必修5+选修1-1复习
- 格式:pdf
- 大小:720.76 KB
- 文档页数:7
最新高中英语全册教学大纲(全)精选育英优启高中英语教研组(人教版)高中英语各单元知识点归纳(必修1~5 +选修6~11)必修一语法写作交际用语Unit 1 Friendship 复习直接引语和间接引语在陈述句和疑问句中的用法练习设计调查问卷、写信及趣味写作发表观点:同意、不同意Unit 2 English around the world 祈使句及间接引语的用法如何用英文写通知出现语言交际困难时的应答Unit 3 Travel journal 现在进行时表将来如何写应用文体——游记式日记祝愿和告别Unit 4 Earthquakes 定语从句(1): 由who/whom/which/that引导的定语从句记叙文叙述过去的经历Unit 5 Nelson Mandela—a modern hero 定语从句(2): 由where/when/why/介词+which /介词+whom如何写人物生平介绍征求意见,发表意见引导的定语从句必修二Unit 1 Cultural relics 定语从句(3): 限制性定语从句、非限制性定语从句练习写介绍景物的应用文征求看法,发表看法Unit 2 The Olympic Games 被动语态(1): 一般将来时的被动语态描写最喜爱的运动员谈论兴趣爱好、同意和不同意Unit 3 Computers 被动语态(2): 现在完成时的被动语态说明文作出决定和推理Unit 4 Wildlife protection 被动语态(3): 现在进行时的被动语态写一篇关于保护野生动物的文章谈论意愿和目的、道歉Unit 5 Music 定语从句(4): 介词+which /介词+whom引导的定语从句写E-mail 寻求建议提出建议、表达偏好和爱好必修三Unit 1 Festivals around the world 情态动词(1) 续写故事谈论节日、表达谢意、打电话Unit 2 Healthy eating 情态动词(2) 议论文谈论健康、提出建议Unit 3 The Million Pound Bank Note 名词性从句(1)——宾语从句、表语从句学习写英语短剧在餐馆用餐的表达Unit 4 Astronomy:the science of the stars 名词性从句(2)——主语从句说明文——如何解决某个问题如何给他人指引Unit 5 Canada—“The True North”情态动词(3) 练习描写某一地点的短文描述方向和位置必修四Unit 1 Women of achievement 主谓一致练习描写某个人的短文描述人物Unit 2 Working the land 动词的-ing(1): 作主语和宾语写海报说服他人Unit 3 A taste of English humor 动词的-ing(2): 作表语、定语和宾语补足语幽默短文写作情感表达Unit 4 Body language 动词的-ing(3): 作定语、状语对现象进行归纳总结、反思禁止和警告、义务Unit 5 Theme parks 构词法:合成法、派生法、转化关于说明类、解释类的写作问路和指路必修五Unit 1 Great scientists 过去分词(1): 作定语和表语练习写说服别人的信件描述人物Unit 2 The United Kingdom 过去分词(2): 作宾语补足语练习写描写景点的说明文语言交际困难、空间方位描述Unit 3 Life in the future 过去分词(3): 作定语和状语练习写描述未来的说明文预测未来Unit 4 Making the news 倒装的用法练习写新闻报道约会Unit 5 First aid 省略的用法练习写急救方法的说明文给他人指示选修六Unit 1 Art 虚拟语气(1) 建议信谈论个人偏好Unit 2 Poems 虚拟语气(2) 写诗谈论个人意愿和计划Unit 3 A healthy life it的用法(1) 建议信禁止、警告、允许Unit 4 Global warming it的用法(2) 写海报同意、反对、责怪、抱怨Unit 5 The power of nature 复习动词-ing形式描述景点表达情感选修七Unit 1 Living well 复习不定式建议信表达愿望和祝贺Unit 2 Robots 复习被动语态(1) 科幻小说表达推测和信念Unit 3 Under the sea 复习被动语态(2) 抱怨责怪、抱怨Unit 4 Sharing 复习限制性定语从句给贫困失学儿童写一封信时间先后顺序、逻辑关系Unit 5 Travelling abroad 复习非限制性定语从句给笔友写一封信喜恶、可能、不可能选修八Unit 1 A land of diversity 复习名词性从句——主语从句、宾语从句、表语从句练习写关于某地方的非编年体报告鼓励他人说话、描述某个地方Unit 2 Cloning 同位语写一篇关于辩论的文章表扬和鼓励、接受和拒绝Unit 3 Inventors and inventions 复习过去分词——作定语、表语、宾语补足语应用文写作——求职信打电话Unit 4 Pygmalion 复习过去分词——作状语就某故事的某个场景进行创新写作推测、情感表达、判断评价Unit 5 Meeting your ancestors 复习动词时态描述考古发现描述特征、建议、假设选修九Unit 1 Breaking records 主语杂志简介惊奇Unit 2 Sailing the oceans 表语(1)——接表语的各种动词有游说性质的写作:给领导的报告因果表达Unit 3 Australia 表语(2)——单词、短语、从句写e-mail 禁止和警告Unit 4 Exploring plants 直接引语和间接引语描写某种植物好奇和憎恶Unit 5 Inside advertising 宾语补足语设计广告在争吵中表达观点。
山东日照实验高中高二上学期期末数学复习理科练习三数 学(理) 第Ⅰ卷 (选择题 共60分)一、选择题:本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置. 1. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B . 2 C. 3 D. 22. 已知平面α的法向量是()2,3,1-,平面β的法向量是()4,,2λ-,若//αβ, 则λ的值是( ) A .103-B .6-C .6D .1033.已知, , a b c 满足c b a <<,且0ac <,那么下列选项中一定成立的是( ) A. ab ac > B. ()0c b a -< C. 22cb ab < D. ()0ac a c ->4. 等差数列}{n a 中,已知前15项的和9015=S ,则8a 等于( ) A .245 B .12 C .445D .6 5. 下列有关命题的说法正确的是( )A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题6. (2010年浙江)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .11B .5C .