考研传热学概念和问答总结
- 格式:docx
- 大小:76.09 KB
- 文档页数:13
传热学知识点总结考研传热学是热力学的一个重要分支,研究热量在物体之间传递的过程。
在工程学、化学工程、材料科学和环境科学等领域都有着重要的应用。
本文将围绕传热学的基本理论和应用进行系统总结,希望能够对传热学的学习和研究有所帮助。
一、传热学的基本概念1. 传热的定义传热是热量在物体之间传递的过程,可以通过传导、对流和辐射这三种方式进行。
传热的目的是使物体的温度相等或者使热量从高温物体传递到低温物体上。
2. 传热的基本原理传热的基本原理是热量由高温区流向低温区,其基本规律可以用热传导方程、对流传热方程和辐射传热方程来描述。
3. 传热的分类根据传热的方式不同,可以将传热分为传导传热、对流传热和辐射传热。
传导传热是由物体内部的分子传递热量,对流传热是通过流体的运动传递热量,而辐射传热是通过电磁波辐射传递热量。
二、传热学的基本理论1. 传导传热传导传热是由固体内部的分子、原子或离子的运动方式传递热量。
传导传热可以用热传导方程或者傅里叶热传导定律来描述,其中热传导方程可以表达为:q=-kA*(dT/dx),其中q 表示单位时间内通过物体的热量,k表示热导率,A是传热截面积,dT/dx表示温度梯度。
2. 对流传热对流传热是由流体的运动方式传递热量,主要包括自然对流和强制对流两种方式。
自然对流是由温差引起的流体的自然对流运动,而强制对流是通过外力使流体发生运动。
对流传热可以用波亚松定律或者努塞尔数来描述。
3. 辐射传热辐射传热是通过电磁波的辐射方式传递热量,主要取决于物体的温度和表面的发射率等。
辐射传热可以用斯特凡—波尔兹曼定律或者基尔霍夫定律来描述。
4. 传热的复合方式在实际传热过程中,通常会同时存在传导、对流和辐射三种方式,这就需要将它们进行组合计算。
可以通过综合利用传热系数来描述传热的复合方式。
三、传热学的应用1. 传热器设备传热器是用于传热的设备,广泛应用于化工、能源、环保等领域。
常见的传热器包括换热器、蒸发器、冷凝器和加热器等。
考研《传热学》重要考点归纳第1章绪论1.1考点归纳一、热传递的基本方式1.导热(1)导热的定义导热又称热传导,是指物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而进行的热量传递现象。
(2)导热量的计算①傅里叶定律(导热基本定律)或②热流量②热流量单位时间内通过某一给定面积的热量称为热流量,记为Ф,单位为W。
③热流密度通过单位面积的热流量称为热流密度,记为q,单位为W/m2。
(3)热导率①热导率λ或称导热系数,是表征材料导热性能优劣的参数,即是一种热物性参数,其单位为W/(m•K)。
②其物理意义是指单位厚度的物体具有单位温度差时,在单位时间内其单位面积上的导热量。
2.热对流(1)热对流的定义热对流是指由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热量传递过程。
(2)对流传热①对流传热的定义对流传热是指流体与温度不同的固体壁面接触时所发生的传热过程。
②对流传热的分类a.自然对流传热:由于流体冷、热各部分的密度不同而引起的对流传热。
b.强制对流传热:由于机械(水泵或风机等)的作用或其它压差而引起的相对运动所造成的对流传热。
c.沸腾传热及凝结传热:伴随有相变的对流传热,如液体在热表面上沸腾及蒸气在冷表面上凝结的对流传热问题,分别简称为沸腾传热及凝结传热。
③对流传热的计算牛顿冷却公式(对流传热的基本计算式)式中:h——表面传热系数(或称对流换热系数),单位是W/(m2•K)。
(3)热对流与对流传热的区别①热对流是传热的3种基本方式之一,而对流传热不是传热的基本方式。
②对流传热是导热和热对流这2种基本方式的综合作用。
③对流传热必然具有流体与固体壁面间的相对运动。
传热学中,重点讨论的是对流传热问题。
3.热辐射(1)辐射的定义物体通过电磁波来传递能量的方式称为辐射。
(2)热辐射的定义物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称为热辐射。
概念汇总1.绪论1.传热学:研究热量传递规律的科学。
2.热量传递的基本方式:导热、对流、辐射。
3.热传导(导热):物体的各部分之间不发生相对位移,依靠微观粒子的热运动产生的热量传递现象。
4.纯粹的导热只能发生在不透明的固体之中。
5.热流密度:通过单位面积的热流量(W╱m2)。
6.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。
7.热对流只发生在流体之中,并伴随有导热现象。
8.自然对流:由于流体密度差引起的相对运动。
9.强制对流:由于机械作用或其他压差作用引起的相对运动。
10.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。
11.辐射:物体通过电磁波传播能量的方式。
12.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。
13.辐射换热:不直接接触的物体之间,由于各自辐射与吸收的综合结果所产生的热量传递现象。
14.传热过程:热流体通过固体壁面将热量传给另一侧流体的过程。
