5-声学基础知识
- 格式:doc
- 大小:963.50 KB
- 文档页数:14
声学的基本知识1.声波的传播方向的改变包括:反射、折射、衍射、漫射。
当声波遇到不同的介质时就会发生这几个“动作”,在多孔材料表面,声波会放生全部的“动作”。
随温度、风速、风向的变化,声音折射的区域会产生变化。
声衍射使得声波能沿墙体的周边弯曲并越过墙体。
声波漫射与光的漫射是同理的。
2.声音的基本特性包括:声速(v)、波长( )、频率(f)。
3.声音的强度经常用声强(W/m2)、声压(Pa)、声功率(W)、声压级(dB)来描述。
声强--媒质单位体积里所具有的声能量。
声压--声波在媒质中传播时,媒质某点由于受到声波扰动后压强超过原来静压力的值。
声功率--单位时间内声源辐射的总能量。
声压级=20lg(实际声压/基准声压)基准声压取2×10-5(N/m2) 单位是分贝。
应该注意的是:声强级、声压级、声功率与声强、声压、声功率是不同的概念。
以分贝为单位的各种“级”,只有相对的意义,,他们量纲为1,其数值的大小与所规定的基准有关。
因此,用分贝为单位的各种“级”,都应同时iaoming怂恿的基准值。
国标规定在生产车间以及作业场所连续工作8小时的允许噪声为90dB(A),时间减半允许噪声提高3dB。
4.根据人耳对声音的主观反映,声音的强度和频率引起对响度、音调、音色等感觉的变化。
响度---是声音强度这一物理量给人的主观感觉。
单位是方。
为了模仿人耳对声音响度的灵敏性,在测量声压级的仪器中加入对各种频率具有“计权”性质的网络,由此可直接读出接近人耳响度感觉的计权声压级,又称为A声级(dB)。
响度级是以1000HZ纯音为基准,对于1000HZ纯音,它的响度级就是这个声音的声压级。
调节1000HZ的纯音的声压级,使它和待定的纯音听起来一样响,这时1000HZ的纯音的声压级就是被定义为这一纯音的响度级。
音色---频率最低的称为基音,其他与基音成整数倍的称谐音(或称泛音)。
谐音的多少和强弱不同时就会感觉音色有变化。
声学基础知识声音,是我们生活中无处不在的一部分。
从清晨鸟儿的鸣叫,到城市道路上的车水马龙声,从悠扬的音乐旋律,到人们日常的交谈,声音以各种形式存在着,并对我们的生活产生着深远的影响。
那么,什么是声学呢?声学是研究声音的产生、传播、接收和效应的科学。
让我们一起走进声学的世界,了解一些声学的基础知识。
首先,我们来聊聊声音的产生。
声音的产生源于物体的振动。
当一个物体振动时,它会引起周围介质(比如空气)的振动,这种振动以波的形式向外传播,就形成了声音。
不同的物体振动方式和频率不同,产生的声音也就不同。
例如,琴弦的振动产生了美妙的音乐,而人的声带振动则产生了说话的声音。
那么声音是如何传播的呢?声音的传播需要介质。
在地球上,最常见的介质就是空气。
当声音在空气中传播时,其实就是空气分子在振动并依次传递能量。
声音在不同介质中的传播速度是不一样的。
比如,声音在固体中的传播速度通常比在液体和气体中快。
在 20 摄氏度的空气中,声音的传播速度约为 343 米每秒。
接下来谈谈声音的频率和波长。
频率指的是物体在单位时间内振动的次数,单位是赫兹(Hz)。
而波长则是声音在一个周期内传播的距离。
频率和波长之间存在着密切的关系,它们的乘积等于声音的传播速度。
人耳能够听到的声音频率范围大约在 20Hz 到 20000Hz 之间。
低于 20Hz 的声音称为次声波,高于 20000Hz 的声音称为超声波。
次声波和超声波在生活中也有广泛的应用,比如次声波可以用于地震监测,超声波可以用于医疗诊断和清洗。
声音的强度也是声学中的一个重要概念。
声音的强度用分贝(dB)来表示。
日常生活中的环境声音强度各不相同,安静的图书馆可能只有 30dB 左右,而繁忙的交通路口可能会达到 80dB 以上。
长期处于高强度的噪音环境中会对人的听力造成损害,因此,控制噪音是非常重要的。
在声学中,还有一个重要的概念是声波的反射、折射和衍射。
当声波遇到障碍物时,会发生反射。
声学基础知识声学基础知识⼀、声学基础1、⼈⽿能听到的频率范围是20—20KHZ。
2、把声能转换成电能的设备是传声器。
3、把电能转换成声能的设备是扬声器。
4、声频系统出现声反馈啸叫,通常调节均衡器。
5、房间混响时间过长,会出现声⾳混浊。
6、房间混响时间过短,会出现声⾳发⼲。
7、唱歌感觉声⾳太⼲,当调节混响器。