-8D .-117. 若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x8. 若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则a b +的最小值为( )A B .C .43D .8-9. 已知正方体1111D C B A ABCD -中,E 为11D C 的中点,则异面直线AE 与BC 所成角的余弦值为A. 0B.21 C. 32 D. 32- 10.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .411.若双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过F 且倾斜角为︒60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率e 的取值范围是( ) A .[]2,1B .()2,1C .()+∞,2D . [)+∞,212.若抛物线24y x =的焦点是F ,准线是l ,则经过点F 、M (4,4)且与l 相切的圆共有( ).A.4个B.2个C.1个D.0个第2卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,满分16分.请把答案填在答题纸的相应位置. 13.等差数列{}n a 中,若34512,a a a ++=则71a a += .14. 已知向量)0,1,1(=→a ,)2,0,1(-=→b ,且→→+b a k 与→→-b a 2互相垂直,则k 的值是 15. 设0>x ,0>y ,且1116x y+=,则x y +的最小值为 . 16. 点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知数列}{n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,⑴求12,a a 的值;⑵求数列{}n a 的通项公式。
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
)x 中山市高二级2010—2011学年度第一学期期末统一考试数学试卷(文科)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题 共50分)注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.不等式250x x -≥的解集是A .[0,5]B .[5,)+∞C .(,0]-∞D .(,0][5,)-∞+∞2.已知一个数列的前四项为22221357,,,24816--,则它的一个通项公式为 A .221(1)(2)nn n -- B .1221(1)(2)n n n --- C .221(1)2n n n -- D .1221(1)2n nn --- 3.椭圆2212516x y +=的离心率为A .35B .45C .34D .16254. 圆222()()x a y b r -+-=经过原点的一个充要条件是A .0ab =B .0a =且0b =C .222a b r +=D .0r =5.函数f (x )的导函数'()f x 的图象如 右图所示,则下列说法正确的是 A .函数()f x 在(2,3)-内单调递增 B .函数()f x 在(4,0)-内单调递减C .函数()f x 在3x =处取极大值D .函数()f x 在4x =处取极小值 6.长为3.5m 的木棒斜靠在石堤旁,木棒的一端在离堤脚1.4m 的地面上,另一端在沿堤上2.8m 的地方,堤对地面的倾斜角为α,则坡度值tan α等于 AB .516 CD .1157.等差数列{}n a 的前n 项和12...n n S a a a =+++,若1031S =,20122S =,则30S = A .153 B .182C .242D .2738.正三角形的一个顶点位于原点,另外两个顶点在抛物线24y x =上,则这个正三角形的边长为 A.B.C .8D .169.已知0,0a b >>,且1a b +=,则11a b+的最小值是 A .2B.C .4D . 810.已知p :函数2()1f x x mx =++有两个零点, q :x R ∀∈,244(2)10x m x +-+>.若若p q ⌝∧为真,则实数m 的取值范围为 A .(2,3) B .(,1](2,)-∞+∞ C .(,2)[3,)-∞-+∞ D .(,2)(1,2]-∞-第II 卷(非选择题共100分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 11.等差数列8,5,2,…的第20项是 .12.经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 .13.当x y 、满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .14.物体沿直线运动过程中,位移s 与时间t 的关系式是2()3s t t t =+. 我们计算在2t =的附近区间[2,2]t +∆内的平均速度(2)(2)s t s v t+∆-==∆ ,当t ∆趋近于0时,平均速度v 趋近于确定的值,即瞬时速度,由此可得到2t =时的瞬时速度大小为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.)15.(13分)已知函数21()(2)3f x x x =+.(1)求()f x 的导数'()f x ;(2)求()f x 在闭区间[]1,1-上的最大值与最小值.16.(13分)已知双曲线C 的方程为221515x y -=. (1)求其渐近线方程;(2)求与双曲线C 焦点相同,且过点(0,3)的椭圆的标准方程.17.(13分)已知某精密仪器生产总成本C (单位:万元)与月产量x (单位:台)的函数关系为1004C x =+,月最高产量为150台,出厂单价p (单位:万元)与月产量x 的函数关系为21125801800p x x =+-. (1)求月利润L 与产量x 的函数关系式()L x ; (2)求月产量x 为何值时,月利润()L x 最大?18.(13分)等比数列{}n a 的公比为q ,第8项是第2项与第5项的等差中项. (1)求公比q ;(2)若{}n a 的前n 项和为n S ,判断396,,S S S 是否成等差数列,并说明理由.19. (14分)第四届中国国际航空航天博览会于2010年11月在珠海举行,一次飞行表演中,一架直升飞机在海拔800m 的高度飞行,从空中A 处测出前下方海岛两侧海岸P 、Q 处的俯角分别是45°和30°(如右图所示). (1)试计算这个海岛的宽度PQ .(2)若两观测者甲、乙分别在海岛两侧海岸P 、Q 处同时测得飞机的仰角为45°和30°,他们估计P 、Q 两处距离大约为600m ,由此试估算出观测者甲(在P 处)到飞机的直线距离.20.