七年级数学整式加减章节练习2
- 格式:docx
- 大小:89.98 KB
- 文档页数:12
简单1、n是任意整数,则表示任意一个奇数的式子是()A.n B.2n C.2n-1 D.2n+1 【分析】n是任意整数,偶数是能被2整除的数,则偶数可以表示为2n,因为偶数与奇数相差1,所以奇数可以表示为2n+1,据此解答.【解答】n是任意整数,则表示任意一个奇数的式子是:2n+1;故选D.2、已知-2a+3b=5,那么代数式9b-6a+2的值为()A.3 B.7 C.17 D.16 【分析】先把9b-6a+2变形为3(3b-2a)+2,然后利用整体代入的方法进行计算.【解答】∵-2a+3b=5,即3b-2a=5,∴9b-6a+2=3(3b-2a)+2=3×5+2=17.故选C.3、m,n都是正整数,多项式x m+y n+3m+n的次数是()A.2m+2n B.m或nC.m+n D.m,n中的较大数【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m+y n+3m+n的次数是m,n中的较大数是该多项式的次数.【解答】根据多项式次数的定义求解.由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m+y n+3m+n中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.4、下列代数式中,不是整式的是()A.2a ba+B.214a+C.0 D.2a bπ【解答】根据整式的概念可知,不是整式有2a ba+,因为它的分母中含有字母,是分式.故选A.5、一个n次多项式(n为正整数),它的每一项次数()A.都不大于n B.都不小于n C.都等于n D.都小于n 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数可正确判定选择项.【解答】∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数∴n次多项式的次数必然都小于等于n.故选A.6、用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子()A.4n枚B.(4n-4)枚C.(4n+4)枚D.n2枚【分析】每增加一个数就增加四个棋子.【解答】n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选A.7、多项式(a-4)x3-x b+x-b是关于x的二次三项式,求a-b.【分析】根据多项式的定义分别分析得出即可.【解答】因为多项式(a-4)x3-x b+x-b是关于x的二次三项式,所以(a-4)x3这一项系数应为0,-x b应是最高次项.由题意,得a-4=0,b=2,即a=4,b=2,所以a-b=2.8、若多项式x2+2kxy+y2-2xy-k不含xy的项,求k的值.【分析】多项式合并得到结果,根据结果不含xy项,即可确定出k的值.【解答】原式=x2+(2k-2)xy+y2-k,由结果中不含xy项,得到2k-2=0,则k=1.9、用“⊗”定义新运算:对于任意实数a、b,都有a⊗b=b2+1,例如:7⊗4=42+1=17,那么2015⊗3=__________;当m为实数时,m⊗(m⊗2)=__________.【分析】根据题意a⊗b=b2+1,分别代入求出即可.【解答】∵7⊗4=42+1=17,∴2015⊗3=32+1=10;当m为实数时,m⊗(m⊗2)=m⊗(22+1)=m⊗5=52+1=26.故答案为:10,26.10、已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,则()A.m=-5,n=-1 B.m=5,n=1 C.m=-5,n=1 D.m=5,n=-1 【分析】根据多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,可令其系数为0.【解答】因为多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2.所以含x3和x2的单项式的系数应为0,即m+5=0,n-1=0,求得m=-5,n=1.故选C.11、关于x的多项式4x m-2(n-1)x+3是二次三项式的条件是,()A.m=2,n=1 B.m=2,n≠1C.m≠2,n=0 D.m=2,n≠0【分析】由于多项式是关于x的二次三项式,所以m=2,但-(n-1)≠0,根据以上两点可以确定m和n的值.【解答】∵多项式是关于x的二次三项式,∴m=2,但-(n-1)≠0,即n≠1,综上所述,m=2,n≠1,故选B.12、多项式3x2-2x-1的各项分别是()A.3x2,2x,1 B.3x2,-2x,1 C.-3x2,2x,-1 D.3x2,-2x,-1 【解答】多项式3x2-2x-1的各项分别是:3x2,-2x,-1.故选D.13、下列说法正确的是()A.x5+3x2y4-27x5是六次三项式B.xyz的系数是0C.a2b3c是五次单项式D.3x2-x+1的一次项系数是1【分析】根据多项式的次数与项数的定义,单项式的系数与次数的定义求解即可.【解答】A、x5+3x2y4-27x5是六次三项式,本选项正确;B、xyz的系数是1,本选项错误;C、a2b3c是六次单项式,本选项错误;D、3x2-x+1的一次项系数是-1,本选项错误.故选A.14、对于多项式-3x+2xy2-1,下列说法正确的是()A.一次项系数是3 B.最高次项是2xy2C.常数项是1 D.是四次三项式【分析】根据多项式的项和次数的定义进行判断.【解答】多项式-3x+2xy2-1,A、一次项系数是-3,故此选项错误;B、最高次项是2xy2,此选项正确;C、常数项是-1,故此选项错误;D、是三次三项式,故此选项错误.故选B.15、如果(m-1)x4-x n+x-1是二次三项式,则m=_________,n=_________.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,多项式中次数最高的项的次数叫做多项式的次数可得m-1=0,n=2,再解即可.