8、讲话时出现声⾳混浊,可能原因是加了混响效果。
9、声⾳三要素是指⾳强、⾳⾼、⾳⾊。
10、⾳强对应的客观评价尺度是振幅。
11、⾳⾼对应的客观评价尺度是频率。
12、⾳⾊对应的客观评价尺度是频谱。
13、⼈⽿感受到声剌激的响度与声振动的频率有关。
14、⼈⽿对⾼声压级声⾳感觉的响度与频率的关系不⼤。
15、⼈⽿对中频段的声⾳最为灵敏。
16、⼈⽿对⾼频和低频段的声⾳感觉较迟钝。
17、⼈⽿对低声压级声⾳感觉的响度与频率的关系很⼤。
18、等响曲线中每条曲线显⽰不同频率的声压级不相同,但⼈⽿感觉的响度相同。
19、等响曲线中,每条曲线上标注的数字是表⽰响度级。
20、⽤分贝表⽰放⼤器的电压增益公式是20lg(输出电压/输⼊电压)。
21、响度级的单位为phon。
22、声级计测出的dB值,表⽰计权声压级。
23、⾳⾊是由所发声⾳的波形所确定的。
24、声⾳信号由稳态下降60dB所需的时间,称为混响时间。
25、乐⾳的基本要素是指旋律、节奏、和声。
26、声波的最⼤瞬时值称为振幅。
27、⼀秒内振动的次数称为频率。
28、如某⼀声⾳与已选定的1KHz纯⾳听起来同样响,这个1KHz纯⾳的声压级值就定义为待测声⾳的响度。
29、⼈⽿对1~3KHZ的声⾳最为灵敏。
30、⼈⽿对100Hz以下,8K以上的声⾳感觉较迟钝。
31、舞台两侧的早期反射声对原发声起加重和加厚作⽤,属有益反射声作⽤。
32、观众席后侧的反射声对原发声起回声作⽤,属有害反射作⽤。
33、声⾳在空⽓中传播速度约为340m/s。
34、要使体育场距离主⾳箱约34m的观众听不出两个声⾳,应当对观众附近的补声⾳箱加0.1s延时。
《声学基础知识概述》一、引言声学是一门研究声波的产生、传播、接收和效应的科学。
从我们日常的言语交流到音乐演奏,从医学超声诊断到建筑声学设计,从水下声呐探测到航空航天领域的噪声控制,声学无处不在。
它不仅在科学研究中具有重要地位,也在工程技术、医学、艺术等领域发挥着关键作用。
本文将对声学基础知识进行全面的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、声学的基本概念1. 声波的定义与性质声波是一种机械波,是由物体的振动产生的。
它通过介质(如空气、水、固体等)传播,引起介质分子的振动。
声波具有以下主要性质:(1)频率:指声波每秒振动的次数,单位为赫兹(Hz)。
人耳能够听到的声音频率范围大约在 20Hz 到 20kHz 之间。
(2)波长:指声波在一个周期内传播的距离。
波长与频率和波速之间的关系为:波长=波速/频率。
(3)波速:声波在不同介质中的传播速度不同。
在空气中,声速约为 343 米/秒;在水中,声速约为 1480 米/秒;在固体中,声速则更高。
(4)振幅:表示声波的强度,即介质分子振动的幅度。
振幅越大,声音越响亮。
2. 声音的三要素声音的三要素是音调、响度和音色。
(1)音调:由声音的频率决定,频率越高,音调越高。
例如,女高音的音调比男低音高。
(2)响度:与声音的振幅和距离有关,振幅越大、距离越近,响度越大。
通常用分贝(dB)来表示声音的响度。
(3)音色:也称为音品,是由声音的波形决定的。
不同的发声体发出的声音具有不同的音色,这使得我们能够区分不同的乐器和人的声音。
3. 噪声与乐音噪声是指那些杂乱无章、令人厌烦的声音。
噪声的来源广泛,如交通噪声、工业噪声、建筑施工噪声等。
噪声对人的身心健康会产生不良影响,如引起听力损伤、心理压力等。
乐音则是有规律、悦耳动听的声音,如音乐演奏中的声音。
三、声学的核心理论1. 波动方程波动方程是描述声波传播的基本方程。
对于一维情况,波动方程可以表示为:$\frac{\partial^{2}u}{\partialt^{2}}=c^{2}\frac{\partial^{2}u}{\partial x^{2}}$ 其中,$u$表示介质的位移,$t$表示时间,$x$表示空间坐标,$c$表示波速。
声学基础知识声学是研究声音的产生、传播和接收的学科,它是物理学的一个重要分支,也与工程学、心理学等学科密切相关。
声音是一种机械波,是由介质中分子的振动引起的。
在日常生活中,我们所接触的声音与我们的情绪、心理状态有很大关联,而在工业、医学、通信等领域,声学也扮演着重要的角色。
本文将从声音的产生、传播和接收三个方面介绍声学的基础知识。