(14分)过直角坐标平面xOy 中的抛物线()220y px p =>的焦点F 作一条倾斜角为4π的直线与抛物线相交于A 、B 两点.(1)求直线AB 的方程;(2)试用p 表示A 、B 之间的距离; (3)当2p =时,求AOB ∠的余弦值. 参考公式:()()()2222224A A BB A B A B A B x y xy x x x x p x x p ⎡⎤++=+++⎣⎦.中山市高二级2010—2011学年度第一学期期末统一考试数学试卷(文科)答案一、选择题:DDACB ADBCC二、填空题:11. -49; 12. 22188x y -=; 13. -3; 14. 133,13t +∆.三、解答题:15. 解:(1)23211()(2)233f x x x x x =+=+. ……(1分)求导得2()4f x x x '=+. ……(4分)(2)令2()4(4)0f x x x x x '=+=+=,解得:4x =-或0x =. ……(6分) 列表如下:……(10分)所以,()f x 在闭区间[]1,1-上的最大值是73,最小值是0. ……(13分)16. 解:(1)双曲线方程化为22115x y -=, ……(1分)由此得1,a b == ……(3分)所以渐近线方程为y x =,即y x =. ……(5分)(2)双曲线中,4c =,焦点为(4,0),(4,0)-. ……(7分)椭圆中,210a =, ……(9分) 则5a =,22222549b a c =-=-=. ……(11分)所以,所求椭圆的标准方程为221259x y +=. ……(13分)17.解:(1)2321111()(25)(1004)21100801800180080L x px C x x x x x x x =-=+--+=-++-,其中0150x <≤. ……(5分)(2)221111'()21(1512600)(120)(105)60040600600L x x x x x x x =-++=---=--+.…(8分) 令'()0L x =,解得120x = (105x =-舍). ……(9分)当(0,120)x ∈时,'()0L x >;当(120,150]x ∈时,'()0L x <. ……(11分) 因此,当120x =时,()L x 取最大值.所以,月产量为120台时,月利润()L x 最大. ……(13分)18. 解:(1)由题可知,8252a a a =+, ……(1分)即741112a q a q a q =+, ……(3分)由于10a q ≠,化简得6321q q =+,即63210q q --=, ……(4分)解得31q =或312q =-. 所以1q =或q =. ……(6分)(2)当1q =时,3191613,9,6S a S a S a ===.易知396,,S S S 不能构成等差数列. ……(8分)当q =即312q =-时,31113(1)13(1)11221a q a a S q q q -==+=--- , 931119(1)19[1()]11281a q a aS q q q-==--=--- ,621116(1)13[1()]11241a q a a S q q q-==--=--- . ……(11分)易知3692S S S +=,所以396,,S S S 能构成等差数列. ……(13分)19. 解:(1)在Rt ACP ∆中,tan PCCAP AC=∠, 则800tan 45800PC =⨯︒=. ……(3分)在Rt ACQ ∆中,tan QCCAQ AC =∠,则800tan60QC =⨯︒= ……(5分)所以,800PQ QC PC =-=(m ). ……(7分)(2)在APQ ∆中,600PQ =,30AQP ∠=︒,453015PAQ ∠=︒-︒=︒. ……(8分) 根据正弦定理,得600sin30sin15PA =︒︒, ……(10分)则600sin30600sin30sin(4530)sin 45cos30cos45sin30PA ︒︒====︒-︒︒︒-︒︒.……(14分)20. 解:(1)焦点(,0)2p F ,过抛物线焦点且倾斜角为4π的直线方程是2py x =-. …(3分)(2)由222y p xp y x ⎧=⎪⎨=-⎪⎩22304p x px ⇒-+=23,4A B A B p x x p x x ⇒+==4A B AB x x p p ⇒=++=. ……(8分)(3)由241y xy x ⎧=⎨=-⎩2610x x ⇒-+=6,1A B A B x x x x ⇒+==.222222222cos 2AO BO ABx y x y x x y y AOB AO BO+-+++----∠==()22A B A B p p x x x x -++===. ……(13分) ∴AOB ∠的大小是与p 无关的定值. ……(14分)1题:教材《必修⑤》 P76 预备题 改编,考查一元二次不等式求解.2题:教材《必修⑤》 P67 2(2)改编,考查写数列通项公式. 3题:教材《选修1-1》 P40 例4 改编,考查椭圆几何性质. 4题:教材《选修1-1》 P12 第4题改编,考查充要条件.5题:教材《选修1-1》 P98 第4题改编,考查利用导数研究函数性质. 6题:教材《必修⑤》 P16 习题改编,考查利用余弦定理解三角形 7题:教材《必修⑤》 P44 例2改编,考查等差数列性质及前n 项和 8题:教材《选修1-1》 P64 B 组第2题改编,考查抛物线方程及性质 11题:教材《必修⑤》 P38 例1(1)改编,考查等差数列通项公式 12题:教材《选修1-1》 P54 A 组第6题改编,考查双曲线方程与性质 13题:教材《必修⑤》 P91 第1(1)题改编,考查线性规划问题14题:教材《选修1-1》 P74 导数概念的预备题 改编,考查导数概念16题:教材《选修1-1》 P48 第2题 改编,考查双曲线、椭圆的标准方程与几何性质. 17题:教材《选修1-1》 P104 第6题 改编,考查导数的应用.18题:教材《必修⑤》 P61 第6题 改编,考查等差数列、等比数列的通项与前n 项和. 19题:教材《必修⑤》 P19 第4题 改编,考查解三角形.。
