(1) 与椭圆x 24 +y 23=1有相同的离心率且经过点(2,-3 );(2) 已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3.7. (2019·厦门期中)如图,已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左、右顶点分别为A ,B ,右焦点为F ,一条准线方程是x =-4,短轴一端点与两焦点构成等边三角形,点P ,Q 为椭圆C上异于A ,B 的两点,点R 为PQ 的中点.(1) 求椭圆C 的标准方程;(2) 直线PB 交直线x =-2于点M ,记直线P A 的斜率为k P A ,直线FM 的斜率为k FM ,求证:k FM ·k P A 为定值.(第7题)B 巩固提升一、 填空题1. 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.2. 已知F 1,F 2分别为椭圆C :x 2a 2 +y 2=1(a >1)的左、右焦点,点F 2关于直线y =x 的对称点Q 在椭圆上,则长轴长为________;若P 是椭圆上的一点,且PF 1·PF 2=43 ,则S △F 1PF 2=________.3. (2019·江苏海门中学)设F 1,F 2分别为椭圆x 24 +y 2=1的左、右焦点,点P 在椭圆上,且|PF 1+PF 2|=23 ,则∠F 1PF 2=________.4. (2019·淮北一模)在平面直角坐标系xOy 中,点P 是椭圆C :x 2a 2 +y 24 =1(a >0)上一点,F为椭圆C 的右焦点,直线FP 与圆O :x 2+y 2=1相切于点Q ,若Q 恰为线段FP 的中点,则a =________.二、 解答题5. (2019·南昌一模)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)经过点M (0,-1),长轴长是短轴长的2倍.(1) 求椭圆C 的方程;(2) 设直线l 经过点N (2,1)且与椭圆C 相交于A ,B 两点(异于点M ),记直线MA 的斜率为k 1,直线MB 的斜率为k 2,求证:k 1+k 2为定值.6. (2019·揭阳二模)已知椭圆C :x 2a 2 +y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :(x -3)2+(y -1)2=3相切.(1) 求椭圆C 的方程;(2) 若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP → ·AQ →=0,试探究:直线l 是否过定点?若是,求该定点的坐标;若不是,请说明理由.第47讲 双曲线 A 应知应会一、 选择题1. (多选)下列各条件下求得的双曲线标准方程,正确的是( )A. 与x 轴交于两点A (-2,0),B (2,0),c =3,则方程为x 24 -y 25 =1B. a =25 ,过点A (2,-5),焦点在y 轴上,则方程为y 220 -x 216=1C. 与椭圆x 227 +y 236 =1有相同的焦点,它们的一个交点的纵坐标为4,则方程为y 24 -x 25=1D. 过P 1⎝⎛⎭⎫-2,352 ,P 2⎝⎛⎭⎫473,4 两点,则方程是y 29 -x 216 =12. 若双曲线E :x 29 -y 216 =1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A. 11B. 9C. 5D. 33. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一个焦点为F (-2,0),且双曲线的两条渐近线的夹角为60°,则双曲线的方程为( )A. x 23 -y 2=1B. x 26 -y 22=1C. x 23 -y 2=1或x 2-y 23 =1 D. x 2-y 23 =1或x 26 -y 22=1 4. (2019·济宁期末)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,准线与x 轴的交点为E ,线段EF 被双曲线C 2:x 2a 2 -y 2b 2 =1(a >0,b >0)的顶点三等分,且两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,则双曲线C 2的离心率为( )A. 2B.322 C. 113 D. 2225. (2019·秦皇岛模拟)已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一条渐近线平行于直线l :y=2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A. x 25 -y 220 =1B. x 220 -y 25 =1C. 3x 225 -3y 2100 =1D. 3x 2100 -3y 225 =1二、 解答题6. 根据下列条件,求双曲线的标准方程. (1) 虚轴长为12,离心率为54 ;(2) 焦距为26,且经过点M (0,12);(3) 经过两点P (-3,27 )和Q (-62 ,-7).7. 根据下列条件,求双曲线的标准方程. (1) 经过点P ⎝⎛⎭⎫3,154 ,Q ⎝⎛⎭⎫-163,5 ; (2) c =6 ,经过点(-5,2),焦点在x 轴上.B 巩固提升一、 填空题1. (2019·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2-y 2b2 =1(b >0)经过点(3,4),则该双曲线的渐近线方程是________.2. (2019·晋中二模)过双曲线y 2a 2 -x 2b 2 =1(a >0,b >0)的下焦点F 1作y 轴的垂线,交双曲线于A ,B 两点,若以AB 为直径的圆恰好过其上焦点F 2,则双曲线的离心率为________.3. 已知M (x 0,y 0)是双曲线C :x 22 -y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1·MF 2<0,则y 0的取值范围是________.4. (2019·马鞍山一检)已知双曲线C :x 24 -y 25 =1的焦点为F 1,F 2,P 为双曲线C 上的一点,且△F 1PF 2的内切圆半径为1,则△F 1PF 2的面积为________.二、 解答题5. 已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点. (1) 求双曲线的标准方程;(2) 若点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63 ,试判断△MF 1F 2的形状.6. 已知双曲线y 2a 2 -x 2b 2 =1(a >0,b >0)的两个焦点分别为F 1,F 2,一条渐近线方程为2x +y=0,且焦点到这条渐近线的距离为1.(1) 求此双曲线的方程;(2) 若点M ⎝⎛⎭⎫55,m 在双曲线上,求证:点M 在以F 1F 2为直径的圆上.第48讲 抛物线A 应知应会一、 选择题 1. (2019·南昌一模)已知抛物线方程为x 2=-2y ,则其准线方程为( ) A. y =-1 B. y =1 C. y =12 D. y =-122. 过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( )A. 9B. 8C. 7D. 6 3. (2019·石家庄检测)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22 )的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( )A. 1∶2B. 1∶3C. 1∶2D. 1∶3 4. (2019·武汉调研)已知A ,B 为抛物线y 2=4x 上两点,O 为坐标原点,且OA ⊥OB ,则|AB |的最小值为( )A. 42B. 22C. 8D. 825. (多选)设抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若AF ,BF ,CF 成等差数列,则( )A. x 1,x 2,x 3成等差数列B. x 1,x 2,x 3成等比数列C. y 21 ,y 22 ,y 23 成等差数列D. y 21 ,y 22 ,y 23 成等比数列 二、 解答题6. 已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,且OA → ·OB → =12.(1) 求抛物线的方程;(2) 当以AB 为直径的圆与y 轴相切时,求直线l 的方程.7. 一种高脚酒杯的轴截面近似一条抛物线如图所示,已知杯口宽4 cm,杯深8 cm.若将一些大小不等的玻璃球放入酒杯中,试问:半径为多大时,玻璃球触及酒杯底部?(第7题)B 巩固提升一、 填空题1. 若直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与抛物线C 交于A ,B 两点,则p =________,1AF +1BF=________.2. (2019·河南六市二联)已知抛物线y 2=4x 的焦点为F ,其准线为直线l ,过点M (5,25 )作直线l 的垂线,垂足为H ,则∠FMH 的平分线所在直线的斜率是________.3. (2019·福州一模)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线交于A ,B 两点,若AF → =5FB →,则直线l 的斜率为________.4. (2019·深圳二调)已知抛物线C :y 2=2px (p >0)上一点P 到焦点F 和到点(2,0)的距离之和的最小值为3,过点F 作斜率为3 的直线l 与抛物线C 及其准线从上到下依次交于点A ,B ,M ,则|AF ||BF | +|AF ||MF |=________.二、 解答题 5. (2019·唐山摸底)斜率为k (k ≠0)的直线l 与抛物线y =x 2交于A (x 1,y 1),B (x 2,y 2)两点,O 为坐标原点.(1) 当x 1+x 2=2时,求k ;(2) 若OB ⊥l ,且|AB |=3|OB |,求|AB |.6. (2019·合肥二模)已知抛物线C :x 2=2py (p >0)上一点M (m ,9)到其焦点F 的距离为10.(1) 求抛物线C 的方程;(2) 设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求|AP |·|BQ |的取值范围.第49讲 解析几何的综合问题课时1 解析几何中的最值、范围问题A 应知应会一、 选择题1. 设A ,B 为椭圆C :x 23 +y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A. (0,1]∪[9,+∞)B. (0,3 ]∪[9,+∞)C. (0,1]∪[4,+∞)D. (0,3 ]∪[4,+∞)2. (2019·襄阳调研)已知F 1,F 2是双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点,若在右支上存在点A 使得点F 2到直线AF 1的距离为2a ,则离心率e 的取值范围是( ) A. [2 ,+∞) B. (2 ,+∞) C. (1,2 ) D. (1,2 ]3. (多选)已知O 是坐标原点,A ,B 是抛物线y =x 2上不同于O 的两点,OA ⊥OB ,则下列结论中正确的是( )A. OA ·OB ≥2B. OA +OB ≥22C. 直线AB 过抛物线y =x 2的焦点D. O 到直线AB 的距离小于等于1二、 解答题4. (2019·安庆二模)已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为22,且过点(2,2 ). (1) 求椭圆C 的标准方程;(2) 设A ,B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记△ABM ,△ABN 的面积为S 1,S 2,求|S 1-S 2|的最大值.5. (2019·荆州二模)已知椭圆C :x 2a 2 +y 2b2 =1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为22 . (1) 求椭圆C 的方程;(2) 已知直线l :y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM |=|GN |,求点G 的横坐标的取值范围.B 巩固提升一、 填空题1. (2017·全国卷Ⅱ)若a >1,则双曲线x 2a 2 -y 2=1的离心率的取值范围是________. 2. 已知线段|AB |=4,|P A |+|PB |=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值为________.3. 已知F 1,F 2是双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点,若双曲线上存在点P 满足PF 1·PF 2=-a 2,则双曲线离心率的取值范围为________.二、 解答题4. (2019·新乡三模)已知抛物线E :y 2=2px (p >0)的准线与x 轴交于点K ,过点K 作圆C :(x -5)2+y 2=9的两条切线,切点为M ,N ,|MN |=33 .(1) 求抛物线E 的方程;(2) 若直线AB 是过定点Q (2,0)的一条直线,且与抛物线E 交于A ,B 两点,过定点Q 作AB 的垂线与抛物线交于G ,D 两点,求四边形AGBD 面积的最小值.5. (2019·江西质检)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率e =22,过点A (-m ,0),B (m ,0)(m >0)分别作两平行直线l 1,l 2,l 1与椭圆C 相交于M ,N 两点,l 2与椭圆C 相交于P ,Q两点,且当直线l 2过右焦点和上顶点时,四边形MNQP 的面积为163. (1) 求椭圆C 的标准方程;(2) 若四边形MNQP 是菱形,求正数m 的取值范围.课时2 解析几何中的定点、定值问题A 应知应会一、 选择题1. (2019·武汉模拟)曲线x 225 +y 29 =1与曲线x 225-k +y 29-k=1(k <9)的( )A. 长轴长相等B. 短轴长相等C. 离心率相等D. 焦距相等2. 已知直线l 与抛物线C :y 2=2x 交于A ,B 两点,O 为坐标原点,若直线OA ,OB 的斜率k 1,k 2满足k 1k 2=23,则l 一定过点( ) A. (-3,0) B. (3,0) C. (-1,3) D. (-2,0)3. (2019·德阳模拟)设P 为椭圆C :x 249 +y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A. 24B. 12C. 8D. 6二、 解答题4. (2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1) 当k =0时,分别求C 在点M 和N 处的切线方程;(2) y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.5. 已知椭圆C :x 23+y 2=1,圆O :x 2+y 2=4上一点A (0,2). (1) 过点A 作两条直线l 1,l 2都与椭圆C 相切,求直线l 1,l 2的方程并判断其位置关系;(2) 同学甲:过圆O 上任意一点P 作椭圆C 的两条切线l 1,l 2,则直线l 1,l 2始终相互垂直; 同学乙:过圆O 上任意一点P 作椭圆C 的两条切线l 1,l 2,则直线l 1,l 2始终不垂直. 请判定两个同学观点是否正确,并证明.B 巩固提升一、 填空题1. 过抛物线y 2=8x 上的任意一点为圆心作与直线x +2=0相切的圆,这些圆必过一定点,则定点的坐标是________.2. 设A (x 1,y 1),B ⎝⎛⎭⎫4,95 ,C (x 2,y 2)是右焦点为F 的椭圆x 225 +y 29 =1上三个不同的点,若AF ,BF ,CF 成等差数列,则x 1+x 2=________.二、 解答题3. (2019·烟台一模)已知F 为抛物线C :y 2=2px (p >0)的焦点,过F 的动直线交抛物线C 于A ,B 两点.当直线与x 轴垂直时,|AB |=4.(1) 求抛物线C 的方程;(2) 若直线AB 与抛物线的准线l 相交于点M ,在抛物线C 上是否存在点P ,使得直线P A ,PM ,PB 的斜率成等差数列?若存在,求出点P 的坐标;若不存在,说明理由.4. (2019·池州期末)已知定点A (-3,0),B (3,0),直线AM ,BM 相交于点M ,且它们的斜率之积为-19,记动点M 的轨迹为曲线C . (1) 求曲线C 的方程;(2) 过点T (1,0)的直线l 与曲线C 交于P ,Q 两点,是否存在定点S (s ,0),使得直线SP 与SQ 斜率之积为定值?若存在,求出S 的坐标;若不存在,请说明理由.微难点10 解析几何运算中的常用技巧一、 选择题1. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一条渐近线方程是y =3 x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A. x 236 -y 2108 =1B. x 29 -y 227=1 C. x 2108 -y 236 =1 D. x 227 -y 29=12. 已知椭圆E :x 2a 2 +y 2b 2 =1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A. x 245 +y 236 =1B. x 236 +y 227=1 C. x 227 +y 218 =1 D. x 218 +y 29=13. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),P 为双曲线上任一点,且PF 1·PF 2最小值的取值范围是⎣⎡⎦⎤-34c 2,-12c 2 ,则该双曲线的离心率的取值范围为( ) A. (1,2 ] B. [2 ,2] C. (0,2 ] D. [2,+∞)二、 填空题4. (2019·清江中学)已知F (2,0)为椭圆x 2a 2 +y 2b 2 =1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2 ),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________.5. 如图,已知椭圆C 的中心为原点O ,F (-25 ,0)为C 的左焦点,P 为C 上一点,满足OP =OF ,且PF =4,则椭圆C 的方程为________.(第5题)三、 解答题6. 已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)上的点到两个焦点的距离之和为23 ,短轴长为12,直线l 与椭圆C 交于M ,N 两点.(1) 求椭圆C 的方程;(2) 若直线l 与圆O :x 2+y 2=125相切,求证:OM → ·ON → 为定值.7. 已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率e =12,且椭圆C 经过点P (2,3),过椭圆C 的左焦点F 1且不与坐标轴垂直的直线交椭圆C 于A ,B 两点.(1) 求椭圆C 的方程;(2) 设线段AB 的垂直平分线与x 轴交于点G ,求△PF 1G 的面积S 的取值范围.8. 如图,O 为坐标原点,点F 为抛物线C 1:x 2=2py (p >0)的焦点,且抛物线C 1上点P 处的切线与圆C 2:x 2+y 2=1相切于点Q .(1) 当直线PQ 的方程为x -y -2 =0时,求抛物线C 1的方程;(2) 当正数p 变化时,记S 1 ,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.(第8题)。
第二章 基本初等函数第6讲 函数的概念及其表示方法A 组 应知应会一、 选择题1. (2019·北京一模)已知函数f (x )=x 3-2x ,则f (3)等于( )A. 1B. 19C. 21D. 352. (2019·石家庄二模)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集合N 的函数关系的是( )A BCD3. (2019·厦门质检)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,-⎝⎛⎭⎫12x ,x >0, 则f (f (log 23))等于( ) A. -9 B. -1C. -13D. -1274. (2019·河南名校段测)设函数f (x )=⎩⎪⎨⎪⎧log 3x ,0<x ≤9,f (x -4),x >9,则f (13)+2f ⎝⎛⎭⎫13 的值为( ) A. 1 B. 0 C. -2 D. 25. (2019·河北衡水)若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4 ,则实数m的取值范围是( )A. (0,4]B. ⎣⎡⎦⎤32,4C. ⎝⎛⎭⎫32,+∞D. ⎣⎡⎦⎤32,3二、 解答题6. (1) 已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(2) 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x )的解析式.7. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1) 求f (g (2))和g (f (2))的值;(2) 求f (g (x ))和g (f (x ))的表达式.B 组 能力提升一、 填空题1. 已知函数f (x )=-x 2+3x +4 ,则函数y =f (x )的定义域为________,函数y =f (2x +1)的定义域为________.2. (2019·南京三模)若函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,f (x -2),x >0, 则f (log 23)=________. 3. (2018·南阳一模)已知函数y =f (x )满足f (x )=2f ⎝⎛⎭⎫1x +3x ,则f (x )的解析式为________.4. (2018·郴州质量监测)已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则使f (a )=-1成立的a 值是________.二、 解答题5. (1) 已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ).(2) 已知定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg (x +1),求f (x ).6. 对于每个实数x ,设f (x )取y =4x +1,y =x +2,y =-2x +4三个函数中的最小值,用分段函数写出f (x )的解析式,并求f (x )的最大值.第7讲 函数的单调性与最值A 组 应知应会一、 选择题1. (多选)已知f (x )是定义在[0,+∞)上的函数,根据下列条件可以断定f (x )为增函数的是( )A. 对任意x ≥0,都有f (x +1)>f (x )B. 对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C. 对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D. 对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0 2. 下列函数中,在区间(-1,1)上为减函数的是( )A. y =11-xB. y =cos xC. y =ln (x +1)D. y =2-x 3. 若函数y =2-x x +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( ) A. (1,2) B. (-1,2) C. [1,2) D. [-1,2)4. (2019·郑州调研)若函数f (x )=x -1x 2 在x ∈[1,4]上的最大值为M ,最小值为m ,则M -m 的值是( )A. 3116B. 2C. 94D. 1145. (2019·武汉质检)若函数y =log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值范围为( )A. (-∞,-4)∪[2,+∞)B. (-4,4]C. [-4,4)D. [-4,4]二、 解答题6. 已知f (x )=x x 2+1,判断并证明函数f (x )在区间[-1,0]上的单调性.7. 求下列函数的值域.(1) f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x,x >1; (2) y =x -x .B 巩固提升一、填空题1. 函数f (x )=1-2x +1的单调增区间是________. 2. (2019·太原期末)已知函数f (x )=x +1x -1,x ∈[2,5],则f (x )的最大值是________. 3. (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是________.4. 已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1 满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2 >0成立,那么实数a 的取值范围是________.二、 解答题5. 已知函数f (x )=1a -1x(a >0,x >0). (1) 求证:f (x )在(0,+∞)上是增函数;(2) 若f (x )在⎣⎡⎦⎤12,2 上的值域是⎣⎡⎦⎤12,2 ,求a 的值.6. 已知函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1) 求f (1)的值;(2) 判断f (x )的奇偶性并证明;(3) 如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.第8讲 函数的奇偶性与周期性课时1 函数奇偶性判定与周期性A 组 应知应会一、 选择题1. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A. y =x 3B. y =ln 1|x |C. y =2|x |D. y =cos x 2. (2019·济宁二模)已知f (x )是定义在R 上的周期为4的奇函数,当x ∈(0,2)时,f (x )=x 2+ln x ,则f (2 019)等于( )A. -1B. 0C. 1D. 23. (2019·烟台一模)若函数f (x )是定义在R 上的奇函数,f ⎝⎛⎭⎫14 =1,当x <0时,f (x )=log 2(-x )+m ,则实数m 等于( )A. -1B. 0C. 1D. 24. 已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)等于( )A. -2B. 2C. -98D. 985. (多选)设函数f (x )的定义域为R,且f ⎝⎛⎭⎫π2 =0,f (0)≠0,若对于任意实数x ,y ,恒有f (x )+f (y )=2f ⎝⎛⎭⎫x +y 2 ·f ⎝⎛⎭⎫x -y 2 ,则下列说法正确的是( )A. f (0)=1B. f (x )=f (-x )C. f (x +2π)=f (x )D. f (2x )=2f (x )-1二、 解答题6. 已知f (x )是定义在R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg (2-x ),求函数f (x )的解析式.7. 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],且a +b ≠0时,有f (a )+f (b )a +b>0恒成立. (1) 用定义证明函数f (x )在[-1,1]上是增函数;(2) 解不等式:f ⎝⎛⎭⎫x +12 <f (1-x ).B 组 能力提升一、 填空题1. (2019·日照一模)若函数f (x )=x 2+(3-a )x +1为偶函数,则a =________.2. 设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则当x ∈[1,2]时,f (x )=________.3. (2019·苏州期初调查)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0 为奇函数,则实数a 的值为________.4. (2019·南通、泰州、扬州一调)已知函数f (x )是定义在R 上的奇函数,且f (x +2)=f (x ).当0<x ≤1时,f (x )=x 3-ax +1,则实数a 的值为________.二、 解答题5. 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1) 求f (π)的值;(2) 当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.6. 设f (x )是定义在R 上的奇函数,且对任意实数x 恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1) 求证:f (x )是周期函数;(2) 当x ∈[2,4]时,求f (x )的解析式;(3) 计算f (0)+f (1)+…+f (2 020)的值.