【解答】由题意得:m-1=0,n=2,解得:m=1,n=2,故答案为:1;2.难题1、购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款_________元.【分析】用3本笔记本的总价加上5支铅笔的总价即可.【解答】应付款3a+5b元.故答案为:3a+5b.2、为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为__________元.【分析】用购买m个篮球的总价加上n个排球的总价即可.【解答】购买这些篮球和排球的总费用为(80m+60n)元.故答案为:(80m+60n).3、如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是__________米.【分析】这卷电线的总长度=截取的1米+剩余电线的长度.【解答】根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(ba+1)米.故答案为:(ba+1).4、某人买了50元的乘车月票卡,如果此人乘车的次数用m表示,则记录他每次乘车后的余额n元,如下表:乘车次数m 月票余额n/元1 50-0.82 50-1.63 50-2.44 50-3.2 ……(1)写出此人乘车的次数m表示余额n的公式;(2)利用上述公式,计算:乘了13次车还剩多少元?(3)此人最多能乘几次车?【分析】①根据表中的数据可知余额n等于50减去0.8乘以乘车的次数用m;②把m=13代入即可求值;③用总钱数除以0.8所得的最大整数即为最多能乘的次数车.【解答】①n=50-0.8m;②当m=13时,n=50-0.8×13=39.6(元);③当n=0时,50-0.8m=0.解出,m=62.5∵m为正整数∴最多可乘62次.5、17个连续整数的和是306,那么紧接在这17个数后面的那17个连续整数的和等于_____________.【分析】从题中所给信息可以知道,设17个连续整数的任意一个数位x,则在他后面第17个数为17+x,从而可以求出这17个数后面的那17个连续整数的和.【解答】由题意可知:17个连续整数的和是306,那么紧接着后面的那17个连续整数的和为306+17×17=595.故填595.6、(1)填写下表,并观察下列两个代数式的值的变化情况.n 1 2 3 4 5 6 7 85n+6n2(2)随着n的值逐渐变大,两个代数式的值如何变化?(3)估计一下,哪个代数式的值先超过100?【分析】(1)逐个求值,将结果准确计算即可.(2)随着n的值逐渐变大,5n逐渐变大,所以5n+6也逐渐变大;n2也逐渐变大.(3)当n=19时,5n+6=101,而当n=10时,n2=100,所以n2的值先超过100.【解答】(1)填表:第一排依次填11,16,21,26,31,36,41,46,第二排依次填1,4,9,16,25,36,49,64.(2)随n的值逐渐增大,两代数式的值也相应增大.(3)n2的值先超过100.7、假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥匙所对应的原来房间应该是()号.A.28 B.23 C.20 D.13 【分析】根据编码的方法分析,在1~30中,除以5余3的数有8,13,18,23,28,而其中除以7余6的数只有13,故可求得答案.【解答】∵1~30中,除以5余3的有:8,13,18,23,28,1~30中,除以7余6的有:13,20,27,∴刻的数是36的钥匙所对应的原来房间应该是13.故选D.8、下列说法正确的有()①-mn2+3n2m-5+2m3n2是五次四项式②3a-2的相反数是-3a+2③5πR2的次数是 3 ④34x3是7次单项式.A.1个B.2个C.3个D.4个【分析】根据多项式次数及项数的定义,相反数的定义,单项式次数的定义,分别进行各项的判断即可.【解答】①①-mn2+3n2m-5+2m3n2是五次四项式,正确;②3a-2的相反数是-3a+2,正确;③5πR2的次数是2,原说法错误,故本选项错误;④34x3是3次单项式,原说法错误,故本选项错误;综上可得:①②正确.故选B.9、多项式-x3+3的次数和项数分别为()A.-1,3 B.-1,2 C.3,2 D.3,4【分析】多项式-x3+3的最高次项为-x3,常数项为3,故为三次二项式.【解答】多项式-x3+3的次数和项数分别为3,2.故选C.10、对于多项式22t2+3t-1,下列说法中不正确的是()A.它是关于t的二次三项式B.当t=-1时,此多项式的值为0C.它的常数项是-1D.二次项的系数是2【分析】A、根据多项式的次数和项数的定义即可判定是否正确;B、把t=-1代入多项式计算即可求出多项式的值,然后即可判定是否正确;C、D、根据多项式各项的定义可以判定是否正确.【解答】A、多项式22t2+3t-1是二次三项式,故选项正确;B、当t=-1时,此多项式的值为4-3-1=0,故选项正确;C、它的常数项是-1,故选项正确;D、二次项的系数是22=4,故选项错误.故选D.11、按某种标准,单项式5x2y和多项式a2b+2ab2-5属于同一类,则下列哪一个多项式也属于此类()A.3x3+2xy4B.x2-2 C.abc-1 D.m2+2mn+n2【分析】观察单项式5x2y和多项式a2b+2ab2-5,发现它们的次数都是3次,因此可以属于同一类,然后找出四个选项中的三次多项式即可.【解答】∵单项式5x2y和多项式a2b+2ab2-5的次数都是3次,又∵多项式3x3+2xy4的次数为4;x2-2的次数为2;abc-1的次数为3;m2+2mn+n2的次数为2;∴多项式abc-1的次数与单项式5x2y和多项式a2b+2ab2-5的次数相同.故选C.12、下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2-3 D.x2+y2+x-y【分析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.