第七章 材料表面技术
- 格式:ppt
- 大小:6.40 MB
- 文档页数:41
现代表面技术第一章表面技术概论第一节表面技术的涵义19世纪工业革命以来,材料品种日益繁多,为了适应高强度、高硬度和耐磨、耐高温、耐酸碱腐蚀等不同特殊要求,人们需要不断开发各种特殊的合金材料,但这些合金材料往往价格昂贵。
因此,人们试图采用各种表面技术对普通钢材表面进行加工,以改变其表面性能,使其适应复杂的工作环境。
另外,磨损、腐蚀等失效都是首先发生在材料表面,通过对材料表面进行有效处理,可以极大地提高材料寿命。
因此,迫切需要开发出各种行之有效的表面技术,正是基于这样的背景,逐步形成了一门新兴学科——表面工程学。
表面工程技术的发展始于20世纪60年代末,近30年来发展尤为迅速。
在传统的表面处理技术不断改进、不断完善的同时,又有科学技术逐渐渗透到该领域,各种表面技术相互融合,从而使现代表面技术进入了一个新的发展时期。
表面技术是一门博大精深、实用价值极高的技术。
材料科学所面临的若干艰巨任务,如要求材料硬而不脆、耐磨而易车削、质高而价廉等间题,通过表面技术在相当程度上都可迎刃而解。
除本文所提及的巨大作用外,用表面技术合成人工结构材料、复合材料及沉积非晶态涂层及制取复合涂层方面都显示了巨大的应用潜力。
表面技术是一项能使产品获得高附加值的技术。
英国产品每年靠表面技术估计增值100亿英镑,如果对表面技术进行全开发,有可能节省200。
万到400亿埃居(约200亿英镑),可见表面技术对国民经济的巨大作用。
我国在湿法镀覆等方面取得了令人瞩目的成就,但在PVD和表面改性方面还有许多工作要做。
这一方面要靠广大科技人员的才智与努力,同时有关领导部门在设备资金投入上给予有力的支持也至关重要。
只有这样,我国的表面技术才能以新的面貌进入21世纪,全方位赶上和领先世界水平。
一、什么是表面技术从广义上讲,表面技术是直接与各种表面现象或过程有关的,能为人类造福或被人们利用的技术。
任何表面在通常情况下实际上都是界面。
两种不同相之间的交界,称为界面,在任何两相界面上都可以发生复杂的物理或化学现象,总称为表面现象。
材料表面工程的技术手段与应用随着社会的发展,科技的进步,现代工业对材料性能的要求越来越高,其中对材料表面性能的要求尤为突出。
如何对材料表面进行改性以达到更优异的性能成为了工业界的重要问题。
材料表面工程是现代表面技术的重要分支之一,其主要是利用先进的材料表面处理技术手段,对材料表面的原有性能进行改性以达到一定的需要,广泛应用于航空、电子、机械、汽车、建筑等领域。
一、材料表面工程的技术手段1.化学镀膜化学镀膜是表面工程的一种简单、方便、低成本的处理方式,主要是将金属离子还原成金属沉积在材料表面上,从而提高材料表面的硬度、耐腐蚀性和装饰性等。
常见的化学镀膜有镀铬、镀铜、镀镍等。
2.物理镀膜物理镀膜是利用真空技术将一层金属沉积在材料表面上的一种表面处理方式,主要包括真空镀膜和溅射镀膜两种。
真空镀膜是将金属加热至蒸气状态,将气体抽空后,由真空镀膜设备内的电子围绕金属,离子产生激发,然后金属沉积在材料表面上的一种表面处理方式。
溅射镀膜是将材料置于被放电的惰性气体间,利用被放电的气体产生的离子将材料表面上的原子溅射掉,然后使被溅射的材料沉积在所需表面上的一种处理方式。
3.化学处理化学处理主要是利用化学反应改变材料表面的物理结构和化学性质,达到材料的改性目的,如氧化、氟化、磷化等。
其中,氧化处理是指将材料表面置于高温酸性或碱性溶液中使其氧化形成一定厚度的氧化层,从而提高材料表面的硬度和抗腐蚀性等。
4.电化学处理电化学处理是指在电解液中,利用电场变化来使材料表面的原有金属结构进行变化,从而起到一定改性效果的处理方式,如阳极氧化、电化学陶瓷涂层等。