课时2 函数性质的应用A 组 应知应会一、 选择题1. (2019·山西考前训练)下列函数中,既是奇函数,又在区间(0,1)内是增函数的是( )A. y =x ln xB. y =x 2+xC. y =sin 2xD. y =e x -e -x2. (2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于 ( )A. -50B. 0C. 2D. 503. (2019·九江二模)已知函数f (x )满足:①对任意x ∈R,f (x )+f (-x )=0,f (x +4)+f (-x )=0成立;②当x ∈(0,2]时,f (x )=x (x -2),则f (2 019)等于( )A. 1B. 0C. 2D. -14. (多选)已知定义在R 上的奇函数y =f (x )和偶函数y =g (x )满足f (x )+g (x )=4x ,下列结论正确的有( )A. f (x )=4x -4-x 2,且0<f (1)<f (2) B. ∀x ∈R,总有[g (x )]2-[f (x )]2=1C. ∀x ∈R,总有f (-x )g (-x )+f (x )g (x )=0D. ∃x 0∈R,使得f (2x 0)>2f (x 0)g (x 0)5. (2019·临沂一模)已知函数g (x )=f (x )+x 2是奇函数,当x >0时,函数f (x )的图象与函数y =log 2x 的图象关于y =x 对称,则g (-1)+g (-2)等于( )A. -7B. -9C. -11D. -13二、 解答题6. 若f (x )是定义在(-1,1)上的奇函数,且x ∈[0,1)时f (x )为增函数,求不等式f (x )+f ⎝⎛⎭⎫x -12 <0的解集.7. 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1).(1) 求f (0)与f (2)的值;(2) 求f (3)的值;(3) 求f (2 021)+f (-2 022)的值.B 组 能力提升一、 填空题1. 已知函数f (x )同时满足条件:①偶函数;②值域为[0,+∞);③周期为2 020,请写出f (x )的一个解析式:______________.2. 已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系是________.3. 设函数f (x )=ln (1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________. 4. 函数f (x )=x 3-3x 2的对称中心是________.二、 解答题5. 若f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在(0,+∞)上有最大值8,求F (x )在(-∞,0)上的最小值.6. 设函数f (x )是定义在R 上的奇函数,对任意实数x 都有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1) 证明:y =f (x )是周期函数,并指出其周期;(2) 若f (1)=2,求f (2)+f (3)的值;(3) 若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函数,求实数a 的值.第9讲二次函数与幂函数A组应知应会一、选择题1. 若a=3221⎪⎭⎫⎝⎛,b=3251⎪⎭⎫⎝⎛,c=3121⎪⎭⎫⎝⎛,则a,b,c的大小关系是()A. a<b<cB. c<a<bC. b<c<aD. b<a<c2. 若幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的大致图象是()A BC D3. (2019·安阳模拟)已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为()A. 1B. 0C. -1D. 24. 将进价为40元的商品按50元一件销售,一个月恰好卖500件,而价格每提高1元,就会少卖10个,商店为使该商品利润最大,应将每件商品定价为()A. 50元B. 60元C. 70元D. 100元5. (多选)已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题,其中是真命题的是()A. 若a2-b≤0,则f(x)在区间[a,+∞)上是增函数B. 存在a∈R,使得f(x)为偶函数C. 若f(0)=f(2),则f(x)的图象关于x=1对称D. 若a2-b-2>0,则函数h(x)=f(x)-2有2个零点二、解答题6. 已知二次函数f(x)同时满足条件:①对称轴方程是x=1;②f(x)的最大值为15;③f(x)=0的两根立方和等于17.求f(x)的解析式.7. 已知函数f(x)=x2-2tx+1在(-∞,1]上单调递减,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,求实数t的取值范围.B 组 能力提升一、 填空题1. 已知函数f (x )=ax 2-2x -3在区间为(-∞,4)上单调递减,则a 的取值范围是________.2. 若二次函数f (x )=-x 2+2ax +4a +1有一个零点小于-1,一个零点大于3,则实数a 的取值范围是________.3. 函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,-2≤x <0,x 2-2x -3,0≤x ≤3 的值域是________. 4. 已知二次函数f (x )=ax 2-4x +c +1(a ≠0)的值域为(-∞,1],则1a +4c的最大值是________.二、 解答题5. (1) 已知函数f (x )=4x 2-kx -8在[5,20]上具有单调性,求实数k 的取值范围.(2) 已知关于x 的方程mx 2+2(m +3)x +2m +14=0有两个不同的实根,且一个大于4,另一个小于4,求m 的取值范围.6. 已知函数f (x )=x 2-kx +3.(1) 若f (x )在[-2,2]上存在单调减区间,求k 的取值范围;(2) 从下面三个函数中:①g (x )=mx +5-m ;②h (x )=2x -m ;③r (x )=log 2(3-x )-m ,任选一个函数补充在下列问题中,若m 存在,求m 的取值范围;若不存在,请说明理由.问题:当k =0时,若对任意的x 1∈[1,2],总存在x 2∈[-1,2],使得f (2x 1)=k (x 2)成立.(其中k (x )是你选择的函数)第10讲 指数式与指数函数A 组 应知应会一、 选择题1. (多选)下列结论中不正确的是( )A. 函数f (x )=x x -⎪⎭⎫⎝⎛221的单调增区间为⎝⎛⎭⎫-∞,12 B. 函数f (x )=2x -12x +1为奇函数 C. 函数y =1x +1的单调减区间是(-∞,1)和(1,+∞) D. 1x>1是x <1的必要不充分条件 2. 已知a =243 ,b =425 ,c =2513,则( )A. b <a <cB. a <b <cC. b <c <aD. c <a <b3. 若3x =a ,5x =b ,则45x 等于( )A. a 2bB. ab 2C. a 2+bD. a 2+b 24. (2019·东北三校联考)已知函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A. y =1-xB. y =|x -2|C. y =2x -1D. y =log 2(2x )5. (多选)已知函数f (x )=e x -e -x 2 ,g (x )=e x +e -x 2,则f (x ),g (x )满足( ) A. f (-x )=-f (x ),g (-x )=g (x )B. f (-2)<f (3)C. f (2x )=2f (x )g (x )D. [f (x )]2-[g (x )]2=1二、 解答题6. 已知函数f (x )=⎝⎛⎭⎫12 ax ,a 为常数,且函数的图象过点(-1,2).(1) 求a 的值;(2) 若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.7. 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1) 求f (3)+f (-1);(2) 求f (x )在R 上的解析式;(3) 求不等式-7≤f (x )≤3的解集.B 组 能力提升一、 填空题1. (2019·菏泽九校联考)已知函数f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (32a -1)≥f (-3 ),则a 的最大值是________.2. (2019·石家庄二模)若函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ,则g (-1),f (-2),f (-3)从大到小的顺序是________.3. (2018·苏锡常镇调研)已知函数f (x )=⎩⎪⎨⎪⎧a -e x ,x <1,x +4x,x ≥1 (e 是自然对数的底).若函数y =f (x )的最小值是4,则实数a 的取值范围为________.4. (2019·聊城一模)设函数f (x )=1e x -1+a ,若f (x )为奇函数,则不等式f (x )>1的解集为________.二、解答题5. 已知函数f (x )=b ·a x (a >0,且a ≠1,b ∈R)的图象经过点A (1,6),B (3,24).(1) 设g (x )=1f (x )+3 -16,确定函数g (x )的奇偶性; (2) 若对任意x ∈(-∞,1],不等式⎝⎛⎭⎫a b x≥2m +1恒成立,求实数m 的取值范围.6. 设f (x )=a x +a -x 2 ,g (x )=a x -a -x 2,其中a 为常数,且a >0,a ≠1. (1) 求证:g (5)=g (2)f (3)+f (2)g (3);(2) 试写出一个f (x )和g (x )的函数值满足的等式,使得第(1)问的结论是这个等式的一个特例,并证明它在f (x )和g (x )的公共定义域R 上恒成立;(3) 试再写出一个f (x )和g (x )的函数值满足的等式.第11讲 对数与对数函数A 组 应知应会一、 选择题1. (2019·全国卷Ⅰ) 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a2. (多选)已知函数f (x )=ax 3-1x+b (a >0,b ∈Z),选取a ,b 的一组值计算f (lg a )和f ⎝⎛⎭⎫lg 1a 所得出的结果可以是( )A. 3和4B. -2和5C. 6和2D. -2和23. (2019·枣庄一模)已知2x =5y =t ,1x +1y=2,则t 等于( ) A. 110 B. 1100C. 10D. 100 4. (2019·汕头一模)已知当0<x ≤12时,不等式log a x <-2恒成立,则实数a 的取值范围是( ) A. (2 ,2) B. (1,2 )C. ⎝⎛⎭⎫22,1 D. (0,2 ) 5. (2019·肇庆二模)已知f (x )=lg (10+x )+lg (10-x ),则( )A. f (x )是奇函数,且在(0,10)上是增函数B. f (x )是偶函数,且在(0,10)上是增函数C. f (x )是奇函数,且在(0,10)上是减函数D. f (x )是偶函数,且在(0,10)上是减函数二、 解答题6. 已知函数f (x )=log 4(ax 2+2x +3).(1) 若f (1)=1,求f (x )的单调区间;(2) 若f (x )的最小值为0,求a 的值.7. 已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x . (1) 求函数f (x )的解析式;(2) 解不等式f (x 2-1)>-2.B 组 能力提升一、 填空题1. (2019·南京、盐城一模)已知y =f (x )为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln 2)的值为________.2. (2019·孝义二模)若函数y =log 2(x 2-ax +3a )在[2,+∞)上是增函数,则a 的取值范围是________.3. 若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,a ≠1)在区间⎝⎛⎭⎫12,+∞ 内恒有f (x )>0,则f (x )的单调增区间为________.4. 设函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12 =________, 方程f (f (x ))=1的解集是________. 二、 解答题5. 已知函数f (x )=log a (x +1)(a >0,a ≠1)在区间[1,7]上的最大值比最小值大12,求a 的值.6. 已知函数f (x )=ln (1+x )+ln (a -x )为偶函数,a ∈R .(1) 求a 的值,并讨论f (x )的单调性;(2) 若f ⎝⎛⎭⎫12 <f (lg x ),求x 的取值范围.第12讲函数的图象课时1图象变换及识别A组应知应会一、选择题1. (2019·黄山一模)已知图(1)中的图象对应的函数为y=f(x),则图(2)中的图象对应的函数为()(第1题)A. y=f(|x|)B. y=f(-|x|)C. y=|f(x)|D. y=-f(|x|)2. (2019·厦门质检)函数y=cos x+ln (|x|+1)(x∈[-2π,2π])的图象大致为()A BC D3. (2019·泉州质检)函数f(x)=e|x|2x的部分图象大致为()A BC D4. (2019·长沙月考)函数f(x)=ln (x-1)+ln (x+1)+cos x的大致图象是()A BC D5. (2019·济南一模)若函数f (x )=a x -a -x (a >0)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )A BC D二、解答题6. 如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,求f (x )的解析式.(第6题)7. 已知函数f (x )=1+|x |-x 2(-2<x ≤2). (1) 用分段函数的形式表示该函数;(2) 画出该函数的图象;(3) 写出该函数的值域.B 组 能力提升一、 填空题1. 设函数f (x )=⎩⎪⎨⎪⎧|x +1|,x <1,-x +3,x ≥1, 使得f (x )≥1的自变量x 的取值范围是________. 2. 已知函数f (x )=1x,则y =f (x -1)+1的单调减区间为________. 3. 若函数f (x )=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为________.4. (2019·龙岩质检)已知定义在R 上的可导函数f (x ),g (x )满足f (x )+f (-x )=6x 2+3,f (1)-g (1)=3,g ′(x )=f ′(x )-6x ,如果g (x )的最大值为M ,最小值为N ,则M +N =________.二、 解答题5. 已知函数f (x )=|x |(x -a ),a >0.(1) 作出函数f (x )的图象;(2) 写出函数f (x )的单调区间;(3) 当x ∈[0,1]时,由图象写出f (x )的最小值.6. 设函数f (x )=ax +1x +b(a ,b 为常数),且方程f (x )=32 x 的两个实根分别为x 1=-1,x 2=2.(1) 求y =f (x )的解析式;(2) 证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心.课时2以函数图象为背景的问题A组应知应会一、选择题1. (2019·合肥质检)函数f(x)=x2+x sin x的图象大致为()A BC D2. (2019·芜湖期末)函数f(x)=ln |x+1|x+1的部分图象大致为()A BC D3. (2019·广州一模)如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是()(第3题)ABCD4. (多选)函数f (x )=|x |+ax2 (其中a ∈R)的图象可能是( )ABCD二、 填空题5. 已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.6. 若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1 的图象如图所示,则f (-3)=________.(第6题)7. 若函数f (x )=x +1x 的图象与直线y =kx +1交于不同的两点(x 1,y 1),(x 2,y 2),则y 1+y 2=________.8. (2019·长沙统测)已知f (x )=|e x -1|+1,若函数g (x )=[f (x )]2+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是________.9. 不等式3sin ⎝⎛⎭⎫π2x -log 12x <0的整数解的个数为________.B 组 能力提升一、 选择题 1. (2019·潍坊模拟)函数y =4cos x -e |x |的图象可能是( )ABCD2. (2019·河南省六市联考)设实数a ,b ,c 分别满足a =5-12 ,b ln b =1,3c 3+c =1,则a ,b ,c 的大小关系为( )A. c >b >aB. b >c >aC. b >a >cD. a >b >c3. 已知函数f (2x +1)是奇函数,则函数y =f (2x )的图象成中心对称的点为( )A. (1,0)B. (-1,0)C. ⎝⎛⎭⎫12,0D. ⎝⎛⎭⎫-12,04. 若函数f (x )=(2-m )xx 2+m的图象如图所示,则m 的取值范围为( )(第4题)A. (-∞,-1)B. (-1,2)C. (0,2)D. (1,2)二、 填空题 5. (2019·新余模拟)若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________.6. (2019·荆州三模)已知偶函数f (x )和奇函数g (x )的图象如图所示,若关于x 的方程f (g (x ))=1,g (f (x ))=2的实根个数分别为m ,n ,则m +n =________.(第6题)7. 已知函数f (x )=log a x (a >0且a ≠1)和函数g (x )=sin π2 x ,若f (x )与g (x )的图象有且只有3个交点,则a 的取值范围是________.8. 已知函数f (x )对于任意实数x ∈[a ,b ],当a ≤x 0≤b 时,记|f (x )-f (x 0)|的最大值为D [a ,b ](x 0). (1) 若f (x )=(x -1)2,则D [0,3](2)=________;(2) 若f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≤0,2-|x -1|,x >0, 则D [a ,a +2](-1)的取值范围是________.第13讲 函数与方程A 组 应知应会一、 选择题1. 若函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A. (1,3)B. (1,2)C. (0,3)D. (0,2)2. 已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1, 则函数f (x )的零点为( )A. 12 ,0B. -2,0C. 12D. 0 3. 已知函数f (x )=2x +x +1,g (x )=log 2x +x +1,h (x )=log 2x -1的零点依次为a ,b ,c ,则( )A. a <b <cB. a <c <bC. b <c <aD. b <a <c4. 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )A. 10个B. 9个C. 8个D. 1个 5. (2019·九江模拟)已知函数f (x )=a +log 2(x 2+a )(a >0)的最小值为8,则实数a 的取值范围是( )A. (5,6)B. (7,8)C. (8,9)D. (9,10) 二、 解答题6. 若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围.7. 已知函数f (x )=x 2+ax +2,a ∈R .(1) 若不等式f (x )≤0的解集为[1,2],求不等式f (x )≥1-x 2 的解集;(2) 若函数g (x )=f (x )+x 2+1在区间(1,2)上有两个不同的零点,求实数a 的取值范围.B 组 能力提升一、 填空题1. 方程log 2(x -1)=2-log 2(x +1)的解集为________.2. 设f (x )是定义在R 上的偶函数,满足f (x )=f (2-x ),当0≤x ≤1时,f (x )=-x 2+1,方程f (x )=⎝⎛⎭⎫12 |x |在区间[-5,5]内实根的个数为________.3. 在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.4. 设函数f (x )=⎩⎪⎨⎪⎧3x -a ,x <1,π(x -3a )(x -2a ),x ≥1, 若f (x )恰有2个零点,则实数a 的取值范围是________.二、 解答题5. 已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1) 求函数y =f (x )的解析式;(2) 若方程f (x )=a 恰有3个不同的解,求a 的取值范围.6. (2019·全国卷Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1) 求证:f ′(x )在区间(0,π)上存在唯一零点; (2) 若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.第14讲数学建模——函数的模型及其应用A组应知应会一、选择题1. 国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超过部分的14%纳税;超过4 000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为()A. 3 000元B. 3 800元C. 3 818元D. 5 600元2. 某公司为激励创新,计划逐年加大研发资金投入.若该公司2017年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A. 2020年B. 2021年C. 2022年D. 2023年3. (2019·三明联考)用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据:lg 2≈0.3 010)()A. 3B. 4C. 5D. 64. (2019·安庆二模)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20 min,在乙地休息10 min后,他又以匀速从乙地返回到甲地用了30 min,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A BC D5. (多选)汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,则下列叙述不正确的是()(第5题)A. 消耗1 L汽油,乙车最多可行驶5 kmB. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少C. 甲车以80 km/h的速度行驶1 h,消耗10 L汽油D. 某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油二、解答题6. 网店销售某一品牌的商品,购买人数n是商品标价x的一次函数,标价越高,购买人数越少.已知标价为每件300元时,购买人数为零;标价为每件225元时,购买人数为75人.若这种商品的成本价是100元/件,网店以高于成本价的相同价格(标价)出售.(1) 网店要获取最大利润,商品的标价应定为每件多少元?(2) 通常情况下,获取最大利润只是一种“理想结果”,如果网店要获得最大利润的75%,那么商品的标价为每件多少元?7. 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:kg)与销售价格x(单位:元/kg)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/kg时,每日可售出该商品11 kg.(1) 求a的值;(2) 若该商品的成本为3元/kg,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.B组能力提升一、填空题1. (2019·唐山联考)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R与广告费A之间满足关系R=a A (a为常数),广告效应为D=a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a表示)2. (2019·湖北八校联考)某人根据经验绘制了2019年春节前后,从12月21日至1月8日自己种植的西红柿的销售量y(kg)随时间x(天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________kg.(第2题)3. 某公司一年购买某种货物600 t,每次购买x t,运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.4. 根据相关规定,机动车驾驶员血液中的酒精含量大于(等于)20毫克/100毫升时属于醉酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x h,酒精含量降为p毫克/100毫升,且满足关系式p=p0·e rx(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2 h后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过________h方可驾车.(精确到h)二、解答题5. 某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图(1)),B产品的利润与投资额的算术平方根成正比(如图(2)).(注:利润与投资额的单位均为万元)(1) 分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2) 该团队已筹集到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润?最大利润为多少?图(1)图(2)(第5题)6. 某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本p (x )=1600x 2+x +150(万元). (1) 若使每台机器人的平均成本最低,则应买多少台?(2) 现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量q (m )=⎩⎪⎨⎪⎧815m (60-m ),1≤m ≤30,480,m >30(单位:件),已知传统人工分拣每人每日的平均分拣量为1 200件,问:引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之多少?(第6题)微难点2 分段函数的研究一、 选择题1. (2019·湖北四地联考)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x-7,x <0,log 2(x +1),x ≥0, 若f (a )<1,则实数a 的取值范围是( )A. (-∞,-3)∪[0,1)B. (-3,0)∪(-1,1)C. (-3,1)D. (1,+∞)2. (2019·开封一模)已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3(x 2-1),x ≥2, 若f (a )≥1,则a 的取值范围是( )A. [1,2)B. [1,+∞)C. [2,+∞)D. (-∞,-2]3. (2019·廊坊三模)若函数f (x )=⎩⎪⎨⎪⎧e 2x -2x +a ,x >0,ax +3a -2,x ≤0 在(-∞,+∞)上是单调函数,且f (x )存在负的零点,则a 的取值范围是( )A. ⎝⎛⎭⎫23,1B. ⎝⎛⎦⎤23,32C. ⎝⎛⎦⎤0,32D. ⎝⎛⎭⎫23,+∞4. 已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3, 若存在实数a ,b ,c ,d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是( )A. (21,25)B. (21,24)C. (20,24)D. (20,25)5. (2019·驻马店期末)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+2,x ≤0,e ax x >0 在[-2,2]上的最大值为3,则实数a 的取值范围是( )A. (ln 3,+∞)B. ⎣⎡⎦⎤0,12ln 3C. ⎝⎛⎦⎤-∞,12ln 3 D. (-∞,ln 3]二、 填空题6. (2019·佛山二模)若函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-x 2+2x +1,x <0 (其中e 是自然对数的底数),且函数y=|f (x )|-mx 有两个不同的零点,则实数m 的取值范围是________.7. 设f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1. 若存在x 1,x 2∈R,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.8. (2019·滨州期末)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,x ≤0,|log 2x |,x >0.若方程f (x )=a 恰有4个不同的实根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+1x 23 x 4的取值范围为________.微难点3 由函数的性质求参数范围一、 填空题1. 已知函数f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0, 若f (a -1)+f (a )>0,则实数a 的取值范围是________.2. 若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.3. 已知函数f (x )=⎩⎪⎨⎪⎧x 2-mx ,x >1,⎝⎛⎭⎫4-m 2x +2,x ≤1 是R 上的增函数,则实数m 的取值范围是________.4. 若函数f (x )=ax 2+x +a +1在(-2,+∞)上单调递增,则a 的取值范围是________.5. 已知f (x )=log a (8-3ax )在[-1,2]上是减函数,则实数a 的取值范围是________.6. 已知函数f (x )=ax +1x +2 在区间(-2,+∞)上为增函数,则实数a 的取值范围是________.7. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0, 若f (2-a 2)<f (a ),则实数a 的取值范围是________.二、解答题8. 设定义在[-2,2]上的函数f(x)在区间[0,2]上单调递减,且f(1-m)<f(3m).(1) 若函数f(x)在区间[-2,2]上是奇函数,求实数m的取值范围;(2) 若函数f(x)在区间[-2,2]上是偶函数,求实数m的取值范围.。