【解答】A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选A.13、下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2-3 D.x2+y2+x-y 【分析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.【解答】A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选A.14、对于一个六次多项式,它的任何一项的次数()A.都小于6 B.都等于6 C.都不小于6 D.都不大于6 【分析】六次多项式,即其次数最高次项的次数六次.也就是说,每一项都可以是六次,也可以低于六次,但不可以超过六次.【解答】一个六次多项式,它的任何一项的次数都不大于6.故选D.15、若m,n为自然数,则多项式x m-y n-4m+n的次数应当是()A.m B.nC.m+n D.m,n中较大的数【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m,n均为自然数,而4m+n是常数项,所以多项式的次数应该是x,y的次数,由此可以确定选择项.【解答】∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,而4m+n是常数项,∴多项式x m-y n-4m+n的次数应该是x,y中指数大的,∴D是正确的.故选D.16、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【分析】根据合并同类项法则和多项式的加减法法则可做出判断.【解答】多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,B是一个四次多项式,因此A+B一定是四次多项式或单项式.故选B.17、当a为何值时,化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式.【分析】由于(2-7a)x3-3ax2-x+7是关于x的二次三项式,则需满足2-7a=0且-3a≠0,根据以上两点可以确定a的值.【解答】∵化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式,∴2-7a=0且-3a≠0,∴a=27且a≠0,综上所述,a=27.故当a=27时,化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式.。
整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2 1 x)-4(x-x21-+32 +);229、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].+(-35、 - 2 ab + 3 a 2b +ab3a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 3 4 437、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、2x - {-3y + [3x - 2(3x - y )]}45、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).3a )]49、1 12 22 2 2 2xy+(- xy )-2xy -(-3y x ) 50、5a -[a -(5a -2a )-2(a -2 451、5m-7n-8p+5n-9m+8p 52、(5x2y-7xy2)-(xy2-3x2y)+5x 253、3x2y-[2x2y-3(2xy-x2y)-xy] 54、3x2-[5x-4(1x2-1)]21312 255、2a3b- a b-a2b+2a b-ab ;256、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.1 167、a-( a-4b-6c)+3(-2c+2b)3 268、-5a n-a n-(-7a n)+(-3a n)69、x2y-3xy2+2yx2-y2x70 、1a2b-0.4ab2-41a2b+22ab2;71、3a-{2c-[6a-(c-b)+c+(a+8b-6)]}572、-3(xy-2x2)-[y2-(5xy-4x2)+2xy];73、化简、求值1 x2-⎡2- ( 1 x2+ y2)⎤3 2 x2+1 y2),其中x=-2,y=-2 ⎢⎣243⎥⎦-2 (-3 3=-1 ; 74、化简、求值 1 x -2(x - 1 y 2)+(- 3 x + 1 y 2),其中 x =-2,y 2=- .2 3 2 3 375、 1 x 3 - ⎛- 3x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x1 3⎝ 23⎪⎭2276、 化简,求值(4m+n )-[1-(m-4n )],m= 2 5 n=-1 1377、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2.80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.81、若 2a 2-4ab+b 2 与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求 3x 2+x -5 与 4-x +7x 2 的差.84、计算 5y+3x+5z 2 与 12y+7x-3z 2的和85、计算 8xy 2 +3x 2 y-2 与-2x 2 y+5xy 2-3 的差 86、 多项式-x 2+3xy- 1 y 与多项式 M 的差是-1 x 2 2 2-xy+y ,求多项式 M87、当 x=- 1,y=-3 时,求代数式 3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 288、化简再求值 5abc-{2a 2 b-[3abc-(4ab 2 -a 2 b )]-2ab 2},其中 a=-2,b=3,c=- 