二、材料表面工程的应用1.抗腐蚀材料表面的腐蚀问题是材料在使用过程中面对的主要问题之一,而材料表面工程从原始材料选择、制备加工、表面改性等多方面入手,通过现代的表面处理技术控制材料表面的微观结构、物理化学性质,从而实现材料表面的抗腐蚀性能的提高。
2.功能材料表面工程技术在功能材料的制备中发挥了非常重要的作用。
自然科学知识:材料和工程的表面处理技术表面处理技术是材料和工程领域中非常关键的技术之一,其主要目的是改善材料或产品的表面性能,使其具有更好的耐用性、强度、耐磨性、耐腐蚀性等特性,同时也能够实现更美观的外观效果。
本文将从表面处理技术的定义、类别、应用领域以及未来发展等角度进行探讨。
一、表面处理技术的定义表面处理技术是指通过改变材料表面物理、化学或机械性质的方法,从而获得所需要的表面性能的技术。
表面处理技术可以涉及到对材料表面物理性质的改变,如表面清洁、打磨、抛光等;可以涉及到对材料表面化学性质的改变,如电镀、喷涂、涂层、氧化等;也可以涉及到对材料表面机械性质的改变,如增强表面硬度、耐磨性等。
二、表面处理技术的类别1.清洗类表面处理技术清洗类表面处理技术是指利用各种清洗剂或机械力量清除材料表面附着物的方法。
这种技术广泛应用于半导体、电子、汽车等行业,能够减少表面缺陷,提高材料表面的可靠性和稳定性。
2.表面涂层类表面处理技术表面涂层类表面处理技术是指利用各种化学或物理涂层方法在材料表面形成一定厚度和特定性质的薄层。
涂层材料可以是金属、非金属、光敏物质等。
这种技术广泛应用于航空航天、汽车、机械等行业,能够显著提高材料表面的耐磨、耐腐蚀等性能。
3.表面改性类表面处理技术表面改性类表面处理技术是指在材料表面产生一定的化学物理变化,从而改变材料原有的性质。
本类技术主要包括注塑、电镀、氧化、阳极化等技术,其主要应用于汽车、电子、半导体等行业,能够大大提高材料的表面硬度、抗腐蚀性、机械强度等性质。
三、表面处理技术的应用领域表面处理技术广泛应用于各种领域,具有很高的经济效益和社会效益。
下面列举了一些典型的应用领域。
1.电子行业电子行业中的芯片、集成电路、显示屏等产品,表面处理技术是不可或缺的关键环节。
通过表面清洗、氧化、电镀等技术的应用,能够提高产品稳定性和可靠性。
2.汽车行业汽车构成多种材料,如铝、钢、玻璃等,通过表面处理技术能够提高车身外观效果,同时也是提高汽车耐用性和安全性的重要手段。
电镀的基本原理电镀的基本过程电镀的基本过程(以镀镍为例)是将零件浸在金属盐的(如NiSO4)溶液中作为阴极,金属板件作为阳极,接通电源后,在零件表面就会沉积出金属镀层。
如右图所示:例如在硫酸镍电镀溶液中镀镍在阴极上发生还原的反应:Ni2++2e-→Ni (2-1)另外,镀液中的氢也会还原为氢的副反应:2H++2e-→H2↑(2-2)析氢副反应可能会引起电镀零件的氢脆,造成电镀效率降低等不良后果。
在镍阳极上发生金属镍失去电子变为镍离子的氧化反应:Ni→Ni2++2e- (2-3)有时还有可能发生如下的副反应:4OH-→2H2O+O2+4e- (2-4)在电镀过程中,电极反应是电流通过电极/溶液界面的必要条件,正因如此,阴极上的还原沉积过程由以下几个过程构成:①溶液中的金属离子(如水化金属离子或络合离子)通过电迁移、对流、扩散等形式到达阴极表面附近;②金属离子在还原之前在阴极附近或表面发生化学转化;③金属离子从阴极表面得到电子还原成金属原子;④金属原子沿表面扩散到达生长点进入晶格生长,或与其他离子相遇形成晶核长大成晶体。
影响镀层质量的因素⑴镀前处理质量⑵电镀溶液的本性⑶基体金属的本性⑷电镀过程电流密度、温度和搅拌等因素⑸析氢反应——在电镀过程中,大多数镀液的阴极反应都伴随着有氢气的析出,在不少情况下析氢对镀层质量有恶劣的影响,主要有针孔或麻点,鼓泡氢脆等。