第三章 导数及其应用第15讲 导数的几何意义和四则运算A 应知应会一、 选择题1. 已知f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( )A. e 2B. 1C. ln 2D. e2. 若函数f (x )=33x 3+ln x -x ,则曲线y =f (x )在点(1,f (1))处的切线的倾斜角是( ) A. π6 B. π3 C. 2π3 D. 5π63. 已知函数f (x )=ln (x +1)·cos x -ax 在(0,f (0))处的切线倾斜角为45°,则a 等于( )A. -2B. -1C. 0D. 34. (2019·泰安一模)已知函数f (x )满足f ⎝⎛⎭⎫x 2 =x 3-3x ,则函数f (x )的图象在x =1处的切线斜率为( )A. 0B. 9C. 18D. 275. 已知曲线y =sin x 在点P (x 0,sin x 0)(0≤x 0≤π)处的切线为l ,则下列各点中不可能在直线l 上的是( )A. (-1,-1)B. (-2,0)C. (1,-2)D. (4,1)二、 解答题6. 求下列函数的导数.(1) y =5x 3 ; (2) y =1x4 ; (3) y =-2sin x 2 ⎝⎛⎭⎫1-2cos 2x 4 ; (4)y =log 2x 2-log 2x .7. 已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1) 求P 0的坐标;(2) 若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.B 巩固提升一、 填空题1. (2019·全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.2. 已知函数f (x )满足满足f (x )=f ′(1)e x -1-f (0)x +12x 2,则f (x )的解析式为________________.3. (2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是________.4. (2019·厦门一模)在平面直角坐标系xOy 中,已知x 21 -ln x 1-y 1=0,x 2-y 2-2=0,则(x 1-x 2)2+(y 1-y 2)2的最小值为________.二、 解答题5. 已知曲线y =(ax -1)e x 在点A (x 0,y 1)处的切线为l 1,曲线y =1-x e x 在点B (x 0,y 2)处的切线为l 2.若存在x 0∈⎣⎡⎦⎤0,32 ,使得l 1⊥l 2,求实数a 的取值范围.6. 已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1) 求a 的值;(2) 是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.第16讲 导数与函数的单调性A 应知应会一、 选择题1. (2019·福建四校二联)函数f (x )=(x 2-2x )e x 的图象大致是( )A BC D2. 若函数y =f (x )的导函数f ′(x )的图象如图所示,则下列判断中正确的是 ( )(第2题)A. 在区间(-3,1)内f (x )是增函数B. 在区间(1,3)内f (x )是增函数C. 在区间(5,6)内f (x )是增函数D. 在区间(-∞,1)内f (x )是增函数3. (2019·宣城二调)若函数f (x )=43x 3-2ax 2-(a -2)x +5恰好有三个单调区间,则实数a 的取值范围为( )A. [-1,2]B. [-2,1]C. (-∞,-1)∪(2,+∞)D. (-∞,-2)∪(1,+∞)4. 若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为( )A. -1+52B. 1+52C. 1-52D. -1-525. (多选)已知函数f (x )=e x -1,对于满足0<x 1<x 2<e 的任意x 1,x 2,下列结论中正确的是( )A. (x 2-x 1)[f (x 2)-f (x 1)]<0B. x 2f (x 1)>x 1f (x 2)C. f (x 2)-f (x 1)>x 2-x 1D. f (x 1)+f (x 2)2 >f ⎝⎛⎭⎫x 1+x 22二、 解答题 6. (2019·太原一模节选)已知函数f (x )=x 3-32 ax 2(a >0),若函数h (x )=f (x )·e x x 在(0,1)上单调递减,求a 的取值范围.7. (2019·南昌一模)已知函数f (x )=(x +a )e x (x >-3),其中a ∈R .(1) 若曲线y =f (x )在点A (0,a )处的切线l 与直线y =|2a -2|x 平行,求直线l 的方程;(2) 讨论函数y =f (x )的单调性.B 巩固提升一、 填空题1. (2019·泰州一模)已知函数f (x )=2x 4+4x 2,若f (a +3)>f (a -1),则实数a 的取值范围为________.2. 已知函数f (x )的定义域为R,f (0)=2,对任意x ∈R,都有f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为________.3. 已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.4. (2019·盐城期中)已知函数f (x )=(x -a )ln x (a ∈R),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.二、 解答题5. 已知函数f (x )=x e x -a ⎝⎛⎭⎫x 22+x (a ∈R),讨论函数f (x )的单调性.6. 已知函数f (x )=e x ln x -a e x (a ∈R).(1) 若f (x )在点(1,f (1))处的切线与直线y =1ex +1垂直,求a 的值; (2) 若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.第17讲 导数与函数的极值、最值A 应知应会一、 选择题1. 函数f (x )=x 3+3x 2+3x -a 的极值点的个数为( )A. 0B. 1C. 2D. 32. (2019·安庆二模)已知函数f (x )=2e f ′(e)ln x -x e(e 是自然对数的底数),则f (x )的极大值为( )A. 2e -1B. -1eC. 1D. 2ln 2 3. 若函数f (x )=x 3-3x 在(a ,6-a 2)上有最小值,则实数a 的取值范围是( )A. (-5 ,1)B. [-5 ,1)C. [-2,1)D. (-2,1)4. 设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值是( )A. 1B. 12C. 52D. 225. (多选)设函数f (x )=ax 22e-ln |ax |(a >0),若f (x )有4个零点,则a 的可能取值个数为( ) A. 1 B. 2 C. 3 D. 4二、 解答题6. 已知函数f (x )=e x cos x -x .(1) 求曲线y =f (x )在点(0,f (0))处的切线方程;(2) 求函数f (x )在区间⎣⎡⎦⎤0,π2 上的最大值和最小值.7. (2019·邵阳期末)已知a ∈R,函数f (x )=a x+ln x -1. (1) 当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2) 求f (x )在区间(0,e]上的最小值.B 巩固提升一、 填空题1. 若函数f (x )=12x 2f ′(2)+ln x ,则f (x )的极大值点为________,极大值为________. 2. 已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________.3. (2019·滁州期末)已知函数f (x )=⎩⎪⎨⎪⎧2x 3-3x 2+1,x ≥0,e ax +1,x <0 在[-2,2]上的最大值为5,则实数a 的取值范围是________.4. (2019·唐山一模)在△ABC 中,a ,b ,c 分别为A ,B ,C 所对的边,若函数f (x )=13x 3+bx 2+(a 2+c 2-ac )x +1有极值点,则sin ⎝⎛⎭⎫2B -π3 的最小值为________. 二、 解答题5. (2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1) 讨论f (x )的单调性;(2) 当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.6. 解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向问题”.例如:原问题是“若矩形的边长为3和4,则其周长为14”,它的一个“逆向问题”是:“若矩形的周长为14,一边长为3,求另一边长”,也可以是“若矩形的周长为14,求其面积的最大值”等等.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1) 求f (x )在[-1,e](e 为自然对数的底数)上的最大值; (2) 请对(1)提出两个“逆向问题”,并作解答.第18讲生活中的优化问题举例A应知应会一、解答题1. 某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a(1≤a≤3)元的管理费,预计当每件商品的售价为x(8≤x≤9)元时,一年的销售量为(10-x)2万件.(1) 求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2) 当每件商品的售价为多少元时,该连锁分店一年的利润L最大?并求出L的最大值.2. 如图所示是一个帐篷,它下部分的形状是一个正六棱柱,上部分的形状是一个正六棱锥,其中帐篷的高为PO,正六棱锥的高为PO1,且PO=3PO1.设PO1=x.(1) 当x=2 m,P A1=4 m时,求搭建的帐篷的表面积;(2) 在P A1的长为定值l m的条件下,已知当且仅当x=23m时,帐篷的容积V最大,求l的值.(第2题)B 巩固提升一、 解答题1. (2019·徐州期中)如图所示是一个半径为2 km,圆心角为π3的扇形游览区的平面示意图,点C 是半径OB 上一点,点D 是圆弧AB 上一点,且CD ∥OA .现在线段OC 、线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设∠AOD =x 弧度,广告位出租的总收入为y 元.(1) 求y 关于x 的函数解析式,并指出该函数的定义域;(2) 试问x 为何值时,广告位出租的总收入最大?并求出其最大值.(第1题)2. (2019·盐城期中)某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据以往的经验知道,该厂生产这种仪器次品率P 与日产量x (件)之间近似满足关系:P =⎩⎨⎧196-x ,1≤x ≤c ,x ∈N ,1≤c <96,23,x >c ,x ∈N (注:次品率P =次品数总生产量,如P =0.1表示每生产10件产品,约有1件为次品,其余为合格品).已知每生产一件合格的仪器可以盈利A 元,但每生产一件次品将亏损A 2元,故厂方希望定出合适的日产量. (1) 试将生产这种仪器每天的盈利额T (元)表示为日产量x (件)的函数;(2) 当日产量x 为多少时,可获得最大利润?微难点4 构造函数研究不等关系一、 选择题1. 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A. [-5,-3]B. ⎣⎡⎦⎤-6,-98 C. [-6,-2] D. [-4,-3] 2. (2019·上饶一模)已知函数f (x )=ln x +a 的导数为f ′(x ),若方程f ′(x )=f (x )的根x 0小于1,则实数a 的取值范围为( )A. (1,+∞)B. (0,1)C. (1,2 )D. (1,3 )3. 已知函数f (x )=x +1x 2 ,g (x )=log 2x +m ,若对x 1∈[1,2],x 2∈[1,4],使得f (x 1)≥g (x 2),则m 的取值范围是( )A. ⎝⎛⎦⎤-∞,-54B. (-∞,2]C. ⎝⎛⎦⎤-∞,34 D. (-∞,0] 二、 填空题4. 设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R,有f (-x )+f (x )=x 2,当x ∈(0, +∞)时,f ′(x )<x .若f (4-m )-f (m )≥8-4m ,则实数m 的取值范围为________.5. 已知f (x )是定义在R 上的偶函数,其导函数为f ′(x ),若f ′(x )<f (x ),且f (x +1)=f (3-x ),f (2 019)=2,则不等式f (x )<2e x -1的解集为________.6. 若定义在R 上的函数f (x )满足f (x )+f ′(x )>1,f (0)=4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为________.三、 解答题7. 已知函数f (x )=(x 2-3x +3)e x ,若不等式f (x )ex +7x -2>k (x ln x -1)(k 为正整数)对任意正实数x 恒成立,求k 的最大值.(参考数据:ln 7≈1.95,ln 8≈2.08)8. 已知函数f (x )=ln x -ax 3,g (x )=a e xe. (1) 若直线y =x 与y =g (x )的图象相切,求实数a 的值;(2) 若存在x 0∈[1,e],使得f (x 0)>(1-3a )x 0+1成立,求实数a 的取值范围.微难点5 利用导数研究函数的零点一、 解答题1. 已知函数f (x )=2e x +ax .(1) 求f (x )的单调区间;(2) 讨论f (x )在(0,+∞)上的零点个数.2. (2019·抚州调研)已知函数f (x )=a 6 x 3-a 4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103 . (1) 求函数f (x )的单调增区间;(2) 若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围.3. 已知函数f (x )=ln x ,g (x )=3x -2a 2x. (1) 求函数F (x )=f (x )-x +2在x ∈[4,+∞)上的最大值;(2) 若函数H (x )=2f (x )-ln [g (x )]在区间⎣⎡⎦⎤12,1 上有零点,求实数a 的取值范围.4. 已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R,e 为自然对数的底数).(1) 当a =1时,求f (x )的单调区间;(2) 若函数f (x )在⎝⎛⎭⎫0,12 上无零点,求a 的最小值.。
[高2021届高2018级高三数学一轮专题训练64]第三讲 二项式定理A 组基础巩固一、单选题1.(2020·郑州模拟)(x -1x )9的展开式中的常数项为( D )A.64B.-64C.84D.-84【试题解答】 (x -1x )9的展开式的通项公式为T r +1=C r 9·(x )9-r ·(-1x )r =(-1)r ·C r 9·x 9-3r 2,由9-3r 2=0,得r =3,∴(x -1x)9的展开式中的常数项为T 4=(-1)3×C 39=-84.故选D. 2.(2020·河北保定期末)(3x -1x)6的展开式中,有理项共有( D ) A.1项 B.2项 C.3项D.4项【试题解答】 (3x -1x)6的展开式的通项公式为T r +1=C r 6·(-1)r ·36-r ·x 6-32r ,令6-32r 为整数,求得r =0,2,4,6,共计4项.3.(2019·甘肃张掖诊断)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( D )A.212B.211C.210D.29【试题解答】 已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,可得C 3n =C 7n,可得n =3+7=10.(1+x )10的展开式中奇数项的二项式系数和为:12×210=29.故选D.4.(2020·广州调研)(x -12x )9的展开式中x 3的系数为( A )A.-212B.-92C.92D.212【试题解答】 二项展开式的通项T r +1=C r 9x 9-r (-12x )r =(-12)r C r 9x 9-2r ,令9-2r =3,得r =3,展开式中x 3的系数为(-12)3C 39=-212.故选A. 5.(2019·烟台模拟)已知(x 3+2x )n 的展开式的各项系数和为243,则展开式中x 7的系数为( B )A.5B.40C.20D.10【试题解答】 由(x 3+2x )n 的展开式的各项系数和为243,令x =1得3n =243,即n =5,∴(x 3+2x )n =(x 3+2x )5,则T r +1=C r 5·(x 3)5-r ·(2x )r =2r ·C r 5·x 15-4r ,令15-4r =7,得r =2,∴展开式中x 7的系数为22×C 25=40.6.(ax +1x )(2x -1)5的展开式中各项系数的和为2,则该展开式中常数项为( C )A.-20B.-10C.10D.20【试题解答】 令x =1,可得a +1=2,所以a =1,所以(ax +1x )(2x -1)5=(x +1x)(2x -1)5,则展开式中常数项为(2x -1)5展开式中x 项的系数,即2C 45(-1)4=10.7.(2019·内蒙古包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( B )A.1B.243C.121D.122【试题解答】 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.故选B.8.(2019·广州测试)使(3x +1x x )n(n ∈N +)的展开式中含有常数项的最小的n 为( B )A.4B.5C.6D.7【试题解答】 T r +1=C r n (3x )n -r·x -32r =C r n ·3n -r ·xn -5r 2(r =0,1,2,…,n ),若T r +1是常数项,则有n -52r =0,即2n =5r (r =0,1,…,n ),当r =0,1时,n =0,52,不满足条件:当r =2时,n =5,故选B.9.(2020·四川省联合诊断)(1-x 3)(1-x )9的展开式中x 4的系数为( B ) A.124 B.135 C.615D.625【试题解答】 (1-x )9的展开式的通项公式为T r +1=C r 9(-x )r ,故所求x 4项的系数为C 49-(-1)C 19=135.故选B.二、多选题10.若(1x -x x )n 展开式中含有x 2项,则n 的值可以是( BD )A.15B.8C.7D.3【试题解答】 注意到二项式(1x -x x )n 的展开式的通项是T r +1=C r n ·(1x )n -r ·(-x x )r =C r n ·(-1)r ·x 52r -n .令52r -n =2,即r =2(n +2)5有正整数解;又2与5互质,因此n +2必是5的倍数,即n +2=5k ,n =5k -2,故选BD.11.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈Z )是一个单调递增数列,则k 的值可以是( ABC )A.4B.5C.6D.7【试题解答】 由二项式定理知a n =C n -110(n =1,2,3,…,n ).又(x +1)10展开式中二项式系数最大项是第6项.∴a 6=C 510,则k 的最大值为6.故选ABC.三、填空题12.(2018·天津高考)在(x -12x )5的展开式中,x 2的系数为 52 .【试题解答】 (x -12x)5的展开式的通项为T r +1=C r 5x5-r (-12x)r =(-12)r C r 5x 5-3r2. 令5-3r2=2,可得r =2.所以(x -12x)5的展开式中的x 2的系数为(-12)2C 25=52. 13.(2020·河南八校重点高中联盟联考)已知(2x -1)(x +a )6的展开式中x 5的系数为24,则a = 1或-45. 【试题解答】 根据题意,(x +a )6的展开式的通项为T r +1=C r 6x 6-r a r ,其中当r =1时,有T 2=C 16x 5a ,当r =2时,有T 3=C 26x 4a 2,则(2x -1)(x +a )6的展开式中x 5的系数为-C 16a +2C 26a 2=-6a +30a 2,则有-6a+30a 2=24,可得5a 2-a -4=0,∴(a -1)(5a +4)=0,∴a =1或a =-45.14.(2020·广东省东莞市期末)若(3+ax )(1+x )4展开式中x 的系数为13,则展开式中各项系数和为__64__.(用数字作答)【试题解答】 由题意得3C 14+a =13,∴a =1.令x =1得(3+ax )(1+x )4的展开式中各项系数和为(3+1)(1+1)4=64.15.(2019·陕西西安模拟)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=__180__. 【试题解答】 令1-x =t ,则x =1-t , ∴(2-t )10=a 0+a 1t +a 2t 2+…+a 10t 10,由T r +1=C r 10210-r (-t )r 知r =8时, a 8=22C 810(-1)8=180.B 组能力提升1.(2019·浙江,13)在二项式(2+x )9的展开式中,常数项是 162 ,系数为有理数的项的个数是__5__.【试题解答】 (2+x )9展开式的通项T r +1=C r 9(2)9-r x r=C r 9·29-r 2·x r(r =0,1,2,…,9),令r =0,得常数项T 1=C 09·292·x 0=292=162,要使系数为有理数,则只需9-r 2∈Z ,则r 必为奇数,满足条件的r 有1,3,5,7,9,共五种,故系数为有理数的项的个数是5.2.(2020·广西柳州铁路一中、玉林一中联考)(2-x )·(1+2x )5展开式中,含x 2项的系数为__70__. 【试题解答】 (1+2x )5展开式的通项公式为:T k +1=C k 5(2x )k =2k·C k 5·x k , 故所求x 2项的系数为2×22C 25-2C 15=70.3.(2019·上海普陀区二模)502 019+1被7除后的余数为__2__.【试题解答】 502 019+1=(1+72)2019+1=1+C 12 019·72+C 22 019·74+…+C 2 0192 01974 038+1=72C 12 019+C 22 01974+…+C 2 0192 01974 038+2.故余数为2. 4.(2019·吉林实验中学月考)若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=__10__.【试题解答】 等式两边求导得10(2x -3)4=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4, 令x =1得a 1+2a 2+3a 3+4a 4+5a 5=10(2-3)4=10. 5.(2020·广东茂名联考)在(x +x )6(1+1y )6的展开式中,x 4y2项的系数为( C ) A.200 B.180 C.150D.120【试题解答】 (x +x )6展开式的通项公式为T r +1=C r 6(x )6-r x r =C r 6x 6+r 2,令6+r 2=4,得r =2,则T 3=C 26x 6+22=15x 4. (1+1y )5展开式的通项公式为T r +1=C r 5(1y )r =C r 5y -r ,令r =2可得T 3=C 25y -2=10y -2.故x 4y 2项的系数为15×10=150.6.(2019·衡水模拟)S =C 127+C 227+…+C 2727除以9的余数为( B )A.8B.7C.6D.5【试题解答】 依题意S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.7.(2020·河北省邢台市期末)(x +y -1x -1y )4的展开式中的常数项为( A )A.36B.-36C.48D.-48【试题解答】 ∵(x +y -1x -1y )4=(x +y -x +y xy )4=(x +y )4(1-1xy )4,∴(x +y -1x -1y)4的展开式中的常数项为C 24×C 24=36.8.(2019·江西重点中学联考)若多项式(2x+3y)n展开式仅在第5项的二项式系数最大,则多项式(x2+1x2-4)n-4展开式中x2的系数为(A)A.-304B.304C.-208D.208【试题解答】多项式(2x+3y)n展开式仅在第5项的二项式系数最大,故n=8,多项式(x2+1x2-4)4展开式中x2的系数为C14·(-4)3+C24·C12·(-4)=-256-48=-304,故选A.。