1489、已知 A=a 2 -2ab+b 2 ,B=a 2 +2ab+b 21(1)求 A+B ; (2) 求 (B-A);490、小明同学做一道题,已知两个多项式 A ,B ,计算 A+B ,他误将 A+B 看作 A- B ,求得 9x 2-2x+7,若 B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N.92、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B93、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.94、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b- 2|+c2=0.96、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设 A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3) 2 =0,且B-2A=a ,求 a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当 a 取任意有理数时, 请比较 A 与 B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a2 +6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5 、 3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 2 2b-3ab 2 )-2(a 2 b-7ab ) = -a 2 b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m2 n-5mn )-(4m 2 n-5mn )= 3m 2 n 10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 2 12、2(a-1)-(2a-3)+3.=413、-2(ab-3a2 )-[2b 2 -(5ab+a 2 )+2ab]= 7a 2 +ab-2b 2 14、(x2 -xy+y )-3(x 2 +xy-2y )= -2x 2 -4xy+7y 15、3x 2 -[7x-(4x-3)-2x 2 ]=5x 2 -3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2 -4a 20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2+7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a2 +ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2- 1 +3x )-4(x -x 2+ 1 ) = 6x2 -x- 52 2 229、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -3 30、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a2 -3ab+2b 2 )+(a 2 +2ab-2b 2 )= 4a 2 -ab32、2a 2 b+2ab 2 -[2(a 2 b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235 、36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 37、2x -(3x -2y +3)-(5y -2)=-x-3y-1ab-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a 42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、 2x - {- 3y + [3x - 2(3x - y )]} = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x3 -x 2+5x+1 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、11xy+(- 1xy )-2xy 2-(-3y 2x )= xy+xy2 24450、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy 253、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy1 54 、 3x 2-[5x-4(x 2-1)]+5x 2= 10x 2 -5x-4211 31 55、2a 3b- a 3b-a 2b+ a 2b-ab 2= a 3b- a 2b-ab 2222256、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 257、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2= -3a 3+4a 258 、 5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b 59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a2 -2b 2 64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+41 11 67、 a-(a-4b-6c)+3(-2c+2b)= - a+10b32668 、 -5a n-a n-(-7a n)+(-3a n)= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 22 - ab +3 a 2b +ab +(-3 a 2b )-1 = 13 4 4 3⎭71、a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)1-[y 2-(5xy-4x 2)+2xy]=3 2x 2 2-y 21 4 73、化简、求值 x 2-⎡2- ( 1 x 2+ y 2)⎤ - (- x 2+ y 2),其中 x =-2, y =- 2⎢⎣ 2 1 8原 式 =2x 2+ y 2-2 =629⎥⎦ 2 3 3 3 1 1 3 1 2 74、化简、求值 x -2(x - y 2)+(- x + y 2),其中 x =-2,y =- .23233原式=-3x+y2 =6 49 1 x 3 - ⎛- 3 x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x =-11 ;75、 3⎝ 23 ⎪ 223原式=x 3 +x 2 -x+6=6 82 1 76、 化简,求值(4m+n )-[1-(m-4n )],m=n=-153原式=5m-3n-1=577、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中 a =-3,b =2 原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2. 原式=-2x2 +x-6=-16 80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若 2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求 3x 2+x -5 与 4-x +7x 2 的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z2 与 12y+7x-3z 2 的和 (5y+3x+5z2 )+(12y+7x-3z 2 )=17y+10x+2z 2 85、计算 8xy 2 +3x 2 y-2 与-2x2 y+5xy 2 -3 的差 (8xy2 +3x 2 y-2)—(-2x 2 y+5xy 2 -3)=5x 2 y+3xy 2 +1 86、 多项式-x2 +3xy- 1 y 与多项式 M 的差是- 1x 2-xy+y ,求多项式 M 221 3 M=- x 2+4xy — y221 a 2b-0.4ab 2- 1 a 2b+2 ab 2 = - 1 4 2 5 4187、当x=- ,y=-3 时,求代数式3(x2-2xy)-[3x2-2y+2(xy+y)]的值.2原式=-8xy+y= —1588、化简再求值 5abc-{2a 2b-[3abc-(4ab 2-a 2b)]-2ab 2},其中 a=-2,b=3,c=-14原式=83abc-a 2b-2ab 2=3689、已知 A=a 2-2ab+b 2,B=a 2+2ab+b 21(1)求 A+B;(2)求 (B-A);4 A+B=2a 2+2b 21(B-A)=ab 490、小明同学做一道题,已知两个多项式 A,B,计算 A+B,他误将 A+B 看作 A-B,求得9x2-2x+7,若 B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5 A+B=11x2+4x+391、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N. M-2N=5x2-4x+392、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B3A-B=11x 2-13xy+8y 293、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.2A-3B= 5x2+11xy+2y294、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设 A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且 B-2A=a,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a 取任意有理数时,请比较 A 与B 的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2023-2024学年人教版七年级数学上册《第二章整式的加减》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列运算正确的是()A.B.C.D.2.多项式2a4+4a3b4﹣5a2b+2a是()A.按a的升幂排列B.按a的降幂排列C.按b的升幂排列D.按b的降幂排列3.解方程时,下列去括号正确的是()A.B.C.D.4.下列各组中,不是同类项的是()A.与B.与C.与D.与5.当代数式x2+4kxy﹣3y2﹣6xy+7中不含xy项,则k的值为()A.0 B.C.﹣D.26.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A.3a2﹣a﹣6 B.3a2+3a+8 C.3a2+3a﹣6 D.﹣3a2﹣3a+6 7.设A=3x2﹣3x+5,B=2x2﹣3x﹣2,若x取任意实数,则A与B的大小关系为()A.A>B B.A<B C.A=B D.无法比较8.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()。
A.(4a+2b)米B.(5a+2b)米C.(6a+2b)米D.(a2+ab)米二、填空题:(本题共5小题,每小题3分,共15分.)9.去括号: -(x-1)= .10.代数式与是同类项,则a+b= 。