15.传热系数:表征传热过程强烈程度的尺寸,数值上等于冷热流体温差1K时所产生的热流密度[W╱(m2•K)]16.单位面积上的{传热热阻:R k=1k。
导热热阻:Rλ=δλ。
对流换热热阻:R h=1h。
17.热流量:单位时间内所传递的热量。
18.对比串联热阻大小就可以找到强化传热的主要环节。
19.单位:物理量的度量标尺。
20.基本单位:基本物理量的单位。
21.导出单位:由物理含义导出,以基本单位组成的单位。
22.单位制:基本单位与导出单位的总和。
23.导热系数,表面传热系数和传热系数之间的区别:导热系数是表征材料导热性能优劣的参数,即是一种物性参数。
不同材料的导热系数值不同,即使是同一种材料,导热系数值还与温度等因素有关。
表面传热系数是表征对流换热强弱的参数,它不仅取决于流体的物性以及换热表面的形状、大小与布置,而且还与流速有密切的关系,是取决于多种因素的复杂函数。
传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
传热学知识点概念总结传热学是研究热量传递的科学,主要涉及热传导、热辐射和对流传热三个方面。
下面将对传热学中的一些重要知识点进行概念总结。
1.热传导:热传导是指物质内部由于分子或原子之间的相互作用而引起的热量传递。
热传导的速率与传热介质的导热性质有关,如导热系数、传热介质的温度梯度和传热介质的厚度。
2.热辐射:热辐射是指由于物体表面温度而产生的电磁辐射,无需经过介质媒质进行传热。
热辐射的能量传递与物体的温度和表面特性有关,如表面发射率和吸收率。
3.对流传热:对流传热是指通过流体的流动使热量传递的过程。
对流传热受到流体流动速度、温度差和流体介质的热传导性质的影响。
对流传热可以分为自然对流和强制对流两种形式。
4.导热系数:导热系数是描述材料导热性质的物理量,定义为单位厚度和单位温度梯度时的热流密度。
导热系数是描述热传导能力大小的重要参数,与物质的组成、结构和温度有关。
5.温度梯度:温度梯度是指在物体内部或空间中温度随着距离的变化率。
温度梯度越大,热传导的速率越快。
6.热阻:热阻是指单位时间内单位温差时热传导的阻力。
热阻与传热介质的导热系数和厚度有关。
可通过热阻来描述传热介质对热传导的阻碍程度。
7.热容量:热容量是指单位质量物质温度升高单位温度所需的热量。
热容量与物质的物理性质有关,如比热容和密度。
8.辐射强度:辐射强度是指单位时间内单位面积上辐射通过的能量。
辐射强度与物体的表面发射率和温度有关。
9.辐射传热:辐射传热是指由于物体表面发射和吸收辐射而进行的传热。
辐射传热受到物体表面发射率、吸收率、温度差和介质的辐射传递能力的影响。
10.热傅里叶定律:热傅里叶定律是描述物体内部热传导的定律,其表达式为热流密度与传热介质的导热系数、温度梯度和传热介质的横截面积成正比。
以上是传热学中一些重要的知识点的概念总结。
传热学的研究对于理解和应用热量传递过程具有重要意义,可广泛应用于工程领域的热处理、热能转化和热工学等方面。
1.热传导:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。
2传热系数:在数值上等于冷、热流体间温差厶t=「C、传热面积A=1m2寸的热流量的值,它表征传热过程的强烈程度。
3.传热过程:热量从壁一侧的高温流体通过壁传给另一侧的低温流体的过程。
4.温度场:指各个时刻物体内各点温度组成的集合,又称温度分布。
一般的,物体的温度场是时间和空间的函数。
5.等温面:同一瞬间,温度场中所有温度相同的点所组成的面。
6.等温线:在任何一个二维截面上,等温面表现为等温线。
7.温度梯度:在温度场中某点处沿等温面的法向的最大方向导数,t。
8.热流量:单位时间内通过某一给定面积的热量。
记为。
9.热流密度:通过单位面积的热流量。
记为q。
10.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热量传递过程。
11.表面传热系数:单位面积上,流体与壁面之间在单位温差下及单位时间内所能传递的能量。
12.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。
13.自然对流:由于流体冷、热各部分的密度不同而引起流体的流动。
14.强制对流:流体的流动是由于水泵、风机或者其他压差作用所造成。
15.沸腾传热(凝结传热):液体在热表面上沸腾(及蒸汽在冷表面上凝结)的对流传热。
16.入口段和充分发展段:流体从进入管口开始,需经历一段距离,管断面流速分布和流动状态才能达到定型,这一段距离通称进口段。
之后,流态定型,流动达到充分发展,称为流动充分发展段。
17.自模化现象:自然对流紊流的表面传热系数与定型尺寸无关的现象。
18.辐射:物体通过电磁波来传递能量的方式。
19.热辐射:物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称Orfo20.辐射传热:辐射与吸收过程的综合结果就造成了以辐射的方式进行的物体间的热量传递。
21.黑体:指能吸收投入到其表面上的所有热辐射能量的物体。
传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。