高二数学(文)期末测试题第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、在等差数列}{n a 中,1a =3,93=a 则5a 的值为A . 15B . 6 C. 81 D. 92、设a R ∈,则1a >是11a< 的 A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件3、已知命题p :R x ∈∀,1cos ≤x ,则( )A 、00:,cos 1p x R x ⌝∃∈≥B 、00:,cos 1p x R x ⌝∀∈≥C 、1cos ,:00>∈∃⌝x R x pD 、00:,cos 1p x R x ⌝∀∈>4、在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为 A .4122-B .9122-C .10122-D .11122-5、在ABC ∆中,60B =,2b ac =,则ABC ∆一定是A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形6、函数y=2x 2+3x 在x=1时的导数为 ( )A .5B .6C .7D .87、椭圆2241x y +=的离心率为 ( ) A.22 B.43 C. 23 D.32 8、数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( ) A .1 B .56 C .16 D .1309、已知变量y x ,满足⎪⎩⎪⎨⎧≤-+≥≥0311y x y x ,则目标函数y x z +=2有A .5max =z ,z 无最小值B .3,5min max ==z zC .z z ,3min =无最大值D .z 既无最大值,也无最小值10、若不等式02>++a ax x 恒成立,则a 的取值范围是( )A .01<-或4>aB .40<<aC .4≥a 或0≤aD .40≤≤a11、12第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
---------------------------------------------------------------最新资料推荐------------------------------------------------------人教版高中英语一轮复习过关默写姓名:必修 1 重点短语,句子复习必修一. M1 Unit1 重点短语 1. calm down 7. be concernedabout 13. 列---的清单 2. be crazy about 8. 根据14. 相处,进展3. try out 9. add up 15.get tired of4. share sth. with sb. 10.gothrough 16.a series of 5. 故意11. join in municate with面对面12. happen to do 18.at dusk 重点句子 I. I wonder ifits because I havent been able to be outdoors for so long thatIve grown so crazy about everything to do 6. with nature. 2.你认为一个好朋友应该像什么? 3. I can well remember thatthere was a time when a deep blue sky, the song of birds,moonlight and flowers could never have kept me spellbound. 4.It was the first time in a year and a half that Id seen the nightface to face. 5.如果你能给我一些建议我将很感激。
必修一. M1 Unit 2 重点短语 19.play a role (in) 20. 在---的基础上 21. the sameas 25.1 / 17不再22. such as 23. 利用24. 目前26. come up to 重点句子 1. However, they may not be able to understand everything. 2.Those who reported the news were expected to speak excellentEnglish. 3. There (be) more than one kind of Englishin the world. 4. The number of people learning English inChina (be) increasing rapidly. 5. Believe it or not, thereis no such thing as standard English. 必修一 M1 Unit3 重点短语: 27.get sb interested in 28.梦想做某事29. persuade sb to do 30.persuade sb into/out of (doing) 31.坚持做某事32, 搭建帐篷33. set /break(beat)/hold a record 34. care about 35. care for 36.give in(to sb) 37. give away 38. give off 39. make up ones mind 40. read ones mind 41. keep/bear sth in mind 42.be familiar with sth 43. be familiar to sb 44. be similar to 重点句子 1. To climb the mountain roadwas hard work but to go down the hills was great fun. 2. 大学毕业后,我终于有机会去自行车旅行。
高中必修1至选修1-1常用公式及结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2. 德摩根公式();()U U U U U U C A B C A C B C A B C A C B ⋂=⋃⋃=⋂.3. 包含关系A B A A B B ⋂=⇔⋃=U U A B C B C A ⇔⊆⇔⊆4.集合12{,,....,}n a a a 的子集个数共有2n 个;真子集有2n–1个; 5. 二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 6. 解连不等式()N f x M <<常有以下转化()N f x M <<⇔[()][()]0f x M f x N --< 7.方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于 0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k ab k k <-<+.8. 闭区间上的二次函数的最值 :二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p ab x ,2∈-=,则{}m in m ax m ax()(),()(),()2b f x f f x f p f q a=-=;若[]q p a b x ,2∉-=,则{}max max()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p ab x ,2∉-=,则{}m a x ()ma x(),()f x f p f q=,{}min ()min (),()f x f p f q =.9.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. (注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.) 