11.减去后,等于的多项式是.12.若多项式与多项式的差不含二次项,则m= .13.若代数式M=5x2﹣2x﹣1,N=4x2﹣2x﹣3,则M,N的大小关系是M N(填“>”“<”或“=”)三、解答题:(本题共5题,共45分)14.计算:(1) [ ];(2) .15.先化简,再求值:,其中. 16.有理数在数轴上的位置如图,化简: .17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.某同学做一道数学题,已知两个多项式A、B,试求.这位同学把误看成,结果求出的答案为.(1)请你替这位同学求出的正确答案;(2)当x取任意数值,的值是一个定值时,求y的值.参考答案:1.D 2.B 3.D 4.B 5.B 6.C 7.A 8.B9.1-x10.311.12.-413.>14.(1)解:原式;(2)解:原式.15.解:原式===∵∴x=-3,y=2∴原式= = =-10. 16.解:由图可知:原式17.(1)解:(2)解:把,代入得:18.(1)解:∵,∴;(2)解:∵当x取任意数值,的值是一个定值∴∴。
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
2.2 整式的加减一.填空题1.去括号:﹣2(m﹣3)=.2.若a3b y与﹣2a x b是同类项,则y x=.3.如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么2a﹣b=.4.计算(1﹣2a)﹣(2﹣2a)=.5.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.6.若﹣3x m y3与2x2y n是同类项,则|m﹣n|的值是7.若mn=m﹣3,则mn+4m+8﹣5mn=.8.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.9.已知﹣a=5,则﹣[+(﹣a)]=.二.选择题10.与2ab2是同类项的是()A.4a2b B.2a2b C.5ab2D.﹣ab11.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.012.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣413.已知:|a|=2,|b|=3,且|a﹣b|=b﹣a,则(8a2b﹣7b2)﹣(4a2b﹣5b2)=()A.30B.﹣66C.30或﹣66D.﹣30或6614.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a215.下列各运算中,计算正确的是()A.4xy+xy=5xyB.x+2x=2x2C.5xy﹣3xy=2D.x+y=xy16.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x317.若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.1118.给出下列结论:①单项式﹣的系数为﹣;②x与y的差的平方可表示为x2﹣y2;③化简(x+)﹣2(x﹣)的结果是﹣x+;④若单项式ax2y n+1与﹣ax m y4的差是同类项,则m+n=5.其中正确的结论有()A.1个B.2个C.3个D.4个19.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2B.4C.﹣2D.﹣420.若A=x2y﹣2xy,B=xy2﹣3xy,则计算3A﹣2B的结果是()A.2x2y B.3x2y﹣2xy2C.x2y D.xy221.化简m3+m3的结果等于()A.m6B.2m6C.2m3D.m922.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y23.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+424.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5三.解答题25.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.26.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.27.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.28.(1)设A=2a2﹣a,B=a2+a,若a=- ,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.参考答案一.填空题1.﹣2m+6;2.1;3.﹣3;4.﹣1;5.5x﹣2y;6.1;7.20;8.﹣或;9.﹣5;二.选择题10-24:CACAA ACDCA BCCBC三.解答题25.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.26.解:原式=4x2y-(6xy-12xy+6-x2y-1)=4x2y-(-6xy-x2y+5)=4x2y+6xy+x2y-5=5x2y+6xy-5当x=2,y=−时,原式=5×4×(−)+6×2×(−=-10-6-5=-21;27.解:(1)2A-3B=2(3x2+3y2-2xy)-3(xy-2y2-2x2)=6x2+6y2-4xy-3xy+6y2+6x2=12x2+12y2-7xy;(2)由题意可知:2x-3=±1,y=±3,∴x=2或1,y=±3,由于|x-y|=y-x,∴y-x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)-7xy=12(x2+2xy+y2-2xy)-7xy=12(x+y)2-31xy=12×25-31×6=114,当y=3,x=1时,原式=12×16-31×3=99.28.解:(1)A-2B=(2a2-a)-2(a2+a)=2a2-a-2a2-2a=-3a,当a=−)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1-9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1-9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.。