传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。
以下是对传热学基本知识的总结。
一、传热的基本概念1.温度:物体内部分子运动的程度的度量。
温度高低决定了热能的传递方向。
2.热量:物体之间由于温度差异而传递的能量。
热量沿温度梯度从高温区向低温区传递。
3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。
4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。
二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。
2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。
3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。
三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。
热导率取决于物质本身的性质,与物质的材料、温度有关。
热导率越大,物体传热能力越强。
四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。
2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。
五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。
2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。
3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。
在工程中,传热学常常运用于热工系统的设计和优化。
工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。
例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。
传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。
传热学考研题库及答案解析传热学是研究热量传递规律的科学,它在工程领域中有着广泛的应用。
考研题库及答案解析可以帮助学生更好地掌握传热学的基本概念、原理和计算方法。
以下是一些典型的传热学考研题目及答案解析:# 题目一:稳态导热问题题目描述:一个长方体物体,其尺寸为Lx=0.2m,Ly=0.1m,Lz=0.5m,初始温度为T0=20°C。
若物体的一侧表面(x=0面)被加热至T1=100°C,而其他五个面绝热,求经过时间t后物体内部某点P(x,y,z)的温度。
答案解析:此问题可以通过求解一维稳态导热方程来解决。
一维稳态导热方程为:\[ \frac{d^2T}{dx^2} = 0 \]由于其他五个面绝热,导热只在x方向发生,因此温度T只与x有关。
根据边界条件,我们有:\[ T(x=0) = T_1 \]\[ \frac{dT}{dx}(x=Lx) = 0 \]利用傅里叶定律,温度分布可以表示为:\[ T(x) = T_1 + (T_0 - T_1) \left(1 - \frac{x}{Lx}\right) \]所以,点P(x,y,z)的温度为:\[ T(x,y,z) = T_1 + (T_0 - T_1) \left(1 - \frac{x}{Lx}\right) \]# 题目二:非稳态导热问题题目描述:一个无限大平板,初始温度为T0=20°C。
在t=0时刻,平板的一侧表面被加热至T1=100°C,求经过时间t后,距离加热面x处的温度。
答案解析:这是一个典型的非稳态导热问题,可以使用傅里叶定律的非稳态形式来求解。
非稳态导热方程为:\[ \frac{\partial T}{\partial t} = \alpha \nabla^2 T \]其中,α是热扩散率。
对于无限大平板,问题可以简化为一维问题,即温度T只与x和t有关。
初始条件和边界条件分别为:\[ T(x,0) = T_0 \]\[ T(0,t) = T_1 \]利用分离变量法,可以得到温度分布的解为:\[ T(x,t) = T_0 + (T_1 - T_0)\text{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) \]其中,erfc是互补误差函数。
传热学知识点总结考研真题一、传热学概念传热学是研究物体之间热量传递的学科,研究热量传递的基本规律和热传递过程的数学模型。
热传递是热量自高温物体传递到低温物体的过程,主要包括传导、对流和辐射三种方式。
二、传热学基本知识1. 热量传递的基本规律热力学第一定律和第二定律规定了热量传递的基本规律。
第一定律要求能量守恒,在热传递中热量从高温物体流向低温物体,使热能分布均匀。
第二定律限制了热量传递的方向,指出热量自热量大者传递到热量小者。
2. 传热的基本方式传导是通过物体内部分子热运动传递热量的方式,是当物体内部温度不均匀时,热量由高温区向低温区传递。
对流是液体或气体中分子受热膨胀上升,冷却后下沉的过程,是传热最常见的方式。