10.11.常见结论的否定形式12.四种命题的相互关系13.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.14.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 15.多项式函数110()nn n n P x a x a xa --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.16.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.17.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)()()f x a f x a -=+,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;18.分数指数幂(1)1mn a =(0,,a m n N *>∈,且1n >).(2)1m nmnaa-=(0,,a m n N *>∈,且1n >).19.根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.20.有理指数幂的运算性质(1) (0,,)rsr sa a aa r s Q +⋅=>∈. (2) ()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)rrrab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.21.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.22.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log mna a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).23.对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2) log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.24.设函数)0)((log)(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.25. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 26.数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩ ( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).27.等差数列的通项公式 *11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.28.等比数列的通项公式 1*11()n nn a a a q qn N q-==⋅∈;其前n 项的和公式为 11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.29.分期付款(按揭贷款) : 每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).30.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤ (3) |sin ||cos |1x x +≥.31.同角三角函数的基本关系式22sin cos 1θθ+=, tan θ=θθcos sin , tan 1cot θθ⋅=.32.正弦、余弦的诱导公式○1Sin(2k π+α)=sin α cos(2k π+α)=cos α tan(2k π+α)=tan α○2Sin(-α)=- sin α cos(-α)=cos α tan(-α)= - tan α○3Sin(2π-α)=-sin α cos(2π-α)=cos α tan(2π-α)= - tan α○4Sin(π-α)=sin α cos(π-α)= - cos α tan(π-α)= - tan α○5Sin(π+α)=sin α cos(π+α)= - cos α tan(π+α)= tan α○6Sin(π/2 +α)=cos α cos(π/2 +α)= -Sin α ○7Sin(π/2 -α)=cos α cos(π/2 -α)= Sin α○8Sin(3π/2 +α)=cos α cos(3π/2 +α)= -Sin α ○9Sin(3π/2 -α)=cos α cos(3π/2 -α)= Sin α 33.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ= ).34.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα=-.35.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.36.正弦定理 2sin sin sin a b c R ABC===.37.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.38.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===. (3)O AB S ∆=39.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.40.实数与向量的积的运算律 :设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 41.向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 42.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 43.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 44. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 45. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 46.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 47.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).48.平面两点间的距离公式,A B d =||AB ==(A 11(,)x y ,B 22(,)x y ).49.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 50.