人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。
第二章 整式的加减2.1 整式第1课时 用字母表示数基础题知识点 用字母表示数(1)在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写.出现字母乘以数字,通常将数字写在字母前面.如:200×m 通常写作200m ;ab ×12通常写作12ab .(2)用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.1.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B ) A .(15+a )万人 B .(15-a )万人 C .15a 万人 D .(a -15)万人2.有三个连续偶数,最大的一个是2n +2,则最小的一个可以表示为(A ) A .2n -2 B .2n C .2n +1 D .2n -13.车上有100袋面粉,每袋50千克,取下x 袋,车上还有面粉(A ) A .50(100-x )千克 B .(50×100-x )千克 C .100(50-x )千克 D .50x 千克4.长方形的周长为10,它的长是a,那么它的宽是(C ) A .10-2a B .10-a C .5-a D .5-2a5.3月12日某班50名学生到郊外植树,平均每人植树a 棵,则该班一共植树50a 棵.6.商店上月收入为a 元,本月的收入比上月的2倍还多5元,则本月的收入为(2a +5)元.7.(云南中考)一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要2__000a 元. 8.用含字母的式子表示:(1)x 的2倍与5的和:2x +5;(2)x 与y 两数的差的平方:(x -y )2;(3)a 与b 的平方差:a 2-b 2.9.用字母表示图中阴影部分的面积.解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.中档题10.若x 表示一个两位数,把数字3放在x 的左边,组成一个三位数是(D ) A .3x B .10x +3 C .100x +3 D .3×100+x11.礼堂第一排有m 个座位,后面每排都比前一排多1个座位,则第n 排座位个数是(B ) A .m +1 B .m +(n -1) C .m +(n +1) D .m +n12.一条河的水流速度为3 km/h,船在静水中的速度为x km/h,则船在这条河中顺水行驶的速度是(x +3)km/h. 13.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元.则式子500-3a -2b 表示的数为体育委员买了3个足球,2个篮球后剩余的经费.14.(昆明期中)列式表示p 与q 的平方和的14是14(p 2+q 2).15.10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是10x +42015分.16.用式子表示:(1)a 与b 的积的4倍; 解:4ab.(2)x 的2倍与y 的5%的差; 解:2x -5%y.(3)a 与b 的和的平方;解:(a +b )2.(4)a 与b 的差的平方的c 倍.解:c (a -b )2.17.(曲靖月考)列式表示:(1)棱长为a cm 的正方体的表面积;(2)每件a 元的上衣,降价20%后的售价是多少元?(3)一辆汽车的行驶速度是v km/h,t h 行驶多少千米?解:(1)6a 2 cm 2. (2)0.8a 元. (3)vt km.综合题18.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是(B ) A .甲超市 B .乙超市C .两个超市一样D .与商品的价格有关第2课时 单项式基础题知识点1 认识单项式表示数或字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式. 1.在3a ,x +1,-2,-b 3,0.72xy,2π,3x -14中,单项式有(C )A .2个B .3个C .4个D .5个2.下列单项式中,书写格式规范的是(B ) A .-1×kB.214x C .a ×c 2×8 D .x ÷3知识点2 单项式的系数、次数一个单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数. 3.(台州中考)单项式2a 的系数是(A ) A .2 B .2a C .1 D .a4.-4a 2b 的次数是(A ) A .3 B .2 C .4 D .-45.(曲靖月考)已知2x b -2是关于x 的3次单项式,则b 的值为(A ) A .5 B .4 C .6 D .76.关于单项式3.8×104xy 2,下列说法正确的是(B ) A .系数是3.8,次数是2B .系数是3.8×104,次数是3C .系数是3.8×104,次数是2 D .系数是3.8,次数是77.(教材P57练习T1变式)填表:单项式 -2a 53h -xy 2t 2-3vt 2 系数 -2 3 -1 1 -32 次数513228.如果-=7.9.将式子2a 2b 2c 和a 3x 2的共同点填在下列横线上:(1)都是五次单项式;(2)都有字母a .知识点3 单项式的应用10.学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,则捐给社区的图书为ab2册.11.列出单项式,并指出它们的系数和次数.(1)某班总人数为m 人,女生人数是男生人数的35,那么该班男生人数为多少?(2)长方形的长为x,宽为y,则长方形的面积为多少?解:(1)58m,系数是58,次数是1.(2)xy,系数是1,次数是2.易错点 对单项式中系数和次数的概念不清 12.下列关于单项式-3xy25的说法中,正确的是(D )A .系数是-35,次数是2B .