§10.1分类计数原理与分步计数原理1.分类计数原理如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n 种不同的方法.2.分步计数原理如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类和分步的区别,关键是看事件能否一步完成,事件一步完成了就是分类;必须要连续若干步才能完成的则是分步.分类要用分类计数原理将种数相加;分步要用分步计数原理,将种数相乘.概念方法微思考1.在解题过程中如何判定是用分类计数原理还是分步计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步计数原理.2.两种原理解题策略有哪些?提示①明白要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.4答案 C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.(2020·山东模拟)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有__________种.答案36解析从6名守擂选手中选1名,选法有C16=6(种);复活选手中挑选1名选手,选法有C16=6(种).由分步计数原理,不同的构成方式共有6×6=36(种).4.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同取法的种数为________.答案9解析分三类:第一类,从第1层取一本书有4种,第二类,从第2层取一本书有3种,第三类,从第3层取一本书有2种.共有4+3+2=9(种).题组三易错自纠5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6答案 B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类计数原理知,共有12+6=18(个)奇数.6.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有________种.答案243解析因为每个邮件选择发的方式有3种不同的情况.所以要发5个电子邮件,发送的方法有3×3×3×3×3=35=243(种).分类计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10答案 B解析方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x +b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12(个)实数对,故a≠0时满足条件的实数对有12-3=9(个),所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.204C.729D.920答案 A解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案12解析当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类计数原理可知,共有12种结果.思维升华分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.分步计数原理例1(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案 B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步计数原理,可得不同的报名方法共有6×5×4=120(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步计数原理,可得不同的报名方法共有36=729(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步之间确保连续,逐步完成. 跟踪训练1(1)(2020·洛阳联考)2019年牡丹花会期间,5名志愿者被分配到我市3个博物馆为外地游客提供服务,其中甲博物馆分配1人,另2个博物馆各分配2人,则不同的分配方法共有()A.15种B.30种C.90种D.180种答案 B解析分两步完成:第一步,选1人到甲博物馆,有5种分配方法;第二步,将余下的4人各分配2人到另2个博物馆,有6种分配方法.根据分步计数原理可得,不同的分配方法共有5×6=30(种).(2)已知a∈{1,2,3},b∈{4,5,6,7},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为()A.7B.9C.12D.16答案 C解析得到圆的方程分两步:第一步:确定a有3种选法;第二步:确定b有4种选法,由分步计数原理知,共有3×4=12(个).两个计数原理的综合应用例2(1)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120B.140C.240D.260答案 D解析由题意,先涂A处共有5种涂法,再涂B处有4种涂法,然后涂C处,若C处与A处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D. (2)中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.答案504解析 根据题意,分2种情况讨论:①“数”排在第一,将剩下的“五艺”全排列,安排在剩下的5节,有A 55=120(种)情况.②“数”不排在第一,则“数”的排法有4种,“射”的排法有4种,将剩下的“四艺”全排列,安排在剩下的4节,有A 44=24(种)情况,则此时有4×4×24=384(种)情况.则一共有120+384=504(种)排课顺序.(3)用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数.(用数字作答) 答案 420解析 要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.①第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字. 根据分步计数原理,有3×4×5×4=240(种)取法.②第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步计数原理,有3×3×5×4=180(种)取法.③根据分类计数原理,共可以组成240+180=420(个)无重复数字的四位偶数.思维升华 利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2 (1)(2020·郑州质检)将数字“124467”重新排列后得到不同的偶数的个数为( )A.72B.120C.192D.240答案 D解析 将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,(1)若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;(2)若末位数字为6,同理有60种情况;(3)若末位数字为4,因为有两个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.(2)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对答案 C解析 如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C ,BC 1,A 1D ,AD 1,AB 1,A 1B ,D 1C ,DC 1,共8条,同理与DB 成60°角的面对角线也有8条.因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对.又正方体共有6个面,所以共有16×6=96(对).又因为每对被计算了2次,因此成60°的面对角线有12×96=48(对).1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()A.21种B.315种C.143种D.153种答案 C解析可分三类:一类:语文、数字各1本,共有9×7=63(种);二类:语文、英语各1本,共有9×5=45(种);三类:数字、英语各1本,共有7×5=35(种),∴共有63+45+35=143(种)不同选法.2.(2020·南京质检)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种答案 B解析分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式. 由分类计数原理可知,共有3+3=6(种)传递方式.3.十字路口来往的车辆,如果不允许回头,则行车路线共有( ) A.24种 B.16种 C.12种 D.10种 答案 C解析 根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有4×3=12(种),故选C.4.若a ∈{1,2,3,4},b ∈{1,2,3,4},则y =ba x 表示不同直线的条数为( )A.8B.11C.14D.16 答案 B解析 若使ba 表示不同的实数,则当a =1时,b =1,2,3,4;当a =2时,b =1,3;当a =3时,b =1,2,4;当a =4时,b =1,3.故y =bax 表示的不同直线的条数共有4+2+3+2=11.5.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( ) A.56 B.54 C.53 D.52 答案 D解析 在8个数中任取2个不同的数共有8×7=56(个)对数值;但在这56个数值中,log 24=log 39,log 42=log 93,log 23=log 49,log 32=log 94,即满足条件的对数值共有56-4=52(个). 6.(2020·石家庄模拟)将“福”“禄”“寿”填入到如图所示的4×4小方格中,每格内只填入一个汉字,且任意的两个汉字既不同行也不同列,则不同的填写方法有( )A.288种B.144种C.576种D.96种答案 C解析依题意可分为以下3步:(1)先从16个格子中任选一格放入第一个汉字,有16种方法;(2)任意的两个汉字既不同行也不同列,第二个汉字只有9个格子可以放,有9种方法;(3)第三个汉字只有4个格子可以放,有4种方法,根据分步计数原理可得不同的填写方法有16×9×4=576(种).7.(2020·安阳模拟)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.120种B.260种C.340种D.420种答案 D解析由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420(种).故选D.8.(多选)将四个不同的小球放入三个分别标有1,2,3号的盒子中,不允许有空盒子,下列结果正确的有( )A.C 13C 12C 11C 13B.C 24A 33C.C 13C 24A 22D.18答案 BC解析 根据题意,四个不同的小球放入三个分别标有1,2,3号的盒子中,且没有空盒,则三个盒子中有1个放2个球,剩下的2个盒子各放1个, 有2种解法: (1)分2步进行分析:①先将四个不同的小球分成3组,有C 24种分组方法; ②将分好的3组全排列,对应放到3个盒子中,有A 33种放法,则没有空盒的放法有C 24A 33种.(2)分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有C 13C 24种情况; ②将剩下的2个小球全排列,放入剩下的2个小盒中,有A 22种放法,则没有空盒的放法有C 13C 24A 22种.故选BC.9.若椭圆x 2m +y 2n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________. 答案 20解析 当m =1时,n =2,3,4,5,6,7,共6个; 当m =2时,n =3,4,5,6,7,共5个; 当m =3时,n =4,5,6,7,共4个; 当m =4时,n =5,6,7,共3个; 当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20(个)满足条件的椭圆.10.直线方程Ax +By =0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A ,B 的值,则可表示________条不同的直线. 答案 22解析 分成三类:A =0,B ≠0;A ≠0,B =0和A ≠0,B ≠0,前两类各表示1条直线;第三类先取A 有5种取法,再取B 有4种取法,故5×4=20(种). 所以可以表示22条不同的直线.11.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.答案36解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).12.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.答案180解析按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选.由分步计数原理,可得共有5×4×3×3=180(种)不同的涂色方法.13.从集合{1,2,3,4,…,10}中,选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个答案 A解析先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32(个)这样的子集.14.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.答案60解析根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号螺栓,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60(种)方法,故答案是60.15.(2019·凌源模拟)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学都选取到喜欢的礼物,则不同的选法有()A.30种B.50种C.60种D.90种答案 B解析①甲同学选择牛,乙有2种选择,丙有10种选择,选法有1×2×10=20(种);②甲同学选择马,乙有3种选择,丙有10种选择,选法有1×3×10=30(种),所有总共有20+30=50(种)选法.16.若给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有________种.答案30解析方法一如图,染五条边总体分五步,染每一边为一步.当染边1时有3种染法,则染边2有2种染法.(1)当3与1同色时有1种染法,则4有2种,5有1种,此时染法总数为3×2×1×2×1=12(种).(2)当3与1不同色时,3有1种,①当4与1同色时,4有1种,5有2种;②当4与1不同色时,4有1种,5有1种,则此时有3×2×1×(1×2+1×1)=18(种).综合(1)、(2),由分类计数原理,可得染法的种数为30种.方法二通过分析可知,每种颜色至少要涂1次,至多只能涂2次,即有一色涂1次,剩余两种颜色各涂2次.一次的有C13C15种涂法,涂2次的有2种涂法,故一共有2C13C15=30(种)涂法.。
第七章立体几何第34讲空间几何体的表面积和体积A应知应会一、选择题1. 如图的几何体是由下面哪个平面图形旋转得到的()(第1题)A B C D2. 已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. 122πB. 12πC. 82πD. 10π3. 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°,腰和上底长均为2的等腰梯形,则这个平面图形的面积是()(第3题)A. 2+2B. 1+2C. 4+22D. 8+424. 已知正方体外接球的体积是323 π,那么正方体的棱长等于( )A. 22B.233 C. 423 D. 4335. (2019·江西重点中学联考)《算术书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出圆锥的底面周长l 与高h ,计算其体积V 的近似公式V =136 l 2h ,它实际上是将圆锥体积公式中的圆周率π近似取3,那么,近似公式V ≈25942 l 2h 相当于将圆锥体积公式中的π近似取( )A.227 B. 258 C. 15750 D. 355113二、 解答题6. 已知正四棱锥底面正方形的边长为4 cm,高与斜高的夹角为30°,求正四棱锥的侧面积和表面积.(单位:cm 2 )7. 如图,四棱锥P ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°,△ADP ∽△BAD .(1) 求线段PD 的长;(2) 若PC =11 R ,求三棱锥P ABC 的体积.(第7题)B巩固提升一、填空题1. 如图,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则Rr=________.(第1题)2. (2019·通州、海门、启东期末)已知正三棱柱ABC A1B1C1的各棱长均为2,点D在棱AA1上,则三棱锥D BB1C1的体积为________.(第2题)3. 如图,已知正三棱柱ABC A1B1C1的底面边长为2 cm,高为5 cm,一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.(第3题)4. 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确的命题是________.(填序号)二、解答题5. 已知等边圆柱(轴截面是正方形的圆柱)的全面积为S,求其内接正四棱柱的体积.6. 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1) 求证:平面AEC⊥平面BED;(2) 若∠ABC=120°,AE⊥EC,三棱锥E ACD的体积为63,求该三棱锥的侧面积.(第6题)第35讲空间点、线、面之间的位置关系A应知应会一、选择题1. 下列图形中不一定是平面图形的是()A. 三角形B. 菱形C. 梯形D. 四边相等的四边形2. 如图,ABCD A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()(第2题)A. A,M,O三点共线B. A,M,O,A1不共面C. A,M,C,O不共面D. B,B1,O,M共面3. 如图,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C l,则平面ABC与平面β的交线是()(第3题)A. 直线ACB. 直线ABC. 直线CDD. 直线BC4. (多选)下列四个命题中正确的是()A. 存在与两条异面直线都平行的平面B. 过空间一点,一定能作一个平面与两条异面直线都平行C. 过平面外一点可作无数条直线与该平面平行D. 过直线外一点可作无数个平面与该直线平行5. (2019·湖北八校联考)已知直三棱柱ABC A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.32 B.155 C.105 D.33二、解答题6. 如图,在棱长为a的正方体ABCD A1B1C1D1中,M,N分别是AA1,D1C1的中点,过D,M,N 三点的平面与正方体的下底面相交于直线l.(1) 画出l的位置;(2) 设l∩A1B1=P,求PB1的长.(第6题)7. 如图,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1) 求证:直线EF与BD是异面直线;(2) 若AC⊥BD,AC=BD,求EF与BD所成的角.(第7题)B巩固提升一、填空题1. 下列命题正确的是________.(填序号)①三个点确定一个平面;②一条直线和一个点确定一个平面;③两条相交直线确定一个平面;④两条平行直线确定一个平面.2. 已知l1,l2,l3是空间三条不同的直线,给出下列四个命题:①l1⊥l2,l2⊥l3⇒l1∥l3;②l1⊥l2,l2∥l3⇒l1⊥l3;③l1∥l2∥l3⇒l1,l2,l3共面;④l1,l2,l3共点⇒l1,l2,l3共面.其中正确的命题是________.(填序号)3. (2019·深圳调研)若P是两条异面直线l,m外的任意一点,给出四个命题:①过点P有且仅有一条直线与l,m都平行;②过点P有且仅有一条直线与l,m都垂直;③过点P有且仅有一条直线与l,m都相交;④过点P有且仅有一条直线与l,m都异面.其中正确的是________.(填序号)4. 设E,F,G,H依次是空间四边形ABCD的边AB,BC,CD,DA的中点,且AC+BD=a,AC·BD=b,则EG2+FH2=________.二、解答题5. 已知a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.6. 已知三棱柱ABC A1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面三角形ABC的中心,如图所示.(1) 连接BC1,求异面直线AA1与BC1所成角的大小;(2) 连接A1C,A1B,求三棱锥C1-BCA1的体积.(第6题)第36讲直线、平面平行的判定与性质A应知应会一、选择题1. 已知平面α,β和直线m,若α⊥β,m⊥α,则()A. m⊥βB. m∥βC. m⊂βD. m∥β或m⊂β2. (2019·湘中名校联考)已知m,n是两条不同的直线,α,β,γ是三个不重合的平面,下列命题中正确的是()A. 若m∥α,n∥α,则m∥nB. 若m∥α,m∥β,则α∥βC. 若α⊥γ,β⊥γ,则α∥βD. 若m⊥α,n⊥α,则m∥n3. (2019·泰安调研)已知α,β,γ是三个不重合的平面,l是直线.给出下列命题:①若l上两点到α的距离相等,则l∥α;②若l⊥α,l∥β,则α⊥β;③若α∥β,lβ,且l∥α,则l∥β.其中正确的命题是()A. ①②B. ①②③C. ①③D. ②③4. 设l,m,n表示不同的直线,α,β,γ表示不重合的平面,给出下列三个命题:①若m∥l,且m⊥α,则l⊥α;②若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;③若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A. 0B. 1C. 2D. 35. (2019·深圳调研)在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4.又H,G分别为BC,CD的中点,则()A. BD∥平面EFG,且四边形EFGH是平行四边形B. EF∥平面BCD,且四边形EFGH是梯形C. HG∥平面ABD,且四边形EFGH是平行四边形D. EH∥平面ADC,且四边形EFGH是梯形二、解答题6. 如图,四棱锥P ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC的中点.求证:AP∥平面MBD.(第6题)7. (2019·南昌模拟)如图,在四棱锥P ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD =60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1) 求证:平面CMN∥平面P AB;(2) 求三棱锥P-ABM的体积.(第7题)B巩固提升一、填空题1. 若一直线上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是________.2. 如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.(第2题)3. 在空间中,用a,b,c表示三条不同的直线,γ表示平面,给出下列四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题为________.(填序号)4. (2019·九江调研)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.(第4题)二、解答题5. 如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.(1) 求证:BE∥平面DMF;(2) 求证:平面BDE∥平面MNG.(第5题)6. 如图,四棱锥P ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1) 求证:CE∥平面P AD;(2) 在线段AB上是否存在一点F,使得平面P AD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.(第6题)第37讲直线、平面垂直的判定与性质A应知应会一、选择题1. 已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A. m∥lB. m∥nC. n⊥lD. m⊥n2. (2019·焦作期中)设m,n是两条不同的直线,α,β,γ是三个不重合的平面,给出下列命题,正确的是()A. 若mβ,α⊥β,则m⊥αB. 若m∥α,m⊥β,则α⊥βC. 若α⊥β,α⊥γ,β⊥γD. 若α∩γ=m,β∩γ=n,m∥n,则α∥β3. (2019·合肥调研)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()(第3题)A. MN与CC1垂直B. MN与AC垂直C. MN与BD平行D. MN与A1B1平行4. 如图,在斜三棱柱ABC A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在底面ABC上的射影H必在()(第4题)A. 直线AB上B. 直线BC上C. 直线AC上D. △ABC内部5. 如图,在四面体D ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是()(第5题)A. 平面ABC⊥平面ABDB. 平面ABD⊥平面BDCC. 平面ABC⊥平面BDE,且平面ADC⊥平面BDED. 平面ABC⊥平面ADC,且平面ADC⊥平面BDE二、解答题6. (2019·潍坊期末)如图,四棱锥E ABCD中,底面ABCD是平行四边形,∠ADC=60°,CD =2AD,EC⊥底面ABCD.(1) 求证:平面ADE⊥平面ACE;(2) 若AD=CE=2,求三棱锥C ADE的高.(第6题)7. (2019·蚌埠二模)在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F 分别是线段AD,PB的中点,P A=AB=1.(1) 求证:EF∥平面PDC;(2) 求点F到平面PDC的距离.(第7题)B巩固提升一、填空题1. (2019·青岛调研)已知P为△ABC所在平面外一点,且P A,PB,PC两两垂直,有下列结论:①P A⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的有________.(填序号)2. 如图,在棱长为2的正方体ABCD A1B1C1D1中,E为BC的中点,点P在线段D1E上,则点P到直线CC1的距离的最小值为________.(第2题)3. (2019·武汉调研)在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC与直线BD垂直;②存在某个位置,使得直线AB与直线CD垂直;③存在某个位置,使得直线AD与直线BC垂直.其中正确的结论是________.(填序号)4. (2019·滨州期末)已知正方体ABCD A1B1C1D1的棱长为2,点P是棱AA1的中点,则过点P且与直线BC1垂直的平面截正方体所得的截面的面积为________.二、解答题5. 如图,在正三棱柱ABC A1B1C1中,D为AB的中点.(1) 求证:BC1∥平面A1CD.(2) 请从图中所标点中,选择直线或平面将命题补充完整,并证明.求证:__________⊥平面ABB1A1.(第5题)6. (2019·漳州调研)在如图所示的五面体ABCDEF中,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF=2,EF∥AB,M为BC的中点.(1) 求证:FM∥平面BDE;(2) 若平面ADE⊥平面ABCD,求点F到平面BDE的距离.(第6题)第38讲直线、平面平行与垂直的综合问题A应知应会一、选择题1. 若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A. b⊂αB. b∥αC. b⊂α或b∥αD. b与α相交或b⊂α或b∥α2. 设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A. 3B. 2C. 1D. 04. (2019·深圳调研)已知a,b,c是空间中三条不同的直线,α,β,γ为空间三个不重合的平面,则下列说法中正确的是()A. 若α⊥β,aα,a⊥β,则a∥αB. 若α⊥β,且α∩β=a,b⊥a,则b⊥αC. 若α∩β=a,β∩γ=b,α∩γ=c,则a∥b∥cD. 若α∩β=a,b∥a,则b∥α5. (多选)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,下列结论中一定正确的是()A. β⊥γB. l⊥αC. m⊥βD. α⊥β二、解答题6. 如图,在直四棱柱ABCD A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1) 求证:B1D1∥平面A1BD;(2) 求证:MD⊥AC;(3) 试确定点M的位置,使得平面DMC1⊥平面CC1D1D.(第6题)7. 如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1) 求证:平面ABE⊥平面B1BCC1;(2) 求证:C1F∥平面ABE;(3) 求三棱锥E ABC的体积.(第7题)B 巩固提升一、 填空题1. (多选)如图,正三棱柱ABC A 1B 1C 1的各条棱的长度均相等,D 为AA 1的中点,M ,N 分别是线段BB 1和线段CC 1上的动点(含端点),且满足BM =C 1N ,当点M ,N 运动时,下列结论正确的是( )(第1题)A. 在△DMN 内总存在与平面ABC 平行的线段B. 平面DMN ⊥平面BCC 1B 1C. 三棱锥A 1 DMN 的体积为定值D. △DMN 可能为直角三角形2. (多选)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论中正确的是( )(第2题)A. 平面D 1A 1P ⊥平面A 1APB. ∠APD 1的取值范围是⎝⎛⎭⎫0,π2C. 三棱锥B 1 D 1PC 的体积为定值D. DC 1⊥D 1P3. (多选)如图,一张A4纸的长、宽分别为22 a ,2a ,A ,B ,C ,D 分别是其四条边的中点,现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,从而得到一个多面体,下列关于该多面体的命题,正确的是( )(第3题)A. 该多面体是三棱锥B. 平面BAD⊥平面BCDC. 平面BAC⊥平面ACDD. 该多面体外接球的表面积为5πa2二、解答题4. 如图,在四棱锥P ABC中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M 为线段AD上一点,AM=2MD,N为PC的中点.(1) 求证:MN∥平面P AB;(2) 求直线AN与平面PMN所成角的正弦值.(第4题)5. 如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1) 求证:DE∥平面A1CB;(2) 求证:A1F⊥BE;(3) 线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.图(1)图(2)(第5题)第39讲 用向量法解决空间中的位置关系A 应知应会一、 选择题1. 已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a,b,c 三向量共面,则λ等于( ) A. 9 B. -9 C. -3 D. 32. 若平面α,β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A. α∥β B. α⊥βC. α,β相交但不垂直D. 以上均不正确3. 在空间四边形ABCD 中,AB → ·CD → +AC → ·DB → +AD → ·BC →等于( )A. -1B. 0C. 1D. 不确定4. 已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A. P (2,3,3)B. P (-2,0,1)C. P (-4,4,0)D. P (3,-3,4)5. 如图,F 是正方体ABCD A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F ⊥DE ,则有( )(第5题)A. B 1E =EBB. B 1E =2EBC. B 1E =12EB D. E 与B 重合二、 解答题6. 已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2). (1) 求|2a +b|;(2) 在直线AB 上,是否存在一点E ,使得OE →⊥b(O 为原点)?7. (2019·江西调研)如图,在直三棱柱ABC A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.(1) 求证:MN ∥平面A 1B 1C 1;(2) 求证:平面MBC 1⊥平面BB 1C 1C .(第7题)B 巩固提升一、 填空题1. 已知法向量为n =(1,-1,1)的平面σ过点M (1,2,-1),则平面σ上任意一点P 的坐标(x ,y ,z )满足的方程为________.2. 已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),若a ∥b,b ⊥c,则c =________.3. 