一、声音的产生声音是由物体振动引起的,当物体振动产生的机械波传播到我们的耳朵时,我们才能感知到声音。
声音的产生主要有以下几种方式:1. 自由振动:当一个物体自由地振动时,会在周围介质中产生声音。
例如,乐器弦线振动时产生的声音。
2. 强迫振动:当一个物体被外力作用迫使振动时,也会产生声音。
例如,乐器的音箱被演奏者的手和腮帮振动时产生的声音。
3. 空气振动:当空气被物体振动时,会通过空气分子的碰撞传播声音。
例如,人的嗓子发出的声音就是通过空气的振动传播出去的。
二、声音的传播声音是通过介质传播的,常见的传播介质有空气、水和固体。
声音传播的速度与介质的性质相关,例如,在空气中,声音传播的速度约为每秒343米。
声音传播的基本过程可以分为以下几个步骤:1. 振动:声音是由物体的振动引起的,当物体振动时,会在介质中产生声波。
2. 压缩与稀疏:振动的物体使介质中的分子产生交替的压缩和稀疏,形成纵波传播。
3. 传播:声波以纵波的形式沿介质传播,当声波到达物体后,物体的分子也会被振动,进而再次产生声波。
4. 接收:当声波达到接收器(如耳朵),通过耳膜、骨骼、耳腔等组织,被转化为神经信号,我们才能感知到声音。
三、声音的接收声音的接收是指我们如何感知和理解传播过程中产生的声音信号。
人类具有复杂而精细的听觉系统,能够感知各种不同频率和振幅的声音。
1. 听觉器官:人类的听觉器官包括外耳、中耳和内耳。
外耳通过外耳道将声音引入中耳,中耳通过鼓膜和听小骨(听骨链)将声波传递给内耳。
内耳中的耳蜗含有感音神经,能够将声波转化为神经信号。
声学基本知识一、声音的基本性质声音来源于振动的物体。
辐射声音的振动物体称为“声源”。
声源要在弹性介质中发声并向外传播。
声波是纵波。
(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。
低于20Hz的声音称为次声;高于20000Hz的声音称为超声。
次声与超声不能使人产生声音的感觉。
(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。
-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。
表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。
(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。
声线表示声波的传播方向和途径。
在各向同性的介质中,声线是直线且与波阵面垂直。
依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。
一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。
当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。
所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。
(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。
这种现象称为绕射,或衍射。
(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。
从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。
声学基础知识声音,作为我们日常生活中最常接触到的感知,是一种形式的机械波,它通过物质的震动传播而产生。
声学是研究声音产生、传播和听觉效应等相关现象的学科。
本文将介绍声学的基础知识,包括声音的特性、声波的传播与衰减、和人类的听觉系统。
一、声音的特性声音有几个重要的特性,包括音调、音量和音色。
音调是指声音的高低,由声源的频率决定。
频率越高,音调越高;频率越低,音调越低。
音量是指声音的强弱,由声源振幅的大小决定。
振幅越大,音量越大;振幅越小,音量越小。
音色是指具有独特质感的声音特征,由声音的谐波成分和声源的包络形状决定。
不同的乐器演奏同一个音高,因为其谐波成分和包络形状不同,所以会有不同的音色。
二、声波的传播与衰减声波是指由声源振动产生的压力波。
声波传播时,需要介质作为传播介质,常见的介质包括空气、水、固体等。