辐射是热能以电磁波的形式传递的方式,适用于真空或无透明物质的热传递。
3. 传热的数学模型传热的数学模型主要采用热传导方程和流体力学方程,通过数学公式和定理来描述传热过程,求解传热问题。
热传导方程描述了传导过程中热量的扩散规律,流体力学方程描述了流体传热过程中的动力学规律。
4. 传热的工程应用传热学在工程中有着广泛的应用,如热工程、制冷空调、化工工程、建筑工程等都离不开传热学的理论和方法。
热传递是很多工程中必不可少的过程,通过传热学的知识和方法可以提高工程的效率和质量。
三、传热学的研究内容1. 传热传质物理基础传热传质物理基础包括热力学、流体力学、传热学、传质学等多个学科知识,主要研究物体间热量传递的基本规律和热量传递过程的数学模型。
此外,也需要涉及热传导、对流传热、辐射传热等传热方式的研究。
2. 传热的数学模型与方法传热学研究中需要建立相应的数学模型,并通过数学方法来解决传热问题。
传热的数学模型可以分为定常传热和非定常传热,通过微分方程和积分方程来描述传热过程,并通过数值计算方法来求解传热问题。
3. 传热的实验方法与技术传热学研究中需要进行大量的实验,通过实验来验证传热理论和模型的正确性。
传热学知识点概念总结传热学是物理学的一个重要分支,研究物质内部或不同物质之间的热量传递现象。
传热学在工程领域中有着广泛的应用,能够帮助我们有效地控制和利用热量。
传热学主要包括传导、对流和辐射这三种传热方式。
下面将对这三种传热方式的概念和主要知识点进行总结。
1.传导传导是物质内部热量传递的一种方式,其基本原理是分子间的碰撞和能量传递。
传导的速率受到物质的导热性质和温度梯度的影响。
-热传导定律:热传导定律是研究传导过程中温度梯度与热流密度(传导热通量)之间的关系。
常用的热传导定律有傅里叶热传导定律和傅科定律。
-导热性:导热性是物质传导能力的度量,常用的导热性指标是热导率或导热系数。
不同物质的导热性质会影响传导速率。
2.对流对流是液体或气体中热量传递的方式,其基本原理是通过流体的对流运动传递热量。
对流通常分为自然对流和强制对流两种方式。
-对流换热公式:对流换热公式是研究对流传热速率的表达式。
常用的对流换热公式有纳塔数(Nu),贝奥数(Bo)和雷诺数(Re)等。
-边界层:对流过程中,流体与物体表面之间形成了一个边界层,边界层内的速度和温度分布与边界层外的流体有明显区别。
3.辐射辐射是通过电磁波传递热量的一种方式,其基本原理是由热源发出热辐射,然后被其他物体吸收。
辐射可以在真空中传播,无需传热介质。
-辐射传热公式:辐射传热公式是研究辐射传热速率的表达式。
斯特藩-玻尔兹曼定律和维恩位移定律是辐射传热的重要基础理论。
-黑体辐射:黑体是指能够吸收所有入射辐射的物体,它具有良好的辐射能力。
黑体辐射是研究辐射传热的基准。
此外,还有一些其他的传热学知识点值得关注和研究:-热导方程:热导方程是描述传导传热过程的偏微分方程,可用于求解物体内部的温度分布。
-热传导与传热系数:热传导与传热系数是研究传导传热速率的重要指标,反映了物质对传热的阻力。
-热传递:热传递是研究热量从一个物体传递到另一个物体的过程。
热传递包括传导、对流和辐射这三种方式的综合作用。
绪论1.试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2.以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:①傅立叶定律:,其中,-热流密度;-导热系数;-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
②牛顿冷却公式:,其中,-热流密度;-表面传热系数;-固体表面温度;-流体的温度。
③斯忒藩-玻耳兹曼定律:,其中,-热流密度;-斯忒藩-玻耳兹曼常数;-辐射物体的热力学温度。
3.导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:①导热系数的单位是:W/(m.K);②表面传热系数的单位是:W/(m2.K);③传热系数的单位是:W/(m2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
5.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
而一旦壶内的水烧干后,水壶很快就烧坏。
试从传热学的观点分析这一现象。
5.答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。
6.用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。
试分析其原因。
答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。
传热学考研知识点总结对流换热是怎样的过程,热量如何传递的?如下是小编整理的传热学考研知识点总结,希望对你有所帮助。
传热学考研知识点总结§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析。
作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。