已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13 VC → ,VM → =23VB → ,VN →=23VD → ,则VA 与平面PMN 的位置关系是________.4. (2019·丽水调研)如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.(第4题)二、 解答题5. 如图,正方形ABCD 所在平面与四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,F A =FE ,∠AEF =45°.(1) 求证:EF ⊥平面BCE ;(2) 设线段CD ,AE 的中点分别为P ,M ,求证:PM ∥平面BCE .(第5题)6. (2019·芜湖调研)如图,在长方体ABCD A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点. (1) 求证:B 1E ⊥AD 1;(2) 在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(第6题)第40讲 空间角的计算课时1 线线角与线面角A 应知应会一、 选择题1. 已知A (-1,0,1),B (0,0,1),C (2,2,2),D (0,0,3),则sin 〈AB → ,CD →〉等于( ) A. -23 B. 23 C. 53 D. -532. (2019·江门调研)如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC=90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )(第2题)A. 30°B. 45°C. 60°D. 90°3. 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a|=3 ,且a 分别与AB → ,AC →垂直,则向量a 为( )A. (1,1,1)B. (-1,-1,-1)C. (1,1,1)或(-1,-1,-1)D. (1,-1,1)或(-1,1,-1) 4. (2019·日照调研)如图,已知长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535 B. 277 C. 33 D. 24(第4题)5.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点.则AD 与GF 所成角的余弦值为( )(第5题)A.36 B. -36 C.33 D. -33二、解答题6. 如图,在四棱锥P ABCD中,底面ABCD是矩形,P A⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,P A=2.求异面直线BC与AE所成的角的大小.(第6题)7. (2019·宿迁调研)如图,在四棱锥P ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1) 求证:BE⊥DC;(2) 求直线BE与平面PBD所成角的正弦值.(第7题)B 巩固提升一、 填空题1. 已知O 点为空间直角坐标系的原点,向量OA → =(1,2,3),OB → =(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA → ·QB → 取得最小值时,OQ →的坐标是________.2. 如图,已知正四面体ABCD 中,AE =14 AB ,CF =14 CD ,则直线DE 和BF 所成角的余弦值为________.(第2题)3. 在正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值为________.4. 如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.(第4题)二、解答题5. (2019·宁波调研)如图,在三棱锥P ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1) 求证:MN∥平面BDE;(2) 已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.(第5题)6. (2019·洛阳二模)如图,在四棱柱ABCD A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1) 求证:B1C1⊥CE;(2) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为26,求线段AM的长.(第6题)课时2二面角A应知应会一、解答题1. (2019·保定期末)如图,正三棱柱(底面为正三角形,侧棱垂直于底面)ABC A1B1C1中,侧棱长AA1=2,底面边长AB=1,N是CC1的中点.(1) 求证:平面ANB1⊥平面AA1B1B;(2) 设M是线段AB1的中点,求直线C1M与平面ABC1所成的角的正弦值.(第1题)2. (2019·江苏天一中学)如图,在直三棱柱ABC A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(1) 求点C到平面A1ABB1的距离;(2) 若AB1⊥A1C,求二面角A1-CD-C1的平面角的余弦值.(第2题)3. (2019·临汾一模)在四棱锥P ABCD中,平面ABCD⊥平面PCD,底面ABCD为梯形,AB∥CD,AD⊥PC且AB=1,AD=DC=DP=2,∠PDC=120°.(1) 求证:AD⊥平面PDC;(2) 求二面角B-PD-C的余弦值.(第3题)4. (2019·如皋中学)如图,以正四棱锥V ABCD 的底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点.正四棱锥V-ABCD 的底面边长为2a ,高为h ,且有cos 〈BE → ,DE →〉=-1549.(1) 求ha的值;(2) 求二面角B-VC-D 的余弦值.(第4题)B 巩固提升一、 填空题1. 如图,在直三棱柱ABC A 1B 1C 1中,AA 1=BC =AB =2,AB ⊥BC ,则二面角B 1-A 1C-C 1的大小是________.(第1题)2. 如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,且PD =AD =1,AB =2,点E 是AB 上一点,当AE =________时,二面角P-EC- D 的平面角为π4.(第2题)二、 解答题3. 如图,四棱锥P ABCD 的底面ABCD 是平行四边形,P A ⊥底面ABCD ,P A =3,AD =2,AB =4,∠ABC =60°.(1) 求证:BC ⊥平面P AC ;(2) 若E 是侧棱PB 上一点,记PEPB =λ(0<λ<1),且________,求λ的值.①二面角E-AD-B 为30°; ②二面角E-AD-P 为60°;③二面角E-AD-B 与E-AD-P 相等.请从上面三个条件中任选一个,填入横线处,并完成.(第3题)4. (2019·合肥调研)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =2π3 ,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1.(1) 求证:AD ⊥平面BFED ;(2) 点P 在线段EF 上运动,设平面P AB 与平面ADE 所成锐二面角为θ,试求θ的最小值.(第4题)微难点8翻折问题一、填空题1. 如图表示一个正方体表面的一种展开图,图中的四条线段AB,CD,EF和GH在原正方体中相互异面的有______对.(第1题)2.如图所示是一个正方体的表面展开图,A,B,C均为棱的中点,D是顶点,则在正方体中,异面直线AB,CD所成角的余弦值为________.(第2题)3. 已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V=________.(第3题)4. 如图是一几何体的平面展开图,其中四边形ABCD 为正方形,E ,F 分为P A ,PD 的中点,在此几何体中,给出下面四个结论:①直线BE 与直线CF 是异面直线;②直线BE 与直线AF 是异面直线;③直线EF ∥平面PBC ;④平面BCE ⊥平面P AD .其中正确的结论是________.(填序号)(第4题)二、 解答题5. 如图(1),四边形ABCD 为等腰梯形,AD ∥BC ,且AD =13 BC =a ,∠BAD =135°,AE ⊥BC于点E ,F 为BE 的中点.将△ABE 沿着AE 折起至△AB ′E 的位置,得到如图(2)所示的四棱锥B ′ ADCE .图(1)图(2) (第5题)(1) 求证:AF ∥平面B ′CD ;(2) 若平面AB ′E ⊥平面AECD ,求二面角B ′- CD-E 的余弦值.6. 如图,在平面四边形ABCD 中,△ABC 等边三角形,AC ⊥DC ,以AC 为折痕将△ABC 折起,使得平面ABC ⊥平面ACD .(1) 设E 为BC 的中点,求证:AE ⊥平面BCD .(2) 若BD 与平面ABC 所成角的正切值为32,求二面角A-BD-C 的余弦值.(第6题)7. 如图,已知等边三角形ABC 中,E ,F 分别为AB ,AC 边的中点,M 为EF 的中点,N 为BC 边上一点,且CN =14BC ,将△AEF 沿EF 折到△A ′EF 的位置,使平面A ′EF ⊥平面EFCB .(1) 求证:平面A ′MN ⊥平面A ′BF ; (2) 求二面角E-A ′F-B 的余弦值.(第7题)微难点9 球的相关问题一、 选择题1. 若球的表面积扩大为原来的2倍,则球的体积比原来增加了( )A. 2倍B. 4倍C. 2 2D. (2 2 -1)倍2. (2019·长沙调研)圆柱形容器的内壁底半径为5 cm,两个直径为5 cm 的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器内水面将下降( )A. 53 cmB. 103 cmC. 403 cmD. 56cm3. 在四面体S ABC 中,SA ⊥平面ABC ,∠BAC =120°,SA =AC =2,AB =1,则该四面体的外接球的表面积为( )A. 11πB. 7πC.103 π D. 4034. 已知某球半径为R ,则该球内接长方体的表面积的最大值是( ) A. 8R 2 B. 6R 2 C. 4R 2 D. 2R 25. 两球O 1和O 2在棱长为1的正方体ABCD A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( )A. (6-33 )πB. (8-43 )πC. (6+33 )πD. (8+43 )π二、 填空题6. 如果三棱锥的三个侧面两两垂直,它们的面积分别为6,4,3,那么它的外接球的表面积是________.7. 将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A BCD ,则四面体A BCD 的外接球的体积为________.8. 底面半径为1 cm 的圆柱形容器里放有四个半径为12 cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水________cm 3.9. 已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.10. 已知一个四面体的一条边长为6 ,其余边长均为2,则此四面体的外接球的半径为________.三、解答题11. 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.(第11题)。
§1.4 不等关系与不等式1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a -b =0⇔a =b a -b <0⇔a <b(a ,b ∈R )(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b ab =1⇔a =ba b <1⇔a <b(a ∈R ,b >0)2.不等式的基本性质概念方法微思考1.若a >b ,且a 与b 都不为0,则1a 与1b的大小关系确定吗?提示 不确定.若a >b ,ab >0,则1a <1b ,即若a 与b 同号,则分子相同时,分母大的反而小;若a >0>b ,则1a >1b ,即正数大于负数.2.两个同向不等式可以相加和相乘吗?提示 可以相加但不一定能相乘,例如2>-1,-1>-3.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若ab>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)a >b >0,c >d >0⇒a d >bc .( √ )题组二 教材改编2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件答案 A 解析a -b >0⇒a >b ⇒a >b ⇒a 2>b 2,但a 2-b 2>0⇏a -b >0.3.若a >b >0,c <d <0,则一定有( ) A.a c -bd >0 B.a c -b d <0 C.a d >b c D.a d <b c答案 D解析 ∵c <d <0,∴0<-d <-c , 又0<b <a ,∴-bd <-ac ,即bd >ac , 又∵cd >0,∴bd cd >ac cd ,即b c >ad .题组三 易错自纠4.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案 A解析 若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =12.所以“a >2且b >1”是“a+b >3且ab >2”的充分不必要条件.故选A. 5.(多选)下列命题为真命题的是( ) A.若a >b >0,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2 C.若a >b >0且c <0,则c a 2>cb 2D.若a >b 且1a >1b ,则ab <0答案 BCD解析 当c =0时,不等式不成立,∴A 命题是假命题;⎩⎪⎨⎪⎧ a <b ,a <0⇒a 2>ab ,⎩⎪⎨⎪⎧a <b ,b <0⇒ab >b 2,∴a 2>ab >b 2,∴B 命题是真命题;a >b >0⇒a 2>b 2>0⇒0<1a 2<1b 2,∵c <0,∴c a 2>cb 2,∴C 命题是真命题;1a >1b ⇒1a -1b >0⇒b -a ab >0,∵a >b ,∴b -a <0,ab <0,∴D 命题是真命题,∴本题选BCD.6.(2019·北京市海淀区育英学校期中)若实数a, b 满足0<a <2, 0<b <1,则a -b 的取值范围是________. 答案 (-1,2)解析 ∵0<b <1,∴-1<-b <0, ∵0<a <2,∴-1<a -b <2.比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为( )A.p <qB.p ≤qC.p >qD.p ≥q答案 B解析 (作差法)p -q =b 2a +a 2b -a -b=b 2-a 2a +a 2-b 2b =(b 2-a 2)·⎝⎛⎭⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B.(2)已知a >b >0,比较a a b b 与a b b a 的大小. 解 ∵a a b b a b b a =a a -b b a -b =⎝⎛⎭⎫a b a -b,又a >b >0,故ab >1,a -b >0,∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又a b b a >0,∴a a b b >a b b a ,∴a a b b 与a b b a 的大小关系为a a b b >a b b a . 思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④结论.跟踪训练1 (1)已知p ∈R ,M =(2p +1)(p -3),N =(p -6)(p +3)+10,则M ,N 的大小关系为________. 答案 M >N解析 因为M -N =(2p +1)(p -3)-[(p -6)(p +3)+10]=p 2-2p +5=(p -1)2+4>0,所以M >N .(2)若a >0,且a ≠7,则( ) A.77a a <7a a 7 B.77a a =7a a 7 C.77a a >7a a 7D.77a a 与7a a 7的大小不确定 答案 C解析 77a a 7a a7=77-a a a -7=⎝⎛⎭⎫7a 7-a ,则当a >7时,0<7a <1,7-a <0,则⎝⎛⎭⎫7a 7-a>1,∴77a a >7a a 7; 当0<a <7时,7a >1,7-a >0,则⎝⎛⎭⎫7a 7-a>1,∴77a a >7a a 7. 综上,77a a >7a a 7.不等式的基本性质例2 (1)(2020·武汉部分市级示范高中联考)下列命题中正确的是( ) A.若a >b ,则ac 2>bc 2 B.若a >b ,c <d ,则a c >bdC.若a >b ,c >d ,则a -c >b -dD.若ab >0,a >b ,则1a <1b答案 D解析 对于A 选项,当c =0时,不成立,故A 选项错误;当a =1,b =0,c =-2,d =-1时,a c <bd ,故B 选项错误;当a =1,b =0,c =1,d =0时,a -c =b -d ,故C 选项错误,故D 选项正确. (2)(多选)若1a <1b <0,则下列结论正确的是( )A.a 2<b 2B.ab <b 2C.a +b <0D.|a |+|b |>|a +b |答案 ABC解析 由题意可知b <a <0,所以A,B,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误.思维升华判断不等式的常用方法:一是用性质逐个验证;二是用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练2(1)(多选)(2019·天津市河北区模拟)若a,b,c∈R,给出下列命题中,正确的有()A.若a>b,c>d,则a+c>b+dB.若a>b,c>d,则b-c>a-dC.若a>b,c>d,则ac>bdD.若a>b,c>0,则ac>bc答案AD解析∵a>b,c>d,由不等式的同向可加性得a+c>b+d,故A正确;由A正确,可知B不正确;取4>-2,-1>-3,则4×(-1)<(-2)×(-3),故C不正确;∵a>b,c>0,∴ac>bc.故D 正确.综上可知,只有AD正确.故选AD.(2)已知a,b,c满足c<b<a,且ac<0,那么下列选项中一定成立的是()A.ab>acB.c(b-a)<0C.cb2<ab2D.ac(a-c)>0答案 A解析由c<b<a且ac<0,知c<0且a>0.由b>c,得ab>ac一定成立.不等式性质的综合应用命题点1判断不等式是否成立例3(2019·北京师范大学附属中学期中)若b<a<0,则下列不等式:①|a|>|b|;②a+b<ab;③a2b<2a-b中,正确的不等式有()A.0个B.1个C.2个D.3个答案 C解析 对于①,因为b <a <0,所以|b |>|a |,故①错误;对于②,因为b <a <0,所以a +b <0,ab >0,a +b <ab ,故②正确;对于③,a 2b -2a +b =a 2-2ab +b 2b =(a -b )2b <0,a 2b <2a -b ,故③正确.故选C.命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2, ∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6, ∴1<3x +2y <18.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围.解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎨⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232. 思维升华 (1)判断不等式是否成立的方法 ①逐一给出推理判断或反例说明.②结合不等式的性质,对数函数、指数函数的性质进行判断. (2)求代数式的取值范围一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围. 跟踪训练3 (1)设b >a >0,c ∈R ,则下列不等式中不一定成立的是( ) A.1122<a b B.1a -c >1b -c C.a +2b +2>ab D.ac 2<bc 2答案 D解析 因为y =12x 在(0,+∞)上是增函数,所以1122<a b ; 因为y =1x -c 在(0,+∞)上是减函数,所以1a -c >1b -c ;因为a +2b +2-a b =2(b -a )(b +2)b >0,所以a +2b +2>ab ;当c =0时,ac 2=bc 2,所以D 不成立.故选D.(2)已知π<α+β<5π4,-π<α-β<-π3,则2α-β的取值范围是________.答案 ⎝⎛⎭⎫-π,π8 解析 设2α-β=m (α+β)+n (α-β),则⎩⎪⎨⎪⎧m +n =2,m -n =-1,∴⎩⎨⎧m =12,n =32,即2α-β=12(α+β)+32(α-β),∵π<α+β<5π4,-π<α-β<-π3,∴π2<12(α+β)<5π8,-3π2<32(α-β)<-π2, ∴-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,∴2α-β的取值范围是⎝⎛⎭⎫-π,π8.1.(2019·张家界期末)下列不等式中,正确的是( )A.若ac 2>bc 2,则a >bB.若a >b ,则a +c <b +cC.若a >b ,c >d ,则ac >bdD.若a >b ,c >d ,则a c >b d答案 A解析 若a >b ,则a +c >b +c ,故B 错;设a =3,b =1,c =-1,d =-2,则ac <bd ,a c <b d所以C,D 错,故选A.2.若a ,b ∈R ,且a >|b |,则( )A.a <-bB.a >bC.a 2<b 2D.1a >1b答案 B 解析 由a >|b |得,当b ≥0时,a >b ,当b <0时,a >-b ,综上可知,当a >|b |时,则a >b 成立,故选B.3.若a <b <0,则下列不等式一定成立的是( )A.1a -b >1b B.a 2<abC.|b ||a |<|b |+1|a |+1 D.a n >b n答案 C解析 (特值法)取a =-2,b =-1,n =0,逐个检验,可知A,B,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.4.已知c 3a <c 3b <0,则下列选项中错误的是( )A.|b |>|a |B.ac >bcC.a -b c >0D.ln a b >0答案 D解析 c 3a <c 3b <0,当c <0时, 1a >1b >0,即b >a >0,∴|b |>|a |, ac >bc, a -b c >0成立,即A,B,C 成立;此时0<a b <1,∴ln a b <0,D 错误.同理,当c >0时,A,B,C 也正确.故选D.5.设M =3x+3y 2,N =(3)x +y ,P =其中0<x <y ),则M ,N ,P 的大小顺序是() A.P <N <M B.N <P <MC.P <M <ND.M <N <P答案 A解析 M =3x +3y 2>3x +y =(3)x +y =N ,又N =(3)x +y =23x y>P ,∴M >N >P .6.(2020·天津模拟)若α,β满足-π2<α<β<π2,则2α-β的取值范围是( ) A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π 答案 C解析 ∵-π2<α<π2,∴-π<2α<π. ∵-π2<β<π2,∴-π2<-β<π2, ∴-3π2<2α-β<3π2. 又α-β<0,α<π2,∴2α-β<π2. 故-3π2<2α-β<π2. 7.(多选)若a <b <0,则下列不等式关系中,正确的有( )A.1a >1bB.1a >1a -bC.2233>a bD.1a 2>1b 2 答案 ABC解析 对于A,∵a <b <0,∴1a >1b,故A 正确;对于B,∵a <b <0 ,∴a <a -b <0,两边同时除以a (a -b )可得1a >1a -b,故B 正确;根据幂函数的单调性可知C 正确;对于D,∵a <b <0,∴a 2>b 2>0,∴1a 2<1b 2,故D 错误. 8.(多选)已知a ,b ∈(0,1),若a >b ,则下列所给命题中错误的为( ) A.1(1-)>(1-)aa b b B.2(1-)>(1-)a a b bC.(1+b )b >(1+a )aD.(1-b )b >(1-a )a答案 ABC解析 因为a ,b ∈(0,1)且a >b ,所以1>1-b >1-a >0,因为指数函数y =a x (0<a <1)单调递减,1>a >b >0,所以1a >a ,a >a 2,故A,B 错误. (1+b )b <(1+a )b <(1+a )a ,故C 错误.(1-b )b >(1-b )a >(1-a )a ,故D 正确.9.已知a +b >0,则a b 2+b a 2与1a +1b的大小关系是________. 答案a b 2+b a 2≥1a +1b 解析 a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )·⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0. ∴a b 2+b a 2≥1a +1b. 10.已知有三个条件:①ac 2>bc 2;②a c >b c;③a 2>b 2,其中能成为a >b 的充分条件的是________.(填序号)答案 ①解析 由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.11.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d; (2)已知c >a >b >0,求证:a c -a >b c -b. 证明 (1)∵bc ≥ad ,bd >0,∴c d ≥a b, ∴c d +1≥a b +1,∴a +b b ≤c +d d. (2)∵c >a >b >0,∴c -a >0,c -b >0.∵a >b >0,∴1a <1b, 又∵c >0,∴c a <c b ,∴c -a a <c -b b,又c -a >0,c -b >0,∴a c -a >bc -b .12.已知1<a <4,2<b <8,试求a -b 与a b 的取值范围.解 因为1<a <4,2<b <8,所以-8<-b <-2.所以1-8<a -b <4-2,即-7<a -b <2.又因为18<1b <12,所以18<a b <42=2,即18<a b <2.故a -b 的取值范围为(-7,2),a b 的取值范围为⎝⎛⎭⎫18,2.13.已知a ,b ,c ,d 为实数,则“a >b 且c >d ”是“ac +bd >bc +ad ”的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A解析 因为c >d ,所以c -d >0.又a >b ,所以两边同时乘(c -d ),得a (c -d )>b (c -d ),即ac +bd >bc +ad .若ac +bd >bc +ad ,则a (c -d )>b (c -d ),也可能a <b 且c <d ,所以“a >b 且c >d ”是“ac +bd >bc +ad ”的充分不必要条件.14.若a =ln 33,b =ln 44,c =ln 55,则( )A.a <b <cB.c <b <aC.c <a <bD.b <a <c答案 B解析 方法一 对于函数y =f (x )=ln x x (x >e),y ′=1-ln xx 2,易知当x >e 时,函数f (x )单调递减.因为e <3<4<5,所以f (3)>f (4)>f (5),即c <b <a .方法二 易知a ,b ,c 都是正数,因为b a =3ln 44ln 3=log 8164<1,所以a >b ;因为b c =5ln 44ln 5=log 6251 024>1,所以b >c .即c <b <a .15.(2019·抚州临川第一中学模拟)设m =log 0.30.6,n =12log 20.6,则() A.m -n >mn >m +n B.m -n >m +n >mnC.mn >m -n >m +nD.m +n >m -n >mn答案 B解析 因为m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,所以mn <0,m -n >0,因为-1n =-2log 0.62=log 0.60.25>0,1m =log 0.60.3>0,而log 0.60.25>log 0.60.3,所以-1n >1m>0,即可得m +n >0, 因为(m -n )-(m +n )=-2n >0,所以m -n >m +n ,所以m -n >m +n >mn .故选B.16.设0<b <a <1,则下列不等式成立的是( )A.a ln b >b ln aB.a ln b <b ln aC.a e b <b e aD.a e b =b e a答案 B解析 观察A,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln x x ,0<x <1.则y ′=1-ln x x 2,可见函数y =ln x x 在(0,1)上单调递增.所以ln b b <ln a a,B 正确.对于C,D 两项,引入函数f (x )=e x x ,0<x <1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2<0,所以函数f (x )=e x x在(0,1)上单调递减,又因为0<b <a <1,所以f (a )<f (b ),即e a a <e b b ,所以a e b >b e a ,故选B.。