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.51. 三角形四“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222O A O B O C ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.52.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥(当且仅当a =b 时取“=”号).53.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .54.含有绝对值的不等式当a> 0时,有22x a x aa x a <⇔<⇔-<<. 22x a x a x a >⇔>⇔>或x a <-.55.斜率公式 2121y y k x x -=- (111(,)P x y 、222(,)P x y ).56.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x y ab+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 57.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;58.直线系方程(1)共点直线系方程:经过两直1111:0l A x B y C ++=,2222:0l A x B y C ++= 的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++= (除2l ),其中λ是待定的系数.(2)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程0Ax By λ++=(0λ≠),λ是参变量.(3)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量. 59.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).60. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 仅讨论A>0的情况(只分直线左右侧,不论上下)Ax By C ++>0 : 表示直线右侧区域 Ax By C ++<0 : 表示直线右侧区域61. 圆的方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 62. 圆系方程(1)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(2) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++= 的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定系数.63.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.64.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22BA C Bb Aa d +++=.65.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21124d r r >+⇔⇔相离条公切线; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .66.圆的切线方程(1)已知圆方程为一般式220x y Dx Ey F ++++=时. ①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k的圆的切线方程为y kx =±. 67.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x ab y ±=⇔0=±by ax ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-by ax 有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).68. 抛物线22(0)y px p =>焦半径02p C F x =+.过焦点弦长p x x p x p x CD ++=+++=212122.69.直线与圆锥曲线相交的弦长公式AB =1212||x x y y ==-==-=(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,k 为直线的斜率). 70. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧.②1V S l =斜棱柱.71.球的半径是R ,则其体积 343V R π=, 其表面积24S R π=.72.球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为12a ,外接球的半径为4a .73.柱体、锥体的体积13V Sh =柱体 13V Sh =锥体 (S 是的底面积、h 是的高).74.古典概型等()m P A n=. 几何概型 P(点M 落在G1) =1G G 的面积的面积75.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B). 76.瞬时速度 0()()()limlimt t ss t t s t s t t tυ∆→∆→∆+∆-'===∆∆. 77.瞬时加速度0()()()limlimt t v v t t v t a v t tt ∆→∆→∆+∆-'===∆∆.78.)(x f 在),(b a 的导数()f x y ''==00()()lim lim x x y f x x f x x x∆→∆→∆+∆-==∆∆.79. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 80.几种常见函数的导数(1) 0='C (C 为常数). (2) '1()()nn x nxn R -=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -='. (5) xx 1)(ln =';e axxa log1)(log ='. (6) x x e e =')(; a a a xx ln )(='.(7)2211(tan )(cot )cos sin x x xx''==-81.导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)uu v uv v vv-=≠.82.判别)(0x f 是极大(小)值的方法: 当函数0()0f x '=时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.。