在传播过程中,声波会经历衍射、反射、折射等现象。
衍射是指声波遇到障碍物时沿着障碍物的边缘传播,使声音能够绕过障碍物。
反射是指声波遇到障碍物后从障碍物上反弹回来,产生回声。
折射是指声波在介质之间传播时由于介质密度不同而改变传播方向。
声波在传播过程中会逐渐衰减,衰减的程度取决于声音传播的距离、传播介质的特性以及环境条件等。
一般来说,声音传播的距离越远,声波能量的衰减越大;传播介质的特性也会影响声波的衰减,固体传播声波的衰减相对较小,而空气和水传播声波的衰减相对较大。
环境条件如温度和湿度也会对声波的衰减产生一定影响。
三、人类的听觉系统人类的听觉系统是感知声音的重要器官。
它由外耳、中耳、内耳和大脑皮层等部分组成。
外耳包括耳廓和外耳道,它们的主要功能是接收和传导声音。
中耳包括鼓膜和听小骨(锤骨、砧骨和镫骨),它们的主要功能是将声音的机械能转换为神经信号。
内耳包括耳蜗和前庭,耳蜗负责感知声音,前庭负责维持平衡。
大脑皮层负责处理和解读声音信号。
人类听觉系统对不同频率的声音有不同的感知范围。
一般来说,人类可以听到频率范围在20Hz到20kHz之间的声音。
声学基础知识解析声学,作为物理学的一个分支,研究了声音的产生、传播和感知。
声波是一种机械波,是由固体、液体和气体中的物质震动引起的。
声学的研究对于我们日常生活和科学研究中都具有重要的意义。
本文将对声学的基础知识进行解析。
一、声的产生声音的产生是由物体的振动引起的。
当物体振动时,周围的空气分子也会跟随振动,形成一个机械波,即声波。
声波的频率越低,音调就越低,频率越高,音调就越高。
二、声的传播声波是通过介质传播的,大部分情况下是通过空气传播。
当我们发出声音时,声波会向四面八方传播,当声波到达一个物体时,它会撞击物体的表面,使表面振动,并且使介质内的分子也发生振动。
这种振动会一直传播下去,直到遇到障碍物或者被吸收。
三、声的特性声音具有以下几个基本特性:1. 音量:也称为声音的强度,是指声音的大小。
音量与声波的振幅有关,振幅越大,音量就越大。
2. 频率:也称为音调,是指声音振动的快慢。
频率与声波的周期有关,周期越短,频率就越高,音调就越高。
3. 声音色彩:是指声音的质地或音质,不同的乐器和人的声音都有独特的音色。
音色由声波的谐波分量决定。
四、声的吸收与反射当声波遇到物体时,它会发生吸收和反射。
当声波被吸收时,会转化为其他形式的能量,导致声音变弱或消失。
当声波被物体表面反射时,它会沿着其他方向传播,形成回声。
五、应用领域声学的研究在很多领域都有重要的应用,以下是一些常见的应用领域:1. 音乐:声学研究有助于了解乐器的原理和声音产生的机制,帮助人们更好地演奏乐器和欣赏音乐。
2. 建筑与环境:声学研究在建筑和环境设计中发挥重要作用,可以帮助减少噪音污染,改善室内声学环境。
3. 通讯:声学研究在通讯技术中起着关键作用,例如手机和音频设备的设计。
4. 医学:声学在医学中的应用广泛,包括超声波成像、听力研究等。
结论声学作为物理学的一个分支,研究了声音的产生、传播和感知。
通过学习声学的基础知识,我们可以更好地理解声音的产生和传播原理,并且可以应用于音乐、建筑、通讯和医学等领域。
声学基础知识声学是物理学分支学科之一,是研究媒质中机械波的产生、传播、接收和效应的科学。
媒质包括物质各态(固体、液体和气体等),可以是弹性媒质也可以是非弹性媒质。
以下是由整理关于声学知识的内容,希望大家喜欢!声学的领域介绍与光学相似,在不同的情况,依据其特点,运用不同的声学方法。
波动也称物理声学,是用波动理论研究声场的方法。
在声波波长与空间或物体的尺度数量级相近时,必须用波动声学分析。
主要是研究反射、折射、干涉、衍射、驻波、散射等现象。
在关闭空间(例如室内,周围有表面)或半关闭空间(例如在水下或大气中,有上、下界面),反射波的互相干涉要形成一系列的固有振动(称为简正振动方式或简正波)。
简正方式理论是引用量子力学中本征值的概念并加以发展而形成的(注意到声波波长较大和速度小等特性)。
射线或称几何声学,它与几何光学相似。
主要是研究波长非常小(与空间或物体尺度比较)时,能量沿直线的传播,即忽略衍射现象,只考虑声线的反射、折射等问题。
这是在许多情况下都很有效的方法。
例如在研究室内反射面、在固体中作无损检测以及在液体中探测等时,都用声线概念。