多维层次练59[A 级 基础巩固]1.已知⎝ ⎛⎭⎪⎫x -1x 7的展开式的第4项等于5,则x 等于( )A.17 B .-17C .7D .-7解析:由T 4=C 37x 4⎝⎛⎭⎪⎫-1x 3=5,得x =-17.答案:B2.(2020·合肥八校联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212解析:由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.答案:A3.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:(x 2+x +y )5=[(x 2+x )+y ]5的展开式中只有C 25(x 2+x )3y 2中含x 5y 2,易知x 5y 2的系数为C 25C 13=30.答案:C4.(2020·佛山质检)若⎝⎛⎭⎪⎫ax -1x 6的展开式的常数项是60,则a 的值为( )A .4B .±4C .2D .±2解析:⎝ ⎛⎭⎪⎫ax -1x 6的展开式的通项为T r +1=C r 6(ax )6-r ·⎝⎛⎭⎪⎫-1x r =(-1)r a 6-r ·C r 6x 6-32r , 令6-32r =0,解得r =4.所以常数项为(-1)4a 2C 46=15a 2=60,则a =±2. 答案:D5.C 1n +2C 2n +4C 3n +…+2n -1C n n 等于( ) A .3n B .2·3n C.3n2-1 D.3n -12解析:C 1n +2C 2n +4C 3n +…+2n -1C n n =12(C 0n +2C 1n +22C 2n +…+2n C nn )-12=12(1+2)n-12=3n-12. 答案:D6.(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40, x 3y 3=y ·(x 3y 2),其系数为C 25·23=80.所以x 3y 3的系数为80-40=40. 故选C. 答案:C7.(2020·青岛质检)在⎝ ⎛⎭⎪⎫x +2x 2n(n ∈N *)的展开式中,若二项式系数最大的项仅是第六项,则展开式中常数项是( )A .180B .120C .90D .45解析:依题意,展开式共11项,所以n =10.则⎝ ⎛⎭⎪⎫x +2x 210展开式的通项T r +1=C r 10·2r·x 5-5r 2. 令5-5r2=0,所以r =2.所以展开式中的常数项T 3=C 210·22=180. 答案:A8.(2020·衡水中学调研)(1+x 2)·⎝⎛⎭⎪⎫1-1x 6的展开式中,常数项为( )A .-15B .16C .15D .-16解析:⎝ ⎛⎭⎪⎫1-1x 6的展开式的通项为T r +1=C r 6⎝ ⎛⎭⎪⎫-1x r =C r 6(-1)r ·x -r, 令-r =0,得r =0;令-r =-2,得r =2.所以展开式的常数项为C 06(-1)0+C 26(-1)2=16.答案:B9.若⎝ ⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.解析:T r +1=C r6(ax 2)6-r ⎝⎛⎭⎪⎫b x r =C r 6a 6-r b r x 12-3r , 令12-3r =3,则r =3.所以C 36a 3b 3=20,即ab =1.所以a 2+b 2≥2ab =2,即a 2+b 2的最小值为2. 答案:210.已知幂函数y =x a的图象过点(3,9),则⎝ ⎛⎭⎪⎫a x -x 8的展开式中x 的系数为________.解析:由幂函数的图象过点(3,9),可得a =2.则⎝ ⎛⎭⎪⎫2x -x 8展开式的第r +1项为T r +1=C r8⎝ ⎛⎭⎪⎫2x 8-r ·(-x )r =(-1)r C r 8·28-r x 32r -8,由32r -8=1,得r =6,故含x 的项的系数为C 68×22×(-1)6=112.答案:11211.(2017·浙江卷)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:a 4是x 项的系数,由二项式的展开式得a 4=C 33·C 12·2+C 23·C 22·22=16; a 5是常数项,由二项式的展开式得a 5=C 33·C 22·22=4. 答案:16 412.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为________.解析:令x =1,得展开式各项系数的和为(1+a )·(2-1)5=2, 所以a =1.因为二项式⎝ ⎛⎭⎪⎫2x -1x 5的展开式的通项公式为T r +1=C r 5(-1)r ·25-r ·x 5-2r,所以⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中的常数项为x ·C 35(-1)3·22·x -1+1x·C 25·(-1)2·23·x =-40+80=40. 答案:40[B 级 能力提升]13.(一题多解)(2020·广州模拟)(2-x 3)(x +a )5的展开式的各项系数和为32,则该展开式中x 4的系数是( )A .5B .10C .15D .20解析:法一 因为(2-x 3)(x +a )5的展开式的各项系数和为32,所以(2-1)(1+a )5=32,所以a =1,因为(x +1)5的展开式的通项为T r +1=C r 5·x 5-r ,所以原多项式的展开式中x 4的系数是2×C 15+(-1)×C 45=5.法二 因为(2-x 3)(x +a )5的展开式的各项系数和为32,所以(2-1)·(1+a )5=32,所以a =1,因为(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1,所以(2-x 3)(x +a )5的展开式中x 4的系数是2×5+(-1)×5=5.答案:A14.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210解析:在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m6·C n 4, 所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.答案:C15.(2019·江苏卷节选)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ≥4,n ∈N *,已知a 23=2a 2a 4.则n =________.解析:因为(1+x )n =C 0n +C 1n x +C 2n x 2+…+C n n x n,n ≥4,所以a 2=C 2n =n (n -1)2,a 3=C 3n =n (n -1)(n -2)6, a 4=C 4n =n (n -1)(n -2)(n -3)24.因为a 23=2a 2a 4,所以⎣⎢⎡⎦⎥⎤n (n -1)(n -2)62=2×n (n -1)2×n (n -1)(n -2)(n -3)24.解得n =5. 答案:5[C 级 素养升华]16.(2019·浙江卷)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.解析:由二项展开式的通项公式可知T r +1=C r 9·(2)9-r ·x r ,r ∈N ,0≤r ≤9,当为常数项时,r =0,T 1=C 09·(2)9·x 0=(2)9=16 2.当项的系数为有理数时,9-r 为偶数,可得r =1,3,5,7,9,即系数为有理数的项的个数是5. 答案:162 5。
[考案1]第一章综合过关规范限时检测(时间:45分钟满分100分)一、单选题(本大题共7个小题,每小题5分,共35分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2020·兰州市高三诊断考试)已知集合A={x∈N|-1<x<4},B⊆A,则集合B中的元素个数至多是(B)A.3B.4C.5D.6【试题解答】因为A=|x∈N|-1<x<4}={0,1,2,3},且B⊆A,所以集合B中的元素个数至多是4,故选B.2.(2018·课标全国Ⅲ,1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=(C)A.{0}B.{1}C.{1,2}D.{0,1,2}【试题解答】本题考查集合的运算.∵A={x|x-1≥0}={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.3.(2020·成都市二诊)设全集U=R,集合A={x|-1<x<3},B={x|x≤-2或x≥1},则A∩(∁U B)=(A)A.{x|-1<x<1}B.{x|-2<x<3}C.{x|-2≤x<3}D.{x|x≤-2或x>-1}【试题解答】由题意知∁U B={x|-2<x<1},则A∩(∁U B)={x|-1<x<3}∩{x|-2<x<1}={x|-1<x<1}.4.(2020·宁夏中卫模拟)命题“若a2+b2=0,则a=0且b=0”的逆否命题是(D)A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0【试题解答】命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.5.(2020·山东潍坊重点高中联考)毛泽东同志在《清平乐·六盘山》中的两句诗为“不到长城非好汉,屈指行程二万”,假设诗句的前一句为真命题,则“到长城”是“好汉”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【试题解答】解法一:由“不到长城非好汉”可知,要想成为好汉必须到过长城,因此“到长城”是“好汉”的必要不充分条件.解法二:设¬p为不到长城,推出¬q非好汉,即¬p⇒¬q,由原命题与其逆否命题等价可知q⇒p,即好汉⇒到长城,故“到长城”是“好汉”的必要不充分条件.故选B.6.下列命题中,真命题是( D )A.命题“若a >b ,则ac 2>bc 2”B.命题“若a =b ,则|a |=|b |”的逆命题C.命题“当x =2时,x 2-5x +6=0”的否命题D.命题“终边相同的角的同名三角函数值相等”的逆否命题【试题解答】 命题“若a >b ,则ac 2>bc 2”是假命题,如a >b 且c =0时,ac 2=bc 2;命题“若a =b ,则|a |=|b |”的逆命题为“若|a |=|b |,则a =b ”是假命题;命题“当x =2时,x 2-5x +6=0”的否命题为“若x ≠2,则x 2-5x +6≠0”是假命题;命题“终边相同的角的同名三角函数值相等”是真命题,其逆否命题与原命题等价,为真命题,故选D.7.(2020·广东汕头模拟)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,均有2x -a >0.若“¬p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( C )A.(-∞,-2)B.(-2,1]C.(1,2)D.(1,+∞)【试题解答】 若方程x 2+ax +1=0没有实根,则判别式Δ=a 2-4<0,即-2<a <2,即p :-2<a <2.∀x >0,2x -a >0则a <2x ,当x >0时,2x >1,则a ≤1,即q :a ≤1.∵¬p 是假命题,∴p 是真命题.∵p ∧q 是假命题,∴q 是假命题,即⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2.故选C. 二、多选题(本大题共3个小题,每小题5分,共15分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分)8.(2020·重庆市第一次调研抽测改编)已知集合A ={1,2,m },B ={3,4},若A ∪B ={1,2,3,4},则实数m 可以为( CD )A.1B.2C.3D.4 【试题解答】 解法一:由题意知m 是B 中的元素,则m =3或4,故选C 、D.解法二:由集合中元素的互异性知,m ≠1且m ≠2,故排除选项A 、B ,选C 、D.9.(2020·福建三明一中期中改编)下列选项中错误的有( ABC )A.命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B.“A ≠∅”是“A ∩B ≠∅”的充分不必要条件C.命题“∃x ∈R ,使得x 2+x -1<0”的否定是“∀x ∈R ,均有x 2+x -1>0”D.命题“若x =y ,则sin x =sin y ”的逆否命题为真命题【试题解答】 对于A ,命题“若x 2=1,则x =1”的否命题为:“若x 2≠1,则x ≠1”∴A 错误; 对于B ,由“A ≠∅”是得不到“A ∩B ≠∅”,即“A ≠∅”是“A ∩B ≠∅”不充分条件,由“A ∩B ≠∅”可知“A ≠∅”,即“A ≠∅”是“A ∩B ≠∅”必要条件,故“A ≠∅”是“A ∩B ≠∅”必要不充分条件,∴B 错误;对于C ,命题“∃x ∈R ,使得x 2+x -1<0”的否定是“∀x ∈R ,使得x 2+x -1≥0”,∴C 错误; 对于D ,命题“若x =y ,则sin x =sin y ”为真命题,根据互为逆否命题的两个命题同真假,可知,命题“若x =y ,则sin x =sin y ”的逆否命题为真命题,∴D 正确;故A 、B 、C.10.(2020·凤城市第一中学高一月考改编)不等式1≤|x |≤4成立的充分不必要条件为( AB )A.[-4,-1]B.[1,4]C.[-4,-1]∪[1,4]D.[-4,4]【试题解答】 由不等式1≤|x |≤4,解得:-1≤x ≤-1或1≤x ≤4,对于A ,B 选项中的集合是不等式解集的真子集,∴不等式1≤|x |≤4成立的充分不必要条件为A ,B.故选A 、B.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11.(2018·湖南卷)已知集合U ={1,2,3,4},A ={1,3},B ={1,3,4},则A ∪(∁U B )=__{1,2,3}__. 【试题解答】 ∵∁U B ={2},∴A ∪(∁U B )={1,2,3}.12.(2020·江西上饶模拟)命题“∀x ∈R ,|x |+x 2≥0”的否定是 ∃x 0∈R ,|x 0|+x 20<0 .【试题解答】 因为全称命题的否定是特称命题,所以命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.13.(2020·湖南常德一中模拟)条件p :1-x <0,条件q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围是__(-∞,1)__.【试题解答】 p :x >1,若p 是q 的充分不必要条件,则p ⇒q 但qp ,也就是说,p 对应的集合是q 对应的集合的真子集,所以a <1.14.(2020·衡水金卷A 信息卷(五),14)命题p :若x >0,则x >a ;命题q :若m ≤a -2,则m <sin x (x ∈R )恒成立.若p 的逆命题,q 的逆否命题都是真命题,则实数a 的取值范围是__[0,1)__.【试题解答】 命题p 的逆命题是若x >a ,则x >0,故a ≥0.因为命题q 的逆否命题为真命题,所以命题q 为真命题,则a -2<-1,解得a <1.则实数a 的取值范围是[0,1).四、解答题(本大题共2个小题,共30分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分15分)已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0},a ∈R .(1)若x ∈A 是x ∈B 的充分条件,求实数a 的取值范围;(2)若A ∩B =∅,求实数a 的取值范围.【试题解答】 A ={x |x 2-6x +8<0}={x |2<x <4},B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不符合题意,当a >0时,B ={x |a <x <3a },要满足题设条件,则⎩⎪⎨⎪⎧a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题设条件,则⎩⎪⎨⎪⎧3a ≤2,a ≥4,无解. 综上可知:43≤a ≤2. (2)要满足A ∩B =∅.当a >0时,B ={x |a <x <3a },则a ≥4或3a ≤2,即0<a ≤23或a ≥4, 当a <0时,B ={x |3a <x <a },则a ≤2或3a ≥4,即a <0,当a =0时,B =∅,满足题意.综上可知:a ≤23或a ≥4. 16.(本小题满分15分)设命题p :方程x 28-a +y 2a -4=1表示焦点在x 轴上的椭圆,命题q :函数f (x )=13x 3+3(3-a )2x 2+9x 无极值. (1)若p 为真命题,求实数a 的取值范围;(2)若“p ∧q ”为假命题,“p ∨q ”为真命题,求实数a 的取值范围.【试题解答】 (1)由⎩⎪⎨⎪⎧ 8-a >0a -4>08-a >a -4得4<a <6, ∴实数a 的取值范围为(4,6).(2)由题意知p ,q 一真一假,q 为真时,则f ′(x )=x 2+3(3-a )x +9≥0恒成立,∴Δ=9(3-a )2-36≤0得1≤a ≤5,若p 真q 假,5<a <6;若q 真p 假,1≤a ≤4.综上,实数a 的取值范围是[1,4]∪(5,6).。
第五章 平面向量与复数第26讲 平面向量的概念与线性运算A 应知应会一、 选择题1. (多选)如图,若D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中正确的是( )(第1题)A. FD → +DA → +DE →=0 B. AD → +BE → +CF →=0C. FD → +DE → +AD → =AB →D. AD → +EC → +FD → =BD →2. 在平行四边形ABCD 中,对角线AC 与BD 交于点O ,若AB → +AD → =λAO →,则λ等于( )A. 1B. 2C. 4D. 63. 在等腰梯形ABCD 中,AB → =-2CD → ,M 为BC 的中点,则AM →等于( ) A. 12 AB → +12 AD → B. 34 AB → +12 AD → C. 34 AB → +14 AD → D. 12 AB → +34AD → 4. 在△ABC 中,设三边AB ,BC ,CA 的中点分别为E ,F ,D ,则EC → +F A →等于( ) A. BD → B. 12 BD → C. AC →D. 12AC →5. (2019·河北三市联考)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b,则mn等于( )A. -12B. 12 C. -2 D. 2二、 解答题6. 设e 1,e 2是两个不共线向量,已知AB → =2e 1-8e 2,CB → =e 1+3e 2,CD →=2e 1-e 2. (1) 求证:A ,B ,D 三点共线;(2) 若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.7. 在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a,AC → =b,试用a,b 表示AD → ,AG → .B 组 能力提升一、 填空题1. 在△ABC 中,若AD → =2DB → ,CD → =13 CA → +λCB →,则λ=________.2. (2019·无锡期末)在四边形 ABCD 中,已知AB → =a +2b,BC → =-4a -b,CD →=-5a -3b,其中a,b 是不共线的向量,则四边形ABCD 的形状是________.3. (2019·潍坊一模改编)若M 是△ABC 内一点,且满足BA → +BC → =4BM → ,则△ABM 与△ACM 的面积之比为________.4. (2019·泰州期末)已知点P 为平行四边形ABCD 所在平面上一点,且满足P A → +PB → +2PD → =0,λP A → +μPB → +PC →=0,则λμ=________.二、 解答题5. 在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23 ,BC =2,点E 在线段CD 上,若AE →=AD → +μAB →,求μ的取值范围.6. (1) 如图(1),在同一个平面内,向量OA → ,OB → ,OC → 的模分别为1,1,2 ,OA → 与OC →的夹角为α,且tan α=7,OB → 与OC → 的夹角为45°.若OC → =mOA → +nOB →(m ,n ∈R),求m +n 的值.(2) 如图(2),在△ABC 中,AH ⊥BC 于点H ,M ∈AH ,AM =13 AH ,若AM → =xAB → +yAC →,求x+y 的值.图(1)图(2)(第6题)第27讲 平面向量的基本定理与坐标表示A 应知应会一、 选择题1. 已知a =(3,-1),b =(-1,2),则-3a -2b 等于( )A. (7,1)B. (-7,-1)C. (-7,1)D. (7,-1)2. 已知A ,B ,C 三点共线,且A (3,-6),B (-5,2),若点C 的横坐标为6,则点C 的纵坐标为( )A. -13B. 9C. -9D. 133. 已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 等于( )A. 12B. 1C. -1D. 2 4. 在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP → =13 AB → ,BQ → =13 BC → .若AB →=a,AC → =b,则PQ →等于( )A. 13 a +13 bB. -13 a +13 bC. 13 a -13 bD. -13 a -13b5. (多选)设e 1,e 2为平面α上不共线的两个向量,则下列命题中正确的是( ) A. λe 1+u e 2(λ,u ∈R)可以表示平面α内的所有向量B. 对于平面α内任一向量a,使a =λe 1+u e 2的实数对(λ,u )有无穷多个C. 若向量λ1e 1+u 1e 2与λ2e 1+u 2e 2共线,则有且只有一个实数λ,使得λ1e 1+u 1e 2=λ(λ2e 1+u 2e 2)D. 若实数λ,u 使得λe 1+u e 2=0,则λ=u =0二、 解答题6. 设OA → =(1,-2),OB → =(a ,-1),OC →=(-b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,求1a +2b的最小值.7. 如图,以向量OA → =a,OB → =b 为邻边作OADB ,BM →=13 BC → ,CN → =13 CD → ,用a,b 表示OM → ,ON → ,MN →.(第7题)B 组 能力提升一、 填空题1. 已知梯形ABCD 中,AB ∥CD ,且DC =2AB ,若三个顶点分别为A (1,2),B (2,1),C (4,2),则点D 的坐标为________.2. 已知|OA → |=1,|OB → |=3 ,OA → ·OB → =0,点C 在∠AOB 内,且OC → 与OA →的夹角为30°,设OC → =mOA → +nOB →(m ,n ∈R),则m n的值为________.3. (2019·南昌十校二模)已知向量a =(1,-2),b =(x ,3y -5),且a ∥b,若x ,y 均为正数,则xy 的最大值是________.4. 在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC |=2,若OC → =λOA → +μOB →,则λ+μ=________.二、 解答题5. (2019·长沙模拟改编)在平面直角坐标系xOy 中,已知点A (3 ,0),B (1,2),动点P 满足OP → =λOA → +μOB →,其中λ,μ∈[0,1],λ+μ∈[1,2],求所有点P 构成的图形的面积.6. 已知正三角形ABC 的边长为23 ,平面ABC 内的动点P ,M 满足|AP → |=1,PM → =MC →,求|BM →|2的最大值.第28讲 平面向量数量积的应用A 应知应会一、 选择题 1. (2019·深圳二调)已知向量a =(1,-1),b =(-2,3).若a ⊥(a +m b),则m 等于( ) A. 25 B. -25 C. 0 D. 152. (2019·芜湖期末)已知向量a,b 满足a =(cos α,sin α),α∈R,a·b =-1,则a·(2a -b)等于( )A. 3B. 2C. 1D. 03. (2019·太原期末)设向量a,b,c 都是单位向量,且2a =b -3 c,则a,b 的夹角为( ) A. π6 B. π4 C. π3 D. 2π34. (2019·长沙检测)在△ABC 中,AB =10,BC =6,CA =8,且O 是△ABC 的外心,则CA → ·AO → 等于( )A. 16B. 32C. -16D. -325. (多选)给出下列四个命题,其中正确的选项有( )A. 非零向量a,b 满足|a|=|b|=|a -b|,则a 与a +b 的夹角是30°B. 若(AB → +AC → )·(AB → -AC → )=0,则△ABC 为等腰三角形C. 若单位向量a,b 的夹角为120°,则当|2a +x b|(x ∈R)取最小值时x =1D. 若OA → =(3,-4),OB → =(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34二、 解答题6. 已知两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.7. 已知|a|=4,|b|=3,(2a -3b)·(2a +b)=61. (1) 求a 与b 的夹角θ; (2) 求|a +b|;(3) 若AB → =a,BC →=b,求△ABC 的面积.B 组 能力提升一、 填空题1. (2019·合肥检测)若非零向量a,b 满足a ⊥(a +2b),则|a +b||b|=________.2. (2019·福州抽测改编)已知点O 是△ABC 内部一点,且满足OA → +OB → +OC →=0,又AB → ·AC → =23 ,∠BAC =60°,则△OBC 的面积为________.3. (2019·郑州模拟)已知平面向量a,b,c 满足|a|=|b|=|c|=1,若a·b =12 ,则(a +b)·(2b -c)的最小值为________.4. (2019·江苏淮阴中学)在△ABC 中,∠A =60°,AB =3,AC =2.若BD → =2DC → ,AE → =λAC →-AB → (λ∈R),且AD → ·AE → =-4,则λ的值为________.二、 解答题5. 已知在△ABC 中,角A ,B ,C 的对边分别为a,b,c,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1) 求角C 的大小;(2) 若sin A ,sin C ,sin B 成等差数列,且CA → ·(AB → -AC →)=18,求边c 的长.6. (2019·山东德州模拟)在平面直角坐标系xOy 中,已知四边形OABC 是等腰梯形,A (6,0),C (1,3 ),点M 满足OM →=12OA → ,点P 在线段BC 上运动(包括端点),如图所示.(1) 求∠OCM 的余弦值;(2) 是否存在实数λ,使(OA → -λOP → )⊥CM →?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由.(第6题)第29讲 复 数 A 应知应会一、 选择题1. 若复数z 满足(2-i)z =|1+2i|,则z 的虚部为( ) A.55 B. 55i C. 1 D. i 2. 已知复数z =|(3 -i)i|+i 5(i 为虚数单位),则复数z 的共轭复数为( ) A. 2-i B. 2+i C. 4-i D. 4+i3. 设i 是虚数单位,如果复数a +i2-i 的实部与虚部相等,那么实数a 的值为( )A. 13B. -13C. 3D. -3 4. 设复数z =lg (m 2-1)+1-m i,则z 在复平面内对应的点( ) A. 一定不在第一、二象限 B. 一定不在第二、三象限 C. 一定不在第三、四象限D. 一定不在第二、三、四象限5. (多选)(2019·山东枣庄模拟改编)设z 1,z 2是复数,则下列命题中的真命题是( ) A. 若|z 1-z 2|=0,则z 1=z 2 B. 若z 1=z 2,则z 1=z 2 C. 若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D. 若|z 1|=|z 2|,则z 21 =z 22二、 解答题6. 已知z 是复数,z +2i,z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围.7. 设z 1是虚数,z 2=z 1+1z 1 是实数,且-1≤z 2≤1.(1) 求|z 1|的值以及z 1的实部的取值范围; (2) 若ω=1-z 11+z 1,求证:ω为纯虚数.B 组 能力提升一、 填空题1. 设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.2. 已知i 是虚数单位,若⎝ ⎛⎭⎪⎫2+i 1+m i 2<0(m ∈R),则m 的值为________.3. 定义:若z 2=a +b i(a ,b ∈R,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,复数-3+4i 的平方根是________.4. 已知复数z =a 2-b 2+(|a |+a )i(a ,b ∈R),使复数z 为纯虚数的充要条件是________,写出一个使复数z 为纯虚数的充分不必要条件是________.二、 解答题5. 已知O 为坐标原点,向量OZ 1,OZ 2分别对应的复数z 1,z 2,且z 1=3a +5+(10-a 2)i,z 2=21-a+(2a -5)i(a ∈R),若z 1+z 2是实数. (1) 求实数a 的值;(2) 求以OZ 1,OZ 2为邻边的平行四边形的面积.6. 已知复数z 和ω满足:zω+2i z -2i ω+1=0. (1) 若ω -z =2i,求z 和ω;(2) 求证:若|z |=3 ,则|ω-4i|的值是一个常数,并求出这个常数.。