如当析出的氢气黏附在阴极表面会产生针孔或麻点,当一部分还原的氢原子渗入基体金属或镀层中,使基体金属或镀层的韧性下降而变脆叫氢脆。
为了消除氢脆的不良影响,应在镀后应在镀后进行高温除氢处理。
⑹镀后处理电镀锌工艺分为氰化物镀锌和无氰镀锌两类。
氰化物镀锌工艺特点:电镀液具体较好的分散能力和深镀能力,对杂质的敏感性小,工艺容易控制,操作及维护简单,电流密度与温度范围宽。
电极反应阴极主反应:[Zn(CN)4]2-+4OH-→[Zn(OH)4]2-+4CN-[Zn(CN)4]2- →Zn(OH)2+2OH-Zn(OH)2+2e- →Zn+2OH-阴极副反应:2H2O+2e- →H2↑+2OH-阳极主反应:Zn →Zn2++2e-Zn2+再分别与CN-和OH-络合Zn2++4CN- →[Zn(CN)4]2-Zn2++4OH- →[Zn(OH)4]2-当阳极钝化时,还将发生析出氧气的副反应:4OH- →2H2O+O2+4e-氰化物镀锌镀液的组成及作用:氧化锌是提供锌离子的物质,为主盐,氰化钠是主络合剂,氢氧化钠是辅助络合剂;硫化钠是一种主要的添加剂,使重金属杂质沉淀以保证镀层质量,还有使镀层产生光亮的作用。
●材料表面技术的实施途径:表面涂覆、表面改性、表面加工。
●表面涂覆:(1)金属覆盖层:电镀化学镀热浸镀喷镀(喷涂)真空溅射离子镀化学气相沉积;(2)非金属覆盖层:化学氧化阳极氧化磷酸盐处理铬酸盐处理涂料覆盖玻璃钢衬里橡胶衬里搪瓷衬里防锈油脂陶瓷衬里。
●表面改性技术主要有:喷丸强化表面热处理化学热处理等离子扩渗处理激光表面处理电子束表面处理高密度太阳能表面处理离子注入表面改性。
●固体材料与气体的界面:清洁表面、实际表面、理想表面。
●表面附近原子排列调整方式:自行调整、靠外来因素。
●清洁表面分为:台阶表面、弛豫表面、重构表面、吸附表面、偏析表面。
●清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。
●实际表面:在材料实际应用过程中,材料表面是要经过一定加工处理(切割、研磨、抛光等),材料又在大气环境(也可能在低真空或高温)下使用。
材料可能是单晶、多晶、非晶体。
这类表面称为实际表面。
●理想表面:对于没有杂质的单晶,作为零级近似可将其清洁表面理想为一个理想表面。
●偏析表面:不论表面进行多么严格的清洁处理,总有一些杂质由体内偏析到表面上来,从而使固体表面组成与体内不同,称为偏析表面。
●吸附表面:在清洁表面上有来自表面周围空间吸附在表面上的质点所构成的表面。
●表面粗糙度是指加工表面上具有的较小间距的峰和谷所组成的微观几何形状特性。
●表面粗糙度与波纹度、宏观几何形状误差不同的是:相邻波峰和波谷的间距小于1mm,并且大体呈周期性起伏。
●表面粗糙度产生原因:主要由加工过程中刀具与工件表面间的摩擦、切屑分离工件表面层材料的塑性变形、工艺系统的高频振动以及刀尖轮廓痕迹等原因形成。
●固体的表面自由能和表面张力与液体相比:1)固体的表面自由能中包含了弹性能。
表面张力在数值上不等于表面自由能。
2)固体的表面张力是各向异性的。
3)实际固体的表面绝大多数处于非平衡状态,决定固体表面形态的主要是形成固体表面时的条件以及它所经历的历史,而表面张力的影响变得次要。
材料表面工程技术材料表面工程技术是一门应用科学,它涉及到改善材料表面性能的一系列工艺和方法。
在现代工业生产中,材料表面工程技术的应用已经成为提高材料性能、延长材料使用寿命、节约资源和保护环境的重要手段。
本文将就材料表面工程技术的概念、分类、应用和发展前景进行简要介绍。