本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法 2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。
传热学重点研究的是在宏观温差作用下所发生的热量传递。
傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。
牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。
由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。
黑体热辐射公式:实际物体热辐射:传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。
最简单的传热过程由三个环节串联组成。
传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以同时存在于一个传热现象中。
2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。
思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。
为什么?2.试分析室内暖气片的散热过程。
3.冬天住在新建的居民楼比住旧楼房感觉更冷。
试用传热学观点解释原因。
4.从教材表1-1给出的几种h数值,你可以得到什么结论?5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。
【最全】的传热学复习题及其答案【考研、末考必备】传热学复习题及其答案(Ⅰ部分)⼀、概念题1、试分析室内暖⽓⽚的散热过程,各个环节有哪些热量传递⽅式?以暖⽓⽚管内⾛热⽔为例。
答:有以下换热环节及传热⽅式:(1)由热⽔到暖⽓⽚管道内壁,热传递⽅式为强制对流换热;(2)由暖⽓⽚管道内壁到外壁,热传递⽅式为固体导热;(3)由暖⽓⽚管道外壁到室内空⽓,热传递⽅式有⾃然对流换热和辐射换热。
2、试分析冬季建筑室内空⽓与室外空⽓通过墙壁的换热过程,各个环节有哪些热量传递⽅式?答:有以下换热环节及传热⽅式:(1)室内空⽓到墙体内壁,热传递⽅式为⾃然对流换热和辐射换热;(2)墙的内壁到外壁,热传递⽅式为固体导热;(3)墙的外壁到室外空⽓,热传递⽅式有对流换热和辐射换热。
3、何谓⾮稳态导热的正规阶段?写出其主要特点。
答:物体在加热或冷却过程中,物体内各处温度随时间的变化率具有⼀定的规律,物体初始温度分布的影响逐渐消失,这个阶段称为⾮稳态导热的正规阶段。
4、分别写出N u 、R e 、P r 、B i 数的表达式,并说明其物理意义。
答:(1)努塞尔(Nusselt)数,λlh Nu =,它表⽰表⾯上⽆量纲温度梯度的⼤⼩。
(2)雷诺(Reynolds)数,νlu ∞=Re ,它表⽰惯性⼒和粘性⼒的相对⼤⼩。
(3)普朗特数,aν=Pr ,它表⽰动量扩散厚度和能量扩散厚度的相对⼤⼩。
(4)毕渥数,λlh B i =,它表⽰导热体内部热阻与外部热阻的相对⼤⼩。
5、竖壁倾斜后其凝结换热表⾯传热系数是增加还是减⼩?为什么?。
答:竖壁倾斜后,使液膜顺壁⾯流动的⼒不再是重⼒⽽是重⼒的⼀部分,液膜流动变慢,从⽽热阻增加,表⾯传热系数减⼩。
另外,从表⾯传热系数公式知,公式中的g 亦要换成θsin g ,从⽽h 减⼩。
6、按照导热机理,⽔的⽓、液、固三种状态中那种状态的导热系数最⼤?答:根据导热机理可知,固体导热系数⼤于液体导热系数;液体导热系数⼤于⽓体导热系数。
传热学考研总结1傅里叶定律: 单位时间内通过单位截面积所传递的热量, 正比例于当地垂直于截面方向上的温度变化率2集总参数法: 忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度, 是大容器饱和沸腾中的热流密度的峰值4效能: 表示换热器的实际换热效果与最大可能的换热效果之比5对流换热是怎样的过程, 热量如何传递的?对流换热: 指流体各部分之间发生宏观运动产生的热量传递与流体内部分子导热引起的热量传递联合作用的结果。
对流仅能发生在流体中, 而且必然伴随有导热现象。
对流两大类: 自然对流(不依靠泵或风机等外力作用, 由于流体内部密度差引起的流动)与强制对流(依靠泵或风机等外力作用引起的流体宏观流动)。
影响换热系数因素:流体的物性, 换热表面的形状与布置, 流速, 流动起因(自然、强制), 流动状态(层流、湍流), 有无相变。
6何谓凝结换热和沸腾换热, 影响凝结换热和沸腾换热的因素?蒸汽与低于饱和温度的壁面接触时, 将汽化潜热传递给壁面的过程称为凝结过程。
如果凝结液体能很好的润湿壁面, 它就在壁面上铺展成膜, 这种凝结形式称为膜状凝结。
如果凝结液体不能很好地润湿壁面, 在壁面上形成一个个小液珠, 这种凝结方式称为珠状凝结。
液体在固液界面上形成气泡引起热量由固体传递给液体的过程称为沸腾换热。
按沸腾液体是否做整体流动可分为大容器沸腾(池沸腾)和管内沸腾;按液体主体温度是否达到饱和温度可分为饱和沸腾和过冷沸腾。
不凝结气体对凝结换热过程的影响: 在靠近液膜表面的蒸气侧, 随着蒸气的凝结, 蒸气分压力减小而不凝结气体的分压力增大;蒸气在抵达液膜表面进行凝结前, 必须以扩散方式穿过聚集在界面附近的不凝结气体层, 因此, 不凝结气体层的存在增加了传递过程的阻力。