统计主要研究波长非常小(与空间或物体比较),在某一频率范围内简正振动方式很多,频率分布很密时,忽略相位关系,只考虑各简正方式的能量相加关系的问题。
赛宾公式就可用统计声学方法推导。
统计声学方法不限于在关闭或半关闭空间中使用。
在声波传输中,统计能量技术解决很多问题,就是一例。
分支可以归纳为如下几个方面:从频率上看,最早被人认识的自然是人耳能听到的“可听声”,即频率在20Hz~20000Hz的声波,它们涉及语言、音乐、房间音质、噪声等,分别对应于语言声学、音乐声学、房间声学以及噪声控制;另外还涉及人的听觉和生物发声,对应有生理声学、心理声学和生物声学;还有人耳听不到的声音,一是频率高于可听声上限的,即频率超过20000Hz的声音,有“超声学”,频率超过500MHz的超声称为“特超声”,当它的波长约为10-8m量级时,已可与分子的大小相比拟,因而对应的“特超声学”也称为“微波声学”或“分子声学”。
声学基础知识点总结1. 声波的产生声波是由振动的物体产生的,当物体振动时,会产生压缩和稀疏的波动,这些波动以一定速度在介质中传播,就形成了声波。
声波的产生需要具备两个条件:振动源和传播介质。
一般来说,声波的振动源可以是任何物体,包括人类的声带、乐器的琴弦、机器的发动机等,而传播介质主要是固体、液体和气体。
声波在不同的介质中传播速度不同,气体中的声速最慢,固体中的声速最快。
2. 声波的传播声波的传播包括两种方式:纵波和横波。
纵波是指波动方向与传播方向相同的波动,即介质中的分子以与波动方向相同的方式振动。
在气体和液体中,声波主要是纵波。
横波是指波动方向与传播方向垂直的波动,即介质中的分子以与波动方向垂直的方式振动。
在固体中,声波主要是横波。
3. 声波的特性声波具有一些特性,包括频率、振幅和波长。
频率是指单位时间内声波振动的次数,单位是赫兹(Hz),通常用来表示声音的高低音调。
振幅是指声波振动的幅度,通常用来表示声音的大小。
波长是指声波在介质中传播一个完整周期所需要的距离,与频率和传播速度有关。
4. 声音的产生声音是由声波在空气中传播而形成的,但在声音产生的过程中,还需要经过声带的振动、共鸣腔的放大和嘴唇、舌头等器官的调节。
声带位于声音道中部分,当呼吸进入声音道时,声带会振动产生声波,不同的振动频率会形成不同的音调。
共鸣腔是指声音道中的空腔部分,不同的共鸣腔大小和形状会影响声音的音色。
嘴唇、舌头等器官的调节会改变声音的音调和音色,从而产生不同的语音。
5. 声波的接受人类的听觉系统能够接受声波并将其转化为神经信号传递给大脑,从而形成对声音的感知。
耳朵是人类的听觉器官,主要包括外耳、中耳和内耳。
外耳是声音的接收器,能够接受来自外界的声波并将其传递给中耳。
中耳是声音的传导器,能够将声波转化为机械波并传递给内耳。
内耳是声音的感受器,能够将机械波转化为神经信号,并传递给大脑进行处理。
6. 声波的用途声波在日常生活中有着广泛的应用,包括声音通讯、声波测量、声波成像等方面。
声学必考知识点归纳总结声学是物理学的一个重要分支,主要研究声波的产生、传播、接收以及与物质的相互作用。
以下是声学必考知识点的归纳总结:1. 声波的基本概念:- 声波是一种机械波,需要介质传播。
- 声波的频率决定了音调的高低,人耳可以听到的频率范围大约在20Hz到20kHz之间。
2. 声速:- 声速是指声波在介质中传播的速度,与介质的密度和弹性模量有关。
- 在标准大气压下,声速在空气中约为340m/s。
3. 声波的反射、折射、衍射和干涉:- 反射是声波遇到障碍物时返回的现象。
- 折射是声波从一种介质进入另一种介质时速度改变,导致传播方向改变的现象。
- 衍射是声波绕过障碍物或通过小孔时发生的波前弯曲现象。
- 干涉是两个或多个声波相遇时,波峰和波谷相互叠加或抵消的现象。
4. 共振和共鸣:- 共振是指当外部激励的频率与系统的自然频率相匹配时,系统振动幅度达到最大。
- 共鸣是指在特定频率下,腔体或结构的振动增强的现象。
5. 声波的衰减:- 声波在传播过程中会因为介质的吸收、散射等原因逐渐减弱。
6. 声源和声场:- 声源是产生声波的物体或现象。
- 声场是指声波在空间中的分布情况。
7. 声级和分贝:- 声级是衡量声音强度的单位,常用分贝(dB)表示。
- 分贝是一个相对单位,用于描述声压或声强的相对变化。
8. 声学测量:- 包括声压、声强、声速、频率等的测量。
9. 声学材料:- 吸音材料、隔音材料、反射材料等,用于控制声波的传播。