第1讲 集合及其运算A 应知应会一、 选择题 1. (2019·全国卷Ⅱ)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B 等于( ) A. (-∞,1) B. (-2,1) C. (-3,-1) D. (3,+∞) 2. (2019·全国卷Ⅲ)已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B 等于( ) A. {-1,0,1} B. {0,1} C. {-1,1} D. {0,1,2} 3. (2019·宁德质检)已知集合A ={x |x ≥1},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A. {x |1≤x <3} B. {x |x >-1} C. {x |1<x <3} D. {x |x ≥1}4. (多选)设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以为( )A. 15B. 0C. 3D. 135. (多选)给出下列关系,其中正确的选项是( ) A. ∈{{}} B. ⊆{{}} C. ∈{} D. ⊆{}二、 解答题6. 已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求实数a ,b 的值.7. 若A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}. (1) 若A =B ,求a 的值;(2) 若B ∩A ≠,C ∩A =,求a 的值.∅∅∅∅∅∅∅∅∅∅B 巩固提升一、 填空题 1. (2018·南通模拟)已知集合A ={0,e x },B ={-1,0,1},若A ∪B =B ,则x =________. 2. (2018·青岛模拟)设集合A ={x |(x +3)(x -6)≥0},B =⎩⎨⎧⎭⎬⎫x |2x ≤14 ,则(∁R A )∩B =________.3. (2019·张家口期末)已知全集U =Z,A ={x |x =3n -1,n ∈Z},B ={x ||x |>3,x ∈Z},则A ∩(∁U B )中元素的个数为________.4. (2019·深圳调研)已知集合M ={x |x >0},N ={x |x 2-4≥0},则M ∪N =________. 二、 解答题5. 设集合U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.6. 已知全集S ={1,3,x 3+3x 2+2x },A ={1,|2x -1|},如果∁S A ={0},则这样的实数x 是否存在?若存在,请说明理由.第2讲 充分条件与必要条件A 应知应会一、 选择题1. 设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 2. (2019·淄博诊断)若a ,b ∈R,则“|a |+|b |>1”是“|a +b |>1”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知直线b 和平面α,则“b α”是b 与α平行的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. (2019·江西九校联考)已知命题p :A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -21-x ≤0 ,命题q :B ={x |x -a <0},若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是( )A. (2,+∞)B. [2,+∞)C. (-∞,1)D. (-∞,1]5. “a =b =1”是“直线ax -y +1=0与直线x -by -1=0平行”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6. (2019·烟台一模)已知a ,b ∈R,则“ab >0”是“b a +ab >2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. (2019·济宁一模)将函数f (x )=sin (2x +φ)的图象向左平移π6 个单位长度后,得到函数g (x )的图象,则“φ=π6”是“g (x )为偶函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 8. (2019·枣庄一模)设a ,b 都是不等于1的正数,则“0<b <a <1”是“log a 3<log b 3”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件二、 解答题9. 已知p :(x -m )2>3(x -m ),q :x 2+3x -4<0.若p 是q 的必要不充分条件,求实数m 的取值范围.⊂B巩固提升一、填空题1. (2019·合肥质检)若“x>2”是“x>m”的必要不充分条件,则m的取值范围是________.2. “|x|<3”是“x2-x-6<0”的________条件.3. 设a∈R ,则“a=1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行”的________条件.4. (2019·郴州三模)已知p:x2-3x-4≤0;q:x2-6x+9-m2≤0,若非q是非p的充分不必要条件,则实数m的取值范围是________.二、解答题5. (2020·江苏八校联考)已知集合A={x|y=log2(-4x2+15x-9),x∈R},B={x||x-m|≥1,x∈R}.(1) 求集合A;(2) 若p:x∈A,q:x∈B,且p是q的充分不必要条件,求实数m的取值范围.6. 已知数列{a n}的前n项和S n=3n+t(n∈N*).求证:数列{a n}是等比数列的充要条件是t=-1.第3讲全称量词和存在量词A应知应会一、选择题1. (多选)下列命题中是全称命题并且是假命题的是()A. π是无理数B. 若2x为偶数,则任意x∈NC. 对任意x∈R,x2+2x+1>0D. 所有菱形的四条边都相等2. (2019·南昌调研)下列命题中的假命题是( ) A. 存在x 0∈R,lg x 0=1 B. 存在x 0∈R,sin x 0=0 C. 任意x ∈R,x 3>0 D. 任意x ∈R,2x >03. 命题“任意n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A. 任意n ∈N *,f (n )∉N *且f (n )>n B. 任意n ∈N *,f (n )N *或f (n )>n C. 存在n 0∈N *,f (n 0)N *且f (n 0)>n 0 D. 存在n 0∈N *,f (n 0)N *或f (n 0)>n 04. (2019·中原名校联盟)已知命题“x ∈R,4x 2+(a -2)x +14 ≤0”是假命题,则实数a 的取值范围为( )A. (-∞,0)B. [0,4]C. [4,+∞)D. (0,4)5. 若命题p :x 0∈⎣⎡⎦⎤0,π4 ,sin 2x 0+cos 2x 0<a 是假命题,则实数a 的取值范围是( )A. (-∞,1]B. (-∞,2 ]C. [1,+∞)D. [2 ,+∞) 二、 解答题6. 判断下列命题的真假.(1) 已知a ,b ,c ,d ∈R,若a ≠c 或b ≠d ,则a +b ≠c +d ; (2) ∀x ∈N,x 3>x 2;(3) 若m >1,则方程x 2-2x +m =0无实数根; (4) 存在一个三角形没有外接圆.7. 已知命题“∀x ∈R,x 2-5x +152a >0”的否定为假命题,求实数a 的取值范围.∉∉∉∃∃B 巩固提升一、 填空题1. 若命题p :x ∈⎣⎡⎦⎤12,2 ,使得2x 2-λx +1<0成立,则非p 为_______________. 2. 若命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________. 3. 若命题“t ∈R, t 2-2t -a <0”是假命题,则实数a 的取值范围是________.4. 已知函数f (x )=x +4x ,g (x )=2x +a ,若任意x 1∈⎣⎡⎦⎤12,1 ,存在x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________. 二、 解答题5. 已知函数f (x )=x 2-2ax +5(a >1).若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.6. 已知函数f (x )=x 2-2ax +1,g (x )=ax,其中a >0,x ≠0.(1) 对任意x ∈[1,2],都有f (x )>g (x )恒成立,求实数a 的取值范围;(2) 对任意x 1∈[1,2],x 2∈[2,4],都有f (x 1)>g (x 2)恒成立,求实数a 的取值范围.∃∃第4讲 不等式的性质、一元二次不等式一、 选择题1. (2019·南昌模拟)下列三个不等式:①x +1x ≥2(x ≠0);②c a <cb (a >b >c >0);③a +m b +m>ab(a ,b ,m >0且a <b ),恒成立的个数为( ) A. 3 B. 2 C. 1 D. 02. (多选)已知a ,b ,c ,d 均为实数,则下列命题中正确的是( ) A. 若ab >0,bc -ad >0,则c a -db >0B. 若ab >0,c a -db >0,则bc -ad >0C. 若bc -ad >0,c a -db>0,则ab >0D. 若a >b >0,c >d >0,则ac >bd3. (多选)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),下列判断正确的是( ) A. 若不等式的解集为{x |x <-3或x >-2},则k =-25B. 若不等式的解集为⎩⎨⎧⎭⎬⎫x |x ∈R ,x ≠1k ,则k =66C. 若不等式的解集为R,则k <-66 D. 若不等式的解集为,则k ≥664. (2019·黄冈联考)若关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( )A. (-∞,1)∪(2,+∞)B. (-1,2)C. (1,2)D. (-∞,-1)∪(2,+∞)5. (2019·合肥模拟)若不等式2kx 2+kx -38 <0对一切实数x 都成立,则k 的取值范围为( )A. (-3,0)B. [-3,0)C. [-3,0]D. (-3,0] 二、 解答题6. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式ax 2-bx +c >0的解集.7. 若对于满足0≤p ≤3的任意实数p ,不等式x 2+2px >4x +p -3恒成立,求x 的取值范围.∅B 巩固提升一、 填空题1. 不等式4x -2x +2>0的解集为________.2. 若关于x 的不等式kx 2-6kx +k +8<0的解集为空集,则实数k 的取值范围为________.3. 已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集为________.4. 已知集合A ={x |x 2+a ≤(a +1)x ,a ∈R},∃a ∈R,使得集合A 中所有整数的元素和为28,则a 的取值范围是________.二、 解答题5. 若不等式ax 2+5x -2>0的解集是⎩⎨⎧⎭⎬⎫x |12<x <2 .(1) 求实数a 的值;(2) 求不等式ax 2-5x +a 2-1>0的解集.6. 已知f (x )=x 2-2ax +2(a ∈R),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.第5讲 基本不等式一、 选择题1. (多选)有下面四个不等式,其中恒成立的有( ) A.a +b2≥ab B. a (1-a )≤14C. a 2+b 2+c 2≥ab +bc +caD. b a +ab≥2 2. (多选)下列四个函数中,最小值为2的是( ) A. y =sin x +1sin x ⎝⎛⎭⎫0<x ≤π2 B. y =ln x +1ln x (x >0,x ≠1)C. y =x 2+6x 2+5D. y =4x +4-x3. 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A. 9B. 12C. 18D. 244. (2019·豫南九校一联)若a >0,b >0,且2a +b =4,则1ab 的最小值为( )A. 2B. 12C. 4D. 145. (2019·济宁期末)已知圆C 1:x 2+y 2-kx +2y =0与圆C 2:x 2+y 2+ky -4=0的公共弦所在直线恒过定点(a ,b ),且点P 在直线mx -ny -2=0上,则mn 的取值范围是( )A. ⎝⎛⎭⎫0,14B. ⎝⎛⎦⎤0,14C. ⎝⎛⎭⎫-∞,14D. ⎝⎛⎦⎤-∞,14 二、 解答题6. (2019·黄山质检)已知f (x )=x 2+3x +6x +1 (x >0),求f (x )的最小值.7. 已知lg 3x +lg y =lg (x +y +1). (1) 求xy 的最小值; (2) 求x +y 的最小值.B 巩固提升一、 填空题1. (2017·山东卷)若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.2. (2017·天津卷)若a ,b ∈R,ab >0,则a 4+4b 4+1ab 的最小值为________.3. 若a >0,b >0,且12a +b +1b +1=1,则a +2b 的最小值为________.4. 已知a ,b 均为正数,且ab -a -2b =0,则a 2 +b 的最小值为________,a 24 -2a +b 2-1b的最小值为________.二、 解答题5. (1) 设x 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. (2) 若a ,b 均为大于1的正数,且ab =10,求lg a ·lg b 的最大值.6. 某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30 m,其中大圆弧所在圆的半径为10 m .设小圆弧所在圆的半径为x m,圆心角为θ(弧度).(1) 求y 关于x 的函数关系式;(2) 已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值.(第6题)微难点1 “三个二次”关系一、 选择题1. 若函数f (x )=x 2+2x +a 没有零点,则实数a 的取值范围是( )A. (-∞,1)B. (1,+∞)C. (-∞,1]D. [1,+∞)2. 若函数f (x )=x 2+ax +b 的图象与x 轴的交点为(1,0)和(3,0),则函数f (x )( )A. 在(-∞,2]上单调递减,在(2,+∞)上单调递增B. 在(-∞,3)上单调递增C. 在[1,3]上单调递增D. 单调性不能确定二、 填空题3. (2019·南昌质检)若二次函数f (x )=ax 2-x +b (a ≠0)的最小值为0,则a +4b 的取值范围是________.4. 已知函数f (x )=x 2+abx +a +2b .若f (0)=4,则f (1)的最大值为________.5. 已知二次函数f (x )=ax 2-x +c (x ∈R)的值域为[0,+∞),则c +2a +a +2c的最小值为________.6. 已知函数f (x )=x 2-2|x |+4的定义域为[a ,b ],其中a <b ,值域为[3a ,3b ],则满足条件的数组(a ,b )为________.三、 解答题7. 对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,求x 的取值范围.8. 已知函数f (x )=ax 2+2x +c 的零点为-13 ,12. (1) 试求a +c 的值;(2) 解不等式-cx 2+2x -a >0.9. 设a ∈R,关于x 的一元二次方程7x 2-(a +13)x +a 2-a -2=0有两实数根x 1,x 2,且0<x 1<1<x 2<2,求a 的取值范围.10. 已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R .(1) 若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间;(2) 在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.。
§1.5一元二次不等式及其解法一元二次不等式的解集概念方法微思考1.一元二次不等式ax2+bx+c>0(a>0)的解集与其对应的函数y=ax2+bx+c的图象有什么关系?提示ax2+bx+c>0(a>0)的解集就是其对应函数y=ax2+bx+c的图象在x轴上方的部分所对应的x的取值范围.2.一元二次不等式ax2+bx+c>0(<0)恒成立的条件是什么?提示 显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0;ax 2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (3)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(4)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ ) 题组二 教材改编2.已知集合A ={x |x 2-x -6>0},则∁R A 等于( ) A.{x |-2<x <3} B.{x |-2≤x ≤3} C.{x |x <-2或x >3} D.{x |x ≤-2或x ≥3} 答案 B解析 ∵x 2-x -6>0,∴(x +2)(x -3)>0,∴x >3或x <-2,即A ={x |x >3或x <-2}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-2≤x ≤3}. 故选B.3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞ 解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.(多选)关于x 的不等式(ax -1)(x +2a -1)>0的解集中恰有3个整数,则a 的值可以为( ) A.-12 B.1 C.-1 D.2答案 AC解析 由题意知a <0,则排除B,D ; 对于A 项,当a =-12时,⎝⎛⎭⎫-12x -1(x -2)>0, 即(x +2)(x -2)<0,解得-2<x <2,恰有3个整数,符合题意;对于C 项,当a =-1时,(-x -1)(x -3)>0,即(x +1)(x -3)<0,解得-1<x <3,恰有3个整数,符合题意,故选AC. 5.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0,得-4<x <1.6.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.7.不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是________.答案 (-2,2]解析 当a -2≠0时,由⎩⎪⎨⎪⎧a -2<0,Δ<0,得-2<a <2;当a =2时,原式化为-4<0,不等式恒成立, ∴-2<a ≤2.即实数a 的取值范围是(-2,2].一元二次不等式的求解命题点1 不含参的不等式例1 (2019·济宁模拟)已知全集U =R ,集合A ={x |x 2-3x +2≥0},则∁R A 等于( ) A.(1,2)B.[1,2]C.(-∞,1]∪[2,+∞)D.(-∞,1)∪(2,+∞)答案 A解析 由题意可得,∁R A ={x |x 2-3x +2<0}={x |1<x <2},表示为区间形式即(1,2).故选A. 命题点2 含参不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a ;当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 思维升华 对含参的不等式,应对参数进行分类讨论 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(2020·北京市海淀区期末)不等式x 2+2x -3<0的解集为( ) A.{x |x <-3或x >1} B.{x |x <-1或x >3} C.{x |-1<x <3} D.{x |-3<x <1}答案 D解析 由x 2+2x -3<0得(x +3)(x -1)<0,解得-3<x <1.故选D.(2)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.答案 {x |x ≥3或x ≤2}解析 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎨⎧a ×⎝⎛⎭⎫-122-b ×⎝⎛⎭⎫-12-1=0,a ×⎝⎛⎭⎫-132-b ×⎝⎛⎭⎫-13-1=0,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.(3)解不等式12x 2-ax >a 2(a ∈R ). 解 原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝⎛⎭⎫-∞,-a 4∪⎝⎛⎭⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝⎛⎭⎫-∞,a 3∪⎝⎛⎭⎫-a4,+∞.一元二次不等式恒成立问题命题点1 在R 上的恒成立问题例3 已知函数f (x )=mx 2-mx -1.若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围. 解 当m =0时,f (x )=-1<0恒成立.当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0]. 命题点2 在给定区间上的恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 若将“f (x )<5-m 恒成立”改为“f (x )<5-m 无解”,如何求m 的取值范围?解 若f (x )<5-m 无解,即f (x )≥5-m 恒成立, 即m ≥6x 2-x +1恒成立,又x ∈[1,3]时,⎝⎛⎭⎫6x 2-x +1max =6,得m ≥6, 即m 的取值范围为[6,+∞).若将“f (x )<5-m 恒成立”改为“存在x ,使f(x )<5-m 成立”,如何求m 的取值范围? 解 由题意知f (x )<5-m 有解,即m <6x 2-x +1有解,则m <⎝⎛⎭⎫6x 2-x +1max ,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6). 命题点3 给定参数范围的恒成立问题例5 若mx 2-mx -1<0对于m ∈[1,2]恒成立,求实数x 的取值范围.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧ g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0, 解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32. 思维升华 解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.跟踪训练2 函数f (x )=x 2+ax +3.(1)若当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)若当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)若当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,∴实数a 的取值范围是[-6,2].(2)由题意可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立,则(x 2+ax +3-a )min ≥0(x ∈[-2,2]). 令g (x )=x 2+ax +3-a ,x ∈[-2,2], 函数图象的对称轴方程为x =-a2.当-a 2<-2,即a >4时,g (x )min =g (-2)=7-3a ≥0,解得a ≤73,舍去;当-2≤-a 2≤2,即-4≤a ≤4时,g (x )min =g ⎝⎛⎭⎫-a 2=-a 24-a +3≥0,解得-6≤a ≤2,∴-4≤a ≤2;当-a2>2,即a <-4时,g (x )min =g (2)=7+a ≥0,解得a ≥-7,∴-7≤a <-4.综上可得,满足条件的实数a 的取值范围是[-7,2]. (3)令h (a )=xa +x 2+3. 当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. ∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).设方程ax 2+bx +c =0(a ≠0,Δ>0)有不相等的两根为x 1,x 2,且x 1<x 2,相应的二次函数为f (x )=ax 2+bx +c ,方程的根即为二次函数的图象与x 轴交点的横坐标,它们的分布情况见下面各表(每种情况对应的均是充要条件).表一:(两根与0的大小比较即根的正负情况)表二:(两根与k的大小比较)表三:(根在区间上的分布)根在区间上的分布还有一种情况:两根分别在区间(m,n)外,即在区间两侧x1<m,x2>n,(图形分别如下)需满足的条件是(1)a >0时,⎩⎪⎨⎪⎧ f (m )<0,f (n )<0;(2)a <0时,⎩⎪⎨⎪⎧f (m )>0,f (n )>0.对以上的根的分布表中,两根有且仅有一根在(m ,n )内有以下特殊情况:(ⅰ)若f (m )=0或f (n )=0,则此时f (m )·f (n )<0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间(m ,n )内,从而可以求出参数的值.如方程mx 2-(m +2)x +2=0在区间(1,3)上有一根,因为f (1)=0,所以mx 2-(m +2)x +2=(x -1)(mx -2),另一根为2m ,由1<2m <3得23<m <2即为所求;(ⅱ)方程有两个相等的根,且这个根在区间(m ,n )内,即Δ=0,此时由Δ=0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数.如方程x 2-4mx +2m +6=0有且只有一根在区间(-3,0)内,求m 的取值范围.分析:①由f (-3)·f (0)<0即(14m +15)(m +3)<0得出-3<m <-1514;②由Δ=0即16m 2-4(2m +6)=0得出m =-1或m =32,当m =-1时,根x =-2∈(-3,0),即m =-1满足题意;当m =32时,根x =3∉(-3,0),故m =32不满足题意.综上分析,得出-3<m <-1514或m =-1.例1 已知二次方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,求实数m 的取值范围. 解 设f (x )=(2m +1)x 2-2mx +(m -1), 由(2m +1)·f (0)<0 ,即(2m +1)(m -1)<0, 解得-12<m <1,即m 的取值范围为⎝⎛⎭⎫-12,1. 例2 已知方程2x 2-(m +1)x +m =0有两个不等正实根,求实数m 的取值范围.解 设f (x )=2x 2-(m +1)x +m ,由⎩⎪⎨⎪⎧Δ>0,--(m +1)2×2>0,f (0)>0⇒ ⎩⎪⎨⎪⎧(m +1)2-8m >0,m >-1,m >0⇒⎩⎪⎨⎪⎧m <3-22或m >3+22,m >0⇒0<m <3-22或m >3+22,即m 的取值范围为(0,3-22)∪(3+22,+∞).例3 已知二次函数f (x )=(m +2)x 2-(2m +4)x +3m +3与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围. 解 由(m +2)·f (1)<0 ,即(m +2)·(2m +1)<0 ⇒-2<m <-12,即m 的取值范围为⎝⎛⎭⎫-2,-12.1.(2019·武汉调研)已知集合A ={x |x 2-x -2<0},B ={x |x 2+3x <0},则A ∩B 等于( ) A.(0,2) B.(-1,0) C.(-3,2) D.(-1,3)答案 B解析 A ={x |-1<x <2},B ={x |-3<x <0},∴A ∩B =(-1,0).故选B.2.(2020·黄冈调研)关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( ) A.(-∞,1)∪(2,+∞) B.(-1,2)C.(1,2)D.(-∞,-1)∪(2,+∞) 答案 C解析 关于x 的不等式ax +b >0的解集是(1,+∞), ∴a >0,且-ba=1,∴关于x 的不等式(ax +b )(x -2)<0可化为⎝⎛⎭⎫x +ba (x -2)<0,即(x -1)(x -2)<0, ∴不等式的解集为{x |1<x <2}.故选C.3.“不等式x 2-x +m >0在R 上恒成立”的充要条件是( ) A.m >14B.m <14C.m <1D.m >1 答案 A解析 ∵不等式x 2-x +m >0在R 上恒成立, ∴Δ=(-1)2-4m <0,解得m >14,又∵m >14,∴Δ=1-4m <0,∴“m >14”是“不等式x 2-x +m >0在R 上恒成立”的充要条件.故选A.4.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A.[-4,1] B.[-4,3] C.[1,3] D.[-1,3]答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.5.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A.(13,+∞) B.(5,+∞) C.(4,+∞) D.(-∞,13)答案 B解析 m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4], 当x =2时f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立, 即m >f (x )min ,∴m >5.故选B.6.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值范围是( ) A.