影响凝结换热的因素: 不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。
影响沸腾换热的因素: 不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。
传热过程:热量从壁一侧的高温流体通过壁传给另一侧的低温流体的过程。
导热系数:物体中单位温度降单位时间通过单位面积的导热量。
热对流:只依靠流体的宏观运动传递热量的现象称为热对流。
表面传热系数:单位面积上,流体与壁面之间在单位温差下及单位时间内所能传递的能量。
保温材料:国家标准规定,凡平均温度不高于350度导热系数不大于0.12w/(m.k )的材料。
温度场:指某一时刻空间所有各点温度的总称。
热扩散率:a=cρλ 表示物体被加热或冷却时,物体内各部分温度趋向均匀一致的能力。
临界热绝缘直径c d :对应于总热阻l R 为极小值的保温层外径称为临界热绝缘直径。
集中参数法:当1.0B i 时,可以近似的认为物体的温度是均匀的,这种忽略物体内部导热热阻,认为物体温度均匀的分析方法。
辐射力:单位时间内,物体的每单位面积向半球空间所发射全波长的总能量。
单色辐射力:单位时间内,物体的每单位面积,在波长λ附近的单位波长间隔内,向半球空间发射的能量。
定向辐射力:单位时间内,物体的每单位面积,向半球空间的某给定辐射方向上,在单位立体角内所发射全波长的能量。
单色定向辐射力:单位时间内,物体的每单位面积,向半球空间的某给定辐射方向上,在单位立体角内所发射在波长λ附近的单位波长间隔内的能量。
辐射强度:单位时间内,在某给定辐射方向上,物体在与发射方向垂直的方向上的每单位投影面积,在单位立体角内所发射全波长的能量称为该方向的辐射强度。
有效辐射:单位时间离开单位面积表面的总辐射能。
辐射隔热:为减少表面间辐射换热而采用高反射比的表面涂层,或在表面加设遮热板,这类措施称为辐射隔热。
黑体:能全部吸收外来射线,即1=α的物体。
白体:能全部反射外来射线,即1=ρ的物体,不论是镜面反射或漫反射。
透明体:能被外来射线全部透射,即1=τ的物体。
热流密度:单位时间单位面积上所传递的热量。
肋片效率:衡量肋片散热有效程度的指标,定义为在肋片表面平均温度m t 下,肋片的实际散热量φ与假定整个肋片表面处在肋基温度o t 时的理想散热量o φ的比值。
热阻:反映阻止热量传递的能力的综合参量。
肋效率:征肋片散热的有效程度。
肋片的实际散热量与其整个肋片都处于肋基温度下得散热量之比。
接触热阻:在未接触的界面之间的间隙常常充满了空气,与两个固体便面完全接触相比,增加了附加的传递阻力,称为接触热阻。
换热器的污垢热阻:换热器在运行中积起的垢层的导热阻力,它所表现出来的一个当量的热阻值。
491导热系数:物体中单位温度降单位时间通过单位面积的导热量。
热边界层及厚度:在对流传热条件下,主流与壁面之间存在着温度差,在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈的变化,而在此薄层之外,流体的温度梯度几乎为零,此薄层称为温度边界层.定性温度:定性温度为流体的平均温度。
汽化核心:加热表面能产生气泡的地点。
黑度:实际辐射力E和同温度下黑体的辐射力Eb之比黑体指能吸收投入到其表面上的所有热辐射能量的物体。
灰体:对于各种波长的电磁波的吸收系数为常数且与波长无关的物体,其吸收系数介于0与1之间的物体。
有效辐射:有效辐射是指单位时间内离开表面单位面积的总辐射能,记为J。
投射辐射:单位时间内从外界投入到物体的单位表面积上的总辐射能。
重辐射面:表面温度未定而净辐射传热量为零的表面。
简单逆流式换热器:定向辐射强度:从黑体单位可见面积发射出去的落到空间任意方向的单位立体角中的能量,称为定向辐射强度。
膜状凝结:如果凝结液体很好地润湿壁面,它就在壁面上铺展成膜,这种凝结形式就称为膜状凝结。
珠状凝结:当凝结液体不能很好地润湿壁面时,凝结液体在壁面上形成以个个的小液珠,称为珠状凝结。
热扩散率:定义式为a=λ/ρc,它表示物体在加热或冷却中,温度趋于均匀一致的能力。
这个综合物性参数对稳态导热没有影响,但是在非稳态导热过程中,它是一个非常重要的参数。
定向辐射强度:指垂直于辐射方向的物体单位表面积在单位时间、单位立体角内向外发射出的辐射能量。
是一表征物体表面沿不同方向发射能量的强弱的物理量。
传热学简答题归纳问题1 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?回答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。
而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
问题2 冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?回答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。
而空气的强制对流换热强度要比自然对流强烈。
因而在有风时从人体带走的热量更多,所以感到更冷一些。