10. 声学在建筑中的应用:- 建筑声学研究如何通过设计来控制室内的声学效果,包括声音的传播、吸收和反射。
11. 噪声控制:- 包括噪声的测量、评价和控制方法。
12. 超声波和次声波:- 超声波是频率高于人类听觉范围的声波,常用于医学成像和工业检测。
- 次声波是频率低于人类听觉范围的声波,可能由自然现象如地震或人为活动产生。
13. 声学在通信中的应用:- 包括声学在电话、无线电通信和声纳技术中的应用。
一、声学基础:1、名词解释(1)波长—-声波在一个周期内的行程。
它在数值上等于声速(344米/秒)乘以周期,即入=CT(2)频率-—每秒钟振动的次数,以赫兹为单位(3)周期-—完成一次振动所需要的时间(4)声压一一表示声音强弱的物理量,通常以Pa为单位(5)声压级-—声功率或声强与声压的平方成正比,以分贝为单位(6)灵敏度-—给音箱施加IW的噪声信号,在距声轴1米处测得的声压(7)阻抗特性曲线-—扬声器音圈的电阻抗值随频率而变化的曲线(8)额定阻抗--在阻抗曲线上最大值后最初出现的极小值,单位欧姆(9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功(10)音乐功率一-以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO)(11)音染—-声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份(12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围2、问答(1)声音是如何产生的?答:世界上的一切声音都是由物体在媒质中振动而产生的.扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。
(2)什么叫共振?共振声对扬魂器音质有影响吗?答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动.当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。
部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于共振声不是声源所发出的声音,将会影响扬声器的重放,使音质变坏,尤其是低频部分(3)什么是吸声系数与吸声量?它们之间的关系是什么?答:吸声性能拭目以待好坏通常用吸声系级“a"表示,即a=1—K;吸声量是用吸声系数与材料的面积大小来表示。
手机声腔设计和音频电路检测一. 声音的基础知识1.声压:由声波引起的压强变化称为声压,用符号P表示,单位为微巴(ubar)或帕(Pa)1 ubar=0.1Pa=0.1N/m2一个标准大气压P0=1.03 x10-5Pa表达式:P=Po(ωt-kx+Ψ)通常所指的声压是指声压的均方根值,即有效声压。
2.频率:声源每秒振动的次数称为频率,单位为Hz.人耳可听得见的声波频率范围约为20Hz~ 20000Hz,即音频范围3.声速:在介质中传播速度称为声速。
固体最快,液体次之,空气中最慢。
在空气中传播340m/s,水中1450 m/s,钢铁中5000m/s4.波长:相邻同相位的两点之间的距离称为波长λCo= λf Co为空气中声速f为频率5.声压级:Lp=20lg(P/Po) (dB) Po为基准声压2x10-5 pa基准声压为为2x10-5 pa,称为听阀,即为0dB当声压为20Pa时,称为痛阀,即为120dB由此可见,声压相差百万倍时,用声压级表示时,就变成了0dB到120dB的变化范围。
由上式可以看出声压变化10倍,相当于声压级变化20dB;声压变化100倍,相当于声压级变化40dB 一般交谈为30 dB纺织车间为100 dB6.声压级与功率的关系:ΔP=10lg(w/wo) (dB)wo为参考功率功率增加一倍,声压级增加3 dB7.声压级与距离的关系:ΔP=-20lg(r1/ro) (dB) ro为参考距离距离增加一倍,声压级减小6 dB从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。
对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。
而高于8KHz略有提升,可使高频段的音色显得生动活泼些。