(-3,5) B.(-2,4) C.[-1,3] D.[-2,4]答案 C解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a =1或1<a ≤3或-1≤a <1, 所以实数a 的取值范围是a ∈[-1,3],故选C. 7.(多选)下列四个解不等式,正确的有( ) A.不等式2x 2-x -1>0的解集是{x |x >2或x <1}B.不等式-6x 2-x +2≤0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-23或x ≥12C.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是3D.关于x 的不等式x 2+px -2<0的解集是(q,1),则p +q 的值为-1 答案 BCD解析 对于A,∵2x 2-x -1=(2x +1)(x -1), ∴由2x 2-x -1>0得(2x +1)(x -1)>0, 解得x >1或x <-12,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <-12.故A 错误; 对于B,∵-6x 2-x +2≤0,∴6x 2+x -2≥0, ∴(2x -1)(3x +2)≥0,∴x ≥12或x ≤-23.故B 正确;对于C,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根.∴a -8a +21=0,∴a =3.故C 正确;对于D,依题意q,1是方程x 2+px -2=0的两根, q +1=-p ,即p +q =-1,故D 正确.8.(多选)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),则下列说法正确的是( ) A.若不等式的解集为{x |x <-3或x >-2},则k =-25B.若不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k ,则k =66 C.若不等式的解集为R ,则k <-66D.若不等式的解集为∅,则k ≥66答案 ACD解析 对于A,∵不等式的解集为{x |x <-3或x >-2},∴k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴4k +4+6k =0,解得k =-25.故A 正确;对于B,∵不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k , ∴⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66.故B 错误; 对于C,由题意,得⎩⎪⎨⎪⎧k <0,Δ=4-24k 2<0,解得k <-66.故C 正确;对于D,由题意,得⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.故D 正确.9.(2019·北京市顺义区模拟)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是________. 答案 (-2,-1)(答案不唯一)解析 不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2,且⎩⎪⎨⎪⎧a <0,b a =12,即a =2b <0,则满足条件的一组有序实数对(a ,b )的值可以是(-2,-1).10.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫-12,32 解析 由题意,可知不等式(x -a )⊗(x +a )<1对任意实数x 都成立, 又由(x -a )⊗(x +a )=(x -a )(1-x -a ), 即x 2-x -a 2+a +1>0对任意实数x 都成立, 所以Δ=1-4(-a 2+a +1)<0,即4a 2-4a -3<0, 解得-12<a <32.11.已知关于x 的不等式-x 2+ax +b >0. (1)若该不等式的解集为(-4,2),求a ,b 的值; (2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧-16-4a +b =0,-4+2a +b =0,解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0, 即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅; 当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1); 当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅;当a >-2时, 不等式的解集为(-1,a +1).12.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,则甲厂应该选取何种生产速度?并求最大利润.解 (1)根据题意,得200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x≥0,即5x 2-14x -3≥0, 又1≤x ≤10,可解得3≤x ≤10.故要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10].(2)设利润为y 元,则y =900x·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫5+1x -3x 2 =9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112, 故当x =6时,y max =457 500.故甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元.13.设a <0,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( )A.12B.13C.14D.22答案 C解析 由题意知a <0,a <b ,则①当b <0时,∀x ∈(a ,b ),2x +b <0,所以(4x 2+a )(2x +b )≥0在(a ,b )上恒成立可转化为∀x ∈(a ,b ),a ≤-4x 2,所以a ≤-4a 2,所以-14≤a <0,所以0<b -a <14; ②当b >0时,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,当x =0时,(4x 2+a )(2x +b )=ab <0,不符合题意;③当b =0时,由题意知x ∈(a,0),(4x 2+a )2x ≥0恒成立,所以4x 2+a ≤0,所以-14≤a <0,所以0<b -a ≤14. 综上所述,b -a 的最大值为14. 14.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.答案 (1,5]解析 设f (x )=x 2-2(a -2)x +a ,当Δ=4(a -2)2-4a <0,即1<a <4 时,f (x )>0 对x ∈R 恒成立,符合题意;当a =1时,f (-1)=0,不符合题意;当a =4时,f (x )=x 2-4x +4=(x -2)2>0对x ∈(-∞,1)∪(5,+∞)恒成立,符合题意;当Δ>0 时,由⎩⎪⎨⎪⎧ Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,得⎩⎪⎨⎪⎧ a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值范围是(1,5].15.若集合A ={x ∈Z |x 2-(a +2)x +2-a <0}中有且只有一个元素,则正实数a 的取值范围是________.答案 ⎝⎛⎦⎤12,23解析 f (x )=x 2-(a +2)x +2-a <0,即x 2-2x +1<a (x +1)-1,分别令y 1=x 2-2x +1,y 2=a (x +1)-1,易知y 2过定点(-1,-1),在同一坐标系中画出两个函数的图象,如图所示,若集合A ={x ∈Z |f (x )<0}中有且只有一个元素,结合图象可得,即点(0,1)和点(2,1)在直线上或者在直线上方,点(1,0)在直线下方,∴⎩⎪⎨⎪⎧ a -1≤1,2a -1>0,3a -1≤1,解得12<a ≤23. 16.(2020·南京六校联考)已知函数f (x )=x 2-2ax +2a -1.若对任意的a ∈(0,3),存在x 0∈[0,4],使得t ≤|f (x 0)|成立,求实数t 的取值范围.解 ∵f (x )=x 2-2ax +2a -1的对称轴为x =a ,且a ∈(0,3),∴函数f (x )=x 2-2ax +2a -1在[0,a ]上是减函数,在[a,4]上是增函数;∴函数f (x )=x 2-2ax +2a -1在[0,4]上的最小值为f (a )=-(a -1)2∈(-4,0],|f (a )|=(a -1)2, ①当2≤a <3时,函数f (x )=x 2-2ax +2a -1(x ∈[0,4])在x =0时取得最大值,且最大值为2a -1,由于此时2≤a <3,则3≤2a -1<5,易知当2≤a <3时,(a -1)2<2a -1,所以|f (x )|max =max{|f (a )|,|f (0)|}=|f (0)|=2a -1∈[3,5).∴t ≤3.②当0<a <2时,函数f (x )=x 2-2ax +2a -1(x ∈[0,4])在x =4时取得最大值,且最大值为42-8a +2a -1=15-6a ,由于此时0<a <2,所以3<15-6a <15,且15-6a >(a -1)2,|f (x )|max =max{|f (a )|,|f (4)|}=|f (4)|=15-6a ∈(3,15),∴t ≤3.综上, t 的取值范围是(-∞,3].。
§10.3二项式定理1.二项式定理2.二项式系数的性质+C m n.(1)C0n=1,C n n=1,C m n+1=C m-1n(0≤m≤n).C m n=C n-mn(2)二项式系数先增后减中间项最大.当n 为偶数时,第n 2+1项的二项式系数最大,最大值为2C nn ,当n 为奇数时,第n +12项和第n +32项的二项式系数最大,最大值为12Cn n -或12Cn n+.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 概念方法微思考1.(a +b )n 与(b +a )n 的展开式有何区别与联系?提示 (a +b )n 的展开式与(b +a )n 的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同.2.二项展开式中二项式系数最大时该项的系数就最大吗?提示 不一定最大,当二项式中a ,b 的系数为1时,此时二项式系数等于项的系数,否则不一定.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r是(a +b )n 的展开式的第r 项.( × ) (2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( √ ) 题组二 教材改编2.(1+2x )5的展开式中,x 2的系数等于( ) A.80 B.40 C.20 D.10 答案 B解析 T r +1=C r 5(2x )r =C r 52r x r ,当r =2时,x 2的系数为C 25·22=40. 3.若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A.10 B.20 C.30 D.120 答案 B解析 二项式系数之和2n =64,所以n =6,T r +1=C r 6·x 6-r ·⎝⎛⎭⎫1x r =C r 6x 6-2r,当6-2r =0,即当r =3时为常数项,T 4=C 36=20.4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A.9 B.8 C.7 D.6 答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.题组三 易错自纠5.(x -y )n 的二项展开式中,第m 项的系数是( )A.C m nB.C m +1nC.C m -1nD.(-1)m -1C m -1n答案 D解析 (x -y )n 二项展开式第m 项的通项为T m =C m -1n(-y )m -1x n-m +1,所以系数为C m -1n(-1)m -1. 6.已知⎝⎛⎭⎪⎫x +a 3x n (a 为常数)的展开式的二项式系数之和为32,常数项为80,则a 的值为( ) A.1 B.±1 C.2 D.±2 答案 C解析 根据题意,该二项式的展开式的二项式系数之和为32,则有2n =32,可得n =5,则二项式的展开式通项为T r +1=C r 5(x )5-r·⎝ ⎛⎭⎪⎫a 3x r =a r C r 51556r x -,令15-5r 6=0,得r =3,则其常数项为C 35a 3,根据题意,有C 35a 3=80,可得a =2.7.在⎝⎛⎭⎫2x 2-1x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________. 答案 1解析 因为所有二项式系数的和是32,所以2n =32,解得n =5. 在⎝⎛⎭⎫2x 2-1x 5中,令x =1可得展开式中各项系数的和为(2-1)5=1.多项展开式的特定项命题点1 二项展开式问题例1 (1)(2020·山东模拟)⎝⎛⎭⎫1x -x 10的展开式中x 4的系数是( ) A.-210 B.-120 C.120 D.210答案 B解析 由二项展开式,知其通项为T r +1=C r 10⎝⎛⎭⎫1x 10-r (-x )r =(-1)r C r 10x 2r -10, 令2r -10=4,解得r =7.所以x 4的系数为(-1)7C 710=-120.(2)(2019·浙江)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________. 答案 162 5解析 该二项展开式的第r +1项为T r +1=C r 9(2)9-r x r ,当r =0时,第1项为常数项,所以常数项为(2)9=162;当r =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.命题点2 两个多项式积的展开式问题例2 (1)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A.12 B.16 C.20 D.24 答案 A解析 展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.(2)⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( )A.15B.20C.30D.35 答案 C解析 因为(1+x )6的通项为C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4. 因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为30. 故选C.命题点3 三项展开式问题例3 (1)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10 B.20 C.30 D.60答案 C解析 方法一 利用二项展开式的通项求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用排列组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个因式取y ,剩余的三个因式中两个取x 2,一个取x即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.(2)(2020·合肥检测)⎝⎛⎭⎫x -1x +15展开式中的常数项为( ) A.1 B.11 C.-19 D.51 答案 B解析 ⎝⎛⎭⎫x -1x +15=⎣⎡⎦⎤⎝⎛⎭⎫x -1x +15 展开式的通项为T r +1=C r 5⎝⎛⎭⎫x -1x 5-r 当r =5时,常数项为C 55=1,当r =3时,常数项为-C 12C 35=-20, 当r =1时,常数项为C 45C 24=30.综上所述,常数项为1-20+30=11.思维升华 (1)求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏. (3)对于三项式问题一般先变形化为二项式再解决.跟踪训练1 (1)(x 2+x +1)(x -1)4的展开式中,x 3的系数为( ) A.-3 B.-2 C.1 D.4 答案 B解析 (x -1)4的通项为T r +1=C r 4x 4-r (-1)r ,(x 2+x +1)(x -1)4的展开式中,x 3的系数为C 34(-1)3+C 24(-1)2+C 14(-1)=-2,故选B.(2)(x +a )10的展开式中,x 7项的系数为15,则a =______.(用数字填写答案) 答案 12解析 通项为T r +1=C r 10x 10-r a r ,令10-r =7, ∴r =3,∴x 7项的系数为C 310a 3=15,∴a 3=18,∴a =12.(3)(1+2x -3x 2)5展开式中x 5的系数为________. 答案 92解析 方法一 (1+2x -3x 2)5=[(1+2x )-3x 2]5=C 05(1+2x )5+C 15(1+2x )4(-3x 2)+C 25(1+2x )3(-3x 2)2+…+C 55(-3x 2)5, 所以x 5的系数为C 05C 5525+C 15C 34×23×(-3)+C 25C 13×2×(-3)2=92.方法二 (1+2x -3x 2)5=(1-x )5(1+3x )5,所以x 5的系数为C 05C 5535+C 15(-1)C 4534+C 25(-1)2C 3533+C 35(-1)3C 2532+C 45(-1)4C 1531+C 55(-1)5C 0530=92.二项式系数的和与各项系数的和问题命题点1 二项式系数和与系数和例4 (1)(2019·郑州一中测试)若二项式⎝⎛⎭⎫x 2-2x n 的展开式的二项式系数之和为8,则该展开式每一项的系数之和为( ) A.-1 B.1 C.27 D.-27 答案 A解析 依题意得2n =8,解得n =3.取x =1得,该二项展开式每一项的系数之和为(1-2)3=-1. (2)(2019·宣城调研)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( ) A.1 B.2 C.129 D.2 188答案 C解析 令x =0得a 0+a 1+a 2+…+a 7=27=128, 又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1. 故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 命题点2 二项式系数的最值问题例5 (2019·马鞍山模拟)二项式⎝⎛⎭⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( ) A.3 B.5 C.6 D.7 答案 D解析 根据⎝⎛⎭⎪⎫3x +13x n的展开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎫3x +13x n 的展开式的通项为T r +1=C r20·(3x )20-r ·⎝ ⎛⎭⎪⎫13x r =(3)20-r ·C r 20·420-3r x ,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.思维升华 (1)形如(ax +b )n ,(ax 3+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常采用赋值法,只需令x =1即可.(2)当n 为偶数时,展开式中第n 2+1项的二项式系数最大,最大值为2C nn ;当n 为奇数时,展开式中第n +12项和第n +32项的二项式系数最大,最大值为12C n n -或12C n n +.跟踪训练2 (1)(2019·山西八校联考)已知(1+x )n 的展开式中第5项和第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.212 答案 A解析 由题意知C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.(2)已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m 等于( ) A.5 B.6 C.7 D.8 答案 B解析 由题意可知,a =C m 2m ,b =C m2m +1,∵13a =7b ,∴13·(2m )!m !m !=7·(2m +1)!m !(m +1)!,即137=2m +1m +1,解得m =6. (3)(2019·合肥质检)已知m 是常数,若(mx -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0且a 1+a 2+a 3+a 4+a 5=33,则m =________. 答案 3解析 当x =0时,(-1)5=-1=a 0.当x =1时,(m -1)5=a 0+a 1+a 2+a 3+a 4+a 5=33-1=32,则m -1=2,m =3.1.(2020·湖北龙泉中学、钟祥一中、京山一中,沙洋中学联考)在⎝⎛⎭⎫x 2-2x 6的展开式中,常数项为( )A.-240B.-60C.60D.240 答案 D解析 ⎝⎛⎭⎫x 2-2x 6的二项展开式的通项为T r +1=C r 6·(x 2)6-r ⎝⎛⎭⎫-2x r =C r 6(-2)r x 12-3r , 令12-3r =0得r =4,即常数项为T 5=C 46(-2)4=240.2.⎝⎛⎭⎫2x -1x 5的展开式中x 3项的系数为( ) A.80 B.-80 C.-40 D.48 答案 B解析 ⎝⎛⎭⎫2x -1x 5的展开式的通项为T r +1=C r 5(2x )5-r ·⎝⎛⎭⎫-1x r =(-1)r ·25-r ·C r 5·x 5-2r ,令5-2r =3,得r =1.于是展开式中x 3项的系数为(-1)·25-1·C 15=-80,故选B.3.(2019·十堰调研)若⎝⎛⎭⎫x 6+1x x n 的展开式中含有常数项,则n 的最小值等于( )A.3B.4C.5D.6 答案 C解析 ⎝⎛⎭⎫x 6+1x x n展开式的通项为C r n (x 6)n -r 32rx -⎛⎫ ⎪⎝⎭=C r n 1562n r x - ,r =0,1,2,…n , 则依题设,由6n -152r =0,得n =54r ,∴n 的最小值等于5. 4.(2020·广州海珠区模拟)(x +y )(2x -y )6的展开式中x 4y 3的系数为( )A.-80B.-40C.40D.80答案 D解析 (2x -y )6的展开式的通项为T r +1=C r 6(2x )6-r (-y )r ,当r =2时,T 3=240x 4y 2,当r =3时,T 4=-160x 3y 3,故x 4y 3的系数为240-160=80,故选D.5.(2019·江淮十校考前最后一卷)已知(x +1)(2x +a )5的展开式中各项系数和为2,则其展开式中含x 3项的系数是( )A.-40B.-20C.20D.40答案 D解析 令x =1,可得(x +1)(2x +a )5的展开式中各项系数和为2(2+a )5=2.∴a =-1.二项式(2x -1)5的展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r =25-r ·(-1)r ·C r 5·x 5-r , 所以(x +1)(2x -1)5的展开式中含x 3项的系数为22(-1)3C 35+23(-1)2C 25=40. 6.在⎝⎛⎭⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( ) A.50 B.70 C.90 D.120答案 C解析 令x =1,则⎝⎛⎭⎫x +3x n =4n ,所以⎝⎛⎭⎫x +3x n 的展开式中,各项系数和为4n ,又二项式系数和为2n,所以4n2n =2n =32,解得n =5. 二项展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫3x r =C r 53r 352r x -,令5-32r =2,得r =2,所以x 2的系数为C 2532=90.7.(多选)二项式(2x -1)7的展开式的各项中,二项式系数最大的项是( )A.第2项B.第3项C.第4项D.第5项答案 CD解析 本题考查二项式系数的性质.因为二项式(2x -1)7展开式的各项的二项式系数为C r 7(r =0,1,2,3,4,5,6,7),易知当r =3或r =4时,C r 7最大,即二项展开式中,二项式系数最大的为第4项和第5项.8.(多选)对于二项式⎝⎛⎭⎫1x +x 3n (n ∈N *),以下判断正确的有( ) A.存在n ∈N *,展开式中有常数项B.对任意n ∈N *,展开式中没有常数项C.对任意n ∈N *,展开式中没有x 的一次项D.存在n ∈N *,展开式中有x 的一次项答案 AD解析 该二项展开式的通项为T r +1=C r n ⎝⎛⎭⎫1x n -r (x 3)r =C r n x 4r -n , ∴当n =4r 时,展开式中存在常数项,A 选项正确,B 选项错误;当n =4r -1时,展开式中存在x 的一次项,D 选项正确,C 选项错误.故选AD.9.(2020·镇江质检)(x -x )6的展开式中,含x 5项的系数为________.答案 15解析 展开式的通项为T r +1=C r 6·(-1)r ·62r x -,令6-r 2=5,得r =2, 故含x 5的系数为C 26=15. 10.(2019·晋城模拟)(2-3x )2(1-x )7的展开式中,x 3的系数为________.答案 -455解析 依题意,x 3的系数为4C 37×(-1)3-12C 27(-1)2+9C 17(-1)=-455. 11.已知⎝⎛⎭⎫ax +1x (2x +1)5(a ≠0),若其展开式中各项的系数和为81,则a =________,展开式中常数项为________.答案 -2310 解析 在⎝⎛⎭⎫ax +1x (2x +1)5中, 令x =1,得(a +1)·35=81,解得a =-23, 所以⎝⎛⎭⎫-23x +1x (2x +1)5的展开式中的常数项为 1x ·C 45·2x =10. 12.(2019·怀化模拟)若在⎝⎛⎭⎫2x +1x n 的二项展开式中,第3项和第4项的二项式系数相等且最大,则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为________. 答案 -120解析 由⎝⎛⎭⎫2x +1x n 的二项展开式中二项式系数的最大项是第3项和第4项, 则展开式共6项,即n =6-1=5,又⎝⎛⎭⎫2x +1x n 展开式的通项为T r +1=C r 5(2x )5-r ⎝⎛⎭⎫1x r =25-r C r 5x 5-2r ,则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为22C 35-2·23C 25=-120.13.已知(x cos θ+1)5的展开式中x 2的系数与⎝⎛⎭⎫x +544的展开式中x 3的系数相等,且θ∈(0,π),则θ等于( )A.π4B.π4或3π4C.π3D.π3或2π3答案 B解析 由二项式定理知(x cos θ+1)5的展开式中x 2的系数为C 35cos 2θ,⎝⎛⎭⎫x +544的展开式中x 3的系数为C 14×54,所以C 35cos 2θ=C 14×54,解得cos 2θ=12,解得cos θ=±22,又θ∈(0,π),所以θ=π4或3π4,故选B.14.⎝⎛⎭⎫2x +1x -35的展开式中常数项是________. 答案 -1 683解析 ⎝⎛⎭⎫2x +1x -35表示五个⎝⎛⎭⎫2x +1x -3相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x ,2x ,1x ,1x,-3,则此时的常数项为C 25·C 23·22·(-3)=-360,第二种情况是从五个⎝⎛⎭⎫2x +1x -3中都抽取-3,则此时的常数项为(-3)5=-243,第三种情况是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x ,1x,-3,-3,-3,则此时的常数项为C 15·C 14·21·(-3)3=-1 080,则展开式中常数项为-360-243-1 080=-1 683.15.(2019·衡水中学调研卷)设a ,b ,m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b对模m 同余,记为a ≡b (mod m ).若a =C 020+C 120·2+C 220·22+…+C 2020·220,a ≡b (mod10),则b 的值可以是( )A.2 018B.2 019C.2 020D.2 021答案 D解析 a =C 020+C 120·2+C 220·22+…+C 2020·220=(1+2)20=320=(80+1)5,它被10除所得余数为1,又a ≡b (mod10),所以b 的值可以是2 021.16.若⎝ ⎛⎭⎪⎫x +24x n 展开式中前三项的系数和为163,求: (1)展开式中所有x 的有理项;(2)展开式中系数最大的项.解 易求得展开式前三项的系数为1,2C 1n ,4C 2n .由题意得1+2C 1n +4C 2n =163,可得n =9.(1)设展开式中的有理项为T r +1,由T r +1=C r 9(x )9-r⎝ ⎛⎭⎪⎫24x r =2r C r 91834r x -, 又∵0≤r ≤9,∴r =2,6.故有理项为T 3=22C 29·18324x -⨯=144x 3, T 7=26·C 69·18364x -⨯=5 376.(2)设展开式中T r +1项的系数最大,则⎩⎪⎨⎪⎧2r C r 9≥2r +1C r +19,2r C r 9≥2r -1C r -19, ∴173≤r ≤203, 又∵r ∈N ,∴r =6,故展开式中系数最大的项为T 7=5 376.。