讨论:读者应注意的是人对冷暖感觉的衡量指标是散热量的大小而不是温度的高低,即当人体散热量低时感到热,散热量高时感到冷,经验告诉我们,当人的皮肤散热热流为58W/㎡时感到热,为232W/㎡时感到舒服,为696W/㎡时感到凉快,而大于为928W/㎡时感到冷。
问题3 夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?回答:首先,冬季和夏季的最大区别是室外温度不同。
夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。
而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。
根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
问题4 利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?回答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。
1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。
5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。
同时,物体也不断接收周围物体辐射给它的热能。
这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。
对流传热系数表示对流传热能力的大小。
8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。
辐射传热系数表示辐射传热能力的大小。
9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。
复合传热系数表示复合传热能力的大小。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。
11.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
12.等温面(线):由物体内温度相同的点所连成的面(或线)。
13.温度梯度:在等温面法线方向上最大温度变化率。
14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
15.导温系数:材料传播温度变化能力大小的指标。
16.稳态导热:物体中各点温度不随时间而改变的导热过程。
17.非稳态导热:物体中各点温度随时间而改变的导热过程。
18.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
19.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
20.肋效率:肋片实际散热量与肋片最大可能散热量之比。
21接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
22.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
23速度边界层:在流场中壁面附近流速发生急剧变化的薄层。
24温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。
25定性温度:确定换热过程中流体物性的温度。
26特征尺度:对于对流传热起决定作用的几何尺寸。
27相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。
28强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。
29自然对流传热:流体各部分之间由于密度差而引起的相对运动。
30大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。
31珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。
32膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。
33核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
34膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。
35.热辐射:由于物体内部微观粒子的热运动状态改变,而将部分内能转换成电磁波的能量发射出去的过程。
36.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。
37.反射比:投射到物体表面的热辐射中被物体表面所反射的比例。
38.穿透比:投射到物体表面的热辐射中穿透物体的比例。
39.黑体:吸收比α= 1的物体。
40.白体:反射比ρ=l的物体(漫射表面)41.透明体:透射比τ= 1的物体42.灰体:光谱吸收比与波长无关的理想物体。
43.黑度:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。