一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。
声音失真对听觉会产生一定的影响,其程度取决于失真的大小。
对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的;THD>3%时,人耳已可感知;THD>5%时,会有轻微的噪声感;THD>10%时,噪声已基本不可忍受。
对于手机而言,由于受到外形和SPEAKER尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。
二. 手机铃声的影响因素铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。
对手机而言,SPEAKER、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。
SPEAKER单体的品质对于铃声的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。
手机声腔则可以在一定程度上调整SPEAKER的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。
此外,输出电压则必须与SPEAKER相匹配,否则,输出电压过大,导致SPEAKER在某一频段出现较大失真,同样会产生杂音。
MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和SPEAKER的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。
总之,铃声音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。
三.SPEAKER选型1. 目的SPEAKER的品质特性对手机铃声优劣起着决定性作用。
在同一个声腔、同样的音源情况下,不同性能的SPEAKER在音质、音量上会有较大的差异。
因此选择一个合适的SPEAKER可较大程度的改善手机的音质。
为了便于设计工程师选择合适的SPEAKER,本章介绍了SPEAKER的评价原则、测试流程和根据实验结果提供的不同半径SPEAKER选型推荐。
2. SPEAKER的评价原则SPEAKER的性能一般可以从频响曲线、失真度和寿命三个方面进行评价。
频响曲线反映了SPEAKER在整个频域内的响应特性,是最重要的评价标准。
失真度曲线反映了在某一功率下,SPEAKER 在不同频率点输出信号的失真程度,它是次重要指标,一般情况下,当失真度小于10%时,都认为在可接受的范围内。
寿命反映了SPEAKER的有效工作时间。
由于频响曲线是图形,包含信息很多,为了便于比较,主要从四个方面进行评价:SPL值、低频谐振点f0、平坦度和f0处响度值。
SPL值一般是在1K~4KHz之间取多个频点的声压值进行平均,反映了在同等输入功率的情况下,SPEAKER输出声音强度的大小,它是频响曲线最重要的指标。
低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。
平坦度反映了SPEAKER还原音乐的保真能力,作为参考指标。
f0处响度值反映了低音的性能,作为参考指标。
3. SPEAKER选型推荐根据2.2节的评价方法,对常用的SPEAKER进行评价。
由于供应商提供的SPEAKER参数是在不同条件下测量得到,很难进行对比,因此我们对本公司常用的30多种SPEAKER在同等条件进行实测,根据实验结果,判定SPEAKER的优劣(测试数据见附录一)。
4. SPEAKER测试流程本流程的目的是为了对SPEAKER性能进行评价,便于工程师选择合适的SPEAKER产品。
4.1实验内容1.EA Frequency Response(频响曲线测定)(频响:在一定条件下,器件或系统由激励所引起的运动或其他输出)2.EA Total Distortion(失真率测定)(失真为不希望的波形变化;引起原因有 1.输入和输出之间的非线性关系;2.不同频率的传输的不一致;3.相移与频率不成比例)3.听感评价(SPEAKER音质主观评价,作参考)4.2测试方法与步骤:测试地点:中期试验部静音室测试仪器:HEAD acoustics GmbH测试夹具:12cc标准密闭盒或0.8m×1m障板,我司现用0.8m×1m障板。