材料表面工程技术的概念。
材料表面工程技术是指通过对材料表面进行改性处理,以提高材料的表面性能和使用寿命的一系列工艺和方法。
它主要包括表面改性、表面合金化、表面涂层、表面喷涂、表面热处理等技术手段。
通过这些技术手段,可以改善材料的耐磨性、耐蚀性、耐热性、抗疲劳性等性能,从而满足不同工程领域对材料性能的要求。
材料表面工程技术的分类。
根据不同的技术手段和应用要求,材料表面工程技术可以分为多种类型。
比如,根据表面改性的方式,可以分为化学表面改性和物理表面改性;根据表面涂层的材料,可以分为金属涂层、陶瓷涂层、聚合物涂层等;根据工艺方法,可以分为喷涂、电镀、热喷涂、等离子喷涂等。
这些分类方式为材料表面工程技术的应用提供了丰富的选择。
材料表面工程技术的应用。
材料表面工程技术在工程领域有着广泛的应用。
在航空航天、汽车制造、机械加工、电子电器、建筑材料等领域,都需要对材料表面进行改性处理,以提高材料的性能和使用寿命。
比如,航空航天领域对材料的耐高温、抗腐蚀性能要求极高,需要采用表面合金化、表面涂层等技术手段;汽车制造领域对材料的耐磨、耐腐蚀性能要求较高,需要采用表面喷涂、表面热处理等技术手段。
可以说,材料表面工程技术已经成为现代工程领域中不可或缺的一部分。
材料表面工程技术的发展前景。
随着现代工程技术的不断发展,对材料性能的要求也越来越高。
因此,材料表面工程技术将会在未来得到更加广泛的应用和发展。
未来,随着新材料、新工艺的不断涌现,材料表面工程技术将会更加多样化和精细化,为各行各业提供更加优质的材料解决方案。
同时,随着智能制造、数字化技术的发展,材料表面工程技术也将会与智能化、数字化技术相结合,为材料的设计、加工、检测提供更加全面的解决方案。
材料表面技术在现代科技的快速发展中,材料表面技术已经成为了一个至关重要的领域。
它就像是给材料披上了一层神奇的外衣,赋予了它们各种独特的性能和功能。
那么,究竟什么是材料表面技术呢?简单来说,材料表面技术就是通过各种物理、化学或机械的方法,对材料的表面进行处理和改性,以改善其表面的性能,如耐磨性、耐腐蚀性、抗氧化性、导电性、导热性等等。
这不仅可以延长材料的使用寿命,提高其可靠性和稳定性,还可以为材料赋予新的功能,拓展其应用领域。
材料表面技术的种类繁多,每种技术都有其独特的特点和适用范围。
比如,电镀就是一种常见的表面处理技术。
通过在材料表面电镀一层金属,如铬、镍、锌等,可以显著提高材料的耐腐蚀性和耐磨性。
而且,电镀还可以使材料表面具有美观的外观,如金色、银色等,广泛应用于汽车零部件、五金制品等领域。
热喷涂技术也是一种非常实用的材料表面技术。
它是将金属、陶瓷等材料加热到熔融或半熔融状态,然后通过高速气流将其喷射到材料表面,形成一层牢固的涂层。
这层涂层可以有效地提高材料的耐磨损、耐高温、耐腐蚀等性能,常用于航空航天、石油化工等领域的关键零部件。
化学气相沉积(CVD)和物理气相沉积(PVD)技术则是在真空环境下进行的表面处理技术。
CVD 是通过化学反应在材料表面沉积一层薄膜,而 PVD 则是通过物理过程,如蒸发、溅射等,将材料沉积在表面。
这两种技术可以制备出非常薄且性能优异的涂层,如用于刀具表面的超硬涂层、电子器件中的薄膜等。
激光表面处理技术则是利用高能量密度的激光束对材料表面进行处理。
它可以实现材料表面的淬火、合金化、熔覆等,从而显著提高材料表面的硬度和耐磨性。
同时,激光表面处理还具有精度高、热影响区小等优点,在模具制造、汽车制造等领域得到了广泛的应用。
除了上述几种常见的技术外,还有等离子体表面处理、离子注入、溶胶凝胶法等众多的材料表面技术。
这些技术各有所长,为不同的材料和应用需求提供了多样化的解决方案。