44.辐射力:单位时间内物体的单位辐射面积向外界(半球空间)发射的全部波长的辐射能。
45.漫反射表面:如果不论外界辐射是以一束射线沿某一方向投入还是从整个半球空间均匀投入,物体表面在半球空间范围内各方向上都有均匀的反射辐射度L r,则该表面称为漫反射表面。
46.角系数:从表面1发出的辐射能直接落到表面2上的百分数。
47.有效辐射:单位时间内从单位面积离开的总辐射能,即发射辐射和反射辐射之和。
48.投入辐射:单位时间内投射到单位面积上的总辐射能。
49.定向辐射度:单位时间内,单位可见辐射面积在某一方向p的单位立体角内所发出的总辐射能(发射辐射和反射辐射),称为在该方向的定向辐射度。
50.漫射表面:如该表面既是漫发射表面,又是漫反射表面,则该表面称为漫射表面。
51.定向辐射力:单位辐射面积在单位时间内向某一方向单位立体角内发射的辐射能。
52.表面辐射热阻:由表面的辐射特性所引起的热阻。
53.遮热板:在两个辐射传热表面之间插入一块或多块薄板以削弱辐射传热。
54.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为零的表面。
55.传热过程:热量从高温流体通过壁面传向低温流体的总过程.56.复合传热:对流传热与辐射传热同时存在的传热过程.57.污垢系数:单位面积的污垢热阻.58肋化系数: 肋侧表面面积与光壁侧表面积之比.59顺流:两种流体平行流动且方向相同60逆流:两种流体平行流动且方向相反61.效能:换热器实际传热的热流量与最大可能传热的热流量之比.62.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.63.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层外径.1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。
对流仅能发生在流体中,而且必然伴随有导热现象。
对流两大类:自然对流与强制对流。
影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。
不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。
蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。
因此,不凝结气体层的存在增加了传递过程的阻力。
8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。
首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。
主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。
灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。
10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。
纯顺流和纯逆流时都可按对数平均温差计算式计算,只是取值有所不同。
12边界层,边界层理论边界层理论:(1)流场可划分为主流区和边界层区。
只有在边界层区考虑粘性对流动的影响,在主流区可视作理想流体流动。
(2)边界层厚度远小于壁面尺寸(3)边界层内流动状态分为层流与紊流,紊流边界层内紧靠壁面处仍有层流底层。
13液体发生大容器饱和沸腾时,随着壁面过热度的增高,会出现哪几个换热规律不同的区域?这几个区域的换热分别有什么特点?为什么把热流密度的峰值称为烧毁点?分为四个区域:1、自然对流区,这个区域传热属于自然对流工况。
2、核态沸腾区,换热特点:温压小、传热强。
3、过度沸腾区:传热特点:热流密度随着温压的升高而降低,传热很不稳定。
4、膜态沸腾区:传热特点:传热系数很小。
由于超过热流密度的峰值可能会导致设备烧毁,所以热流密度的峰值也称为烧毁点。
14阐述兰贝特定律的内容。
说明什么是漫射表面?角系数具有哪三个性质?在什么情况下是一个纯几何因子,和两个表面的温度和黑度没有关系?兰贝特定律给出了黑体辐射能按空间方向的分布规律,它表明黑体单位面积辐射出去的能量在空间的不同方向分布是不均匀的,按空间纬度角的余弦规律变化:在垂直于该表面的方向最大,而与表面平行的方向为零。
光谱吸收比与波长无关的表面称为漫射表面。
角系数的三个性质:相对性、完整性、可加性。
当满足两个条件:(1)所研究的表面是漫射的(2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的。
此时角系数是一个纯几何因子,和两个表面的温度和黑度没有关系。
15试述气体辐射的基本特点。
气体能当灰体来处理吗?请说明原因气体辐射的基本特点:(1)气体辐射对波长具有选择性(2)气体辐射和吸收是在整个容积中进行的。
气体不能当做灰体来处理,因为气体辐射对波长具有选择性,而只有辐射与波长无关的物体才可以称为灰体。
16试说明管槽内强制对流换热的入口效应。
流体在管内流动过程中,随着流体在管内流动局部表面传热系数如何变化的?外掠单管的流动与管内的流动有什么不同管槽内强制对流换热的入口效应:入口段由于热边界层较薄而具有比较充分的发展段高的表面传热系数。