步骤:(1)实验仪器按要求联接设备;(先连接设备再开PC)(2)确定SPEAKER与MICROPHONE的距离为10mm±5%,并固定。
(一)频响曲线测定:点开文件夹选择EA Frequency Response, sweep 12th octave LS,在右栏设定中选择电平(level)使经过放大器输出分别为:0.1w(1KHz,负载8欧姆时用示波器测有效值电压为0.894V,P-P值为1.264V);0.2w(1KHz,负载8欧姆时用示波器测有效值电压为1.265V,P-P值为1.789V);0.3w(1KHz,负载8欧姆时用示波器测有效值电压为1.549V,P-P值为2.190V);0.4w(1KHz,负载8欧姆时用示波器测有效值电压为1.789V,P-P值为2.530V);0.5w(1KHz,负载8欧姆时用示波器测有效值电压为2.000V,P-P值为2.828V),频率范围为300~10000Hz。
单击右键选择开始测定,将测定结果创建报告并储存。
(二)失真率测定:点开文件夹选择EA Total Distortion LS,在右栏设定中调整电平(level)使放大器输出如(一)中所规定的为0.1w,0.3w,0.5w时电压为标准输入电压,然后以6th octave row b选择频率范围为500~10000Hz单击右键选择开始测定,将测定结果创建报告并储存。
(三)听感评价:听感评价是一种主观行为,现只作为辅佐性评价,在客观数据评定难以取舍时,组织相关工程师或音频工程师评价。
4.3实验数据记录和处理(以下数据和图面仅作参考)(1) 频响曲线测试结果 a. 频响曲线图b. 频响曲线点测数据(SPL )c. 根据失真测试度数据绘制失真度曲线测试日期:供应商名: SANYO 15%20%25%30%35%40%45%50%四. 手机声腔设计1.目的手机声腔对于铃声音质的优劣影响很大。
同一个音源、同一个SPEAKER在不同声腔中播放效果的音色可能相差较大,有些比较悦耳,有些则比较单调。
合理的声腔设计可以使铃声更加悦耳。
为了提高声腔设计水平,详细说明了声腔各个参数对声音的影响程度以及它们的设计推荐值,同时还介绍了声腔测试流程。
手机的声腔设计主要包括前声腔、后声腔、出声孔、密闭性、防尘网五个方面,如下图:出声孔防尘网后声腔图1 声腔结构示意图2.后声腔对铃声的影响及推荐值后声腔主要影响铃声的低频部分,对高频部分影响则较小。
铃声的低频部分对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声比较悦耳。
一般情况下,随着后声腔容积不断增大,其频响曲线的低频波峰会不断向左移动,使低频特性能够得到改善。
但是两者之间关系是非线性的,当后声腔容积大于一定阈值时,它对低频的改善程度会急剧下降,如图2示。
图2 后声腔容积对低频性能影响图2横坐标是后声腔的容积(cm3),纵坐标是SPEAKER单体的低频谐振点与从声腔中发出声音的低频谐振点之差,单位Hz。
从上图可知,当后声腔容积小于一定的阈值时,其变化对低频性能影响很大。
需要强调的是,SPEAKER单体品质对铃声低频性能的影响很大。
在一般情况下,装配在声腔中的SPEAKER,即便能在理想状况下改善声腔的设计,其低频性能也只能接近,而无法超过单体的低频性能。
一般情况下,后声腔的形状变化对频响曲线影响不大。
但是如果后声腔中某一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音质急剧变差,因此,在声腔设计中,必须避免出现这种情况。
对于不同直径的SPEAKER,声腔设计要求不太一样,同一直径则差异不太大。
具体推荐值如下:φ13mm SPEAKER:它的低频谐振点f0一般在800Hz~1200Hz之间。
当后声腔为0.5cm3时,其低频谐振点f0大约衰减600Hz~650Hz。
当后声腔为0.8cm3时,f0大约衰减400Hz~450Hz。
当后声腔为1cm3时,f0大约衰减300Hz~350Hz。
当后声腔为1.5cm3时,f0大约衰减250Hz~300Hz。
当后声腔为3.5cm3时,f0大约衰减100Hz~150Hz。
因此对于φ13mm SPEAKER,当它低频性能较好(如f0在800Hz左右)时,后声腔要求可适当放宽,但有效容积也应大于0.8cm3。