系数是35,次数是2C .系数是-3,次数是3D .系数是-35,次数是3中档题13.单项式-3πxy 2z 3的系数和次数分别是(C ) A .-3π,5 B .-3,7 C .-3π,6 D .-3,6 14.下列说法正确的是(D ) A .x 的系数是0B .24x 与42y 的系数不相同 C .y 的次数是0D .34xyz 是三次单项式15.同时含有字母a,b,c 且系数为1的五次单项式有(C ) A .1个 B .3个 C .6个 D .9个16.(昆明月考)-5πxy 26的系数是-56π,次数是3.17.已知三个单项式:①πx 2;②-12xy 3;③-103x 3,按次数由小到大排列为①③②.(填序号)18.(教材P56例3变式)用单项式填空,并指出它们的系数和次数:(1)一台电脑原价a 元,现在加价20%出售,这台电脑现在的售价为65a 元,次数为1,系数为65;(2)一个长方体的长、宽、高分别是x,x,y,则它的体积是x 2y,次数为3,系数为1.19.若(m +2)x 3y |m|是关于x,y 的五次单项式,求m 的值. 解:由题意,3+|m|=5,所以|m|=2,m =±2. 又因为m +2≠0,所以m =2.综合题20.观察下列单项式:-x,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,….回答下列问题: (1)这组单项式的系数的规律是什么? (2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么? (4)请你根据猜想,写出第2 018,2 019个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数绝对值的规律是2n -1.(n 为正整数) (2)次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n.(4)第2 018个单项式是4 035x 2 018,第2 019个单项式是-4 037x 2 019.第3课时 多项式及整式基础题知识点1 多项式及整式的有关概念(1)几个单项式的和叫做多项式.多项式里,每个单项式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数,叫做多项式的次数.(2)单项式与多项式统称为整式.1.下列式子:2a 2b,3xy -2y 2,a +b2,4,-m,x +yz 2x ,ab -c π,其中多项式有(B )A .2个B .3个C .4个D .5个2.(曲靖期中)下列式子:x 2+2,1a +4,3ab 27,abc ,-5x,0中,整式的个数是(C )A .6B .5C .4D .33.多项式-x 2-12x -1的各项分别是(B )A .-x 2,12x,1B .-x 2,-12x,-1C .x 2,12x,1D .x 2,-12x,-14.(昆明月考)多项式xy 2+xy +1是(D ) A .二次二项式 B .二次三项式 C .三次二项式 D .三次三项式5.(佛山中考)多项式1+2xy -3xy 2的次数及最高次项的系数分别是(A ) A .3,-3 B .2,-3 C .5,-3 D .2,36.(大理期中)-3x 2y -x 3+xy 3是四次多项式. 7多项式 3a -1 -x +5x 2+7 -2x 2y +6xy 4-3 各项 3a,-1 -x,5x 2,7-2x 2y,6xy 4,-3次数 1 2 5 最高次项 3a 5x 2 6xy 4几次几项式一次二项式二次三项式五次三项式知识点2 求整式的值8.(湖州中考)当x =1时,式子4-3x 的值(A ) A .1 B .2 C .3 D .49.(重庆中考)若a =2,b =-1,则a +2b +3的值为(B ) A .-1 B .3 C .6 D .5知识点3 多项式的应用10.已知a 是两位数,b 是一位数,把a 写在b 的右边,就成为一个三位数.这个三位数可表示成(C ) A .10b +a B .ba C .100b +a D .b +10a11.甲、乙两个车间同时加工相同数量的零件,甲车间每小时加工a 个,乙车间每小时加工b 个(b <a ),5小时后,甲车间还剩20个零件未加工,此时乙车间未加工的零件个数为(A ) A .5a +20-5b B .5b +20-5a C .5a +20 D .5b +20中档题12.(红河期中)下列式子中,是二次三项式的是(C )A .a 2+b 2B .x +y +7C .5-x -y 2D .x 2-y 2+x -3x 213.如果一个多项式是五次多项式,那么它任何一项的次数(D ) A .都小于5 B .都等于5 C .都不小于5 D .都不大于514.(民大附中月考)按如图程序计算,若开始输入的值为x =3,则最后输出的结果是(D )A .6B .21C .156D .23115.某人买了50元的乘车月票卡,如果此人乘车的次数用m 表示,则记录他每次乘车后的余额n 元,如下表:次数m 余额n (元) 1 50-0.8 2 50-1.6 3 50-2.4 4 50-3.2 ……(1)写出用此人乘车的次数m 表示余额n 的公式; (2)利用上述公式,计算:乘了13次车还剩多少元钱? 解:(1)n =50-0.8m.(2)当m =13时,n =50-0.8×13=39.6(元). 答:乘了13次车还剩39.6元钱.16.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a 米,宽为b 米.(1)分别列式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数). 解:(1)草地面积为4×14πr 2=πr 2(平方米),空地面积为(ab -πr 2)平方米. (2)当a =300,b =200,r =10时,ab -πr 2=300×200-100π≈59 686(平方米). 答:广场空地的面积约为59 686平方米.综合题17.如果关于x 的多项式ax 4+4x 2-12与3x b +5x 是同次多项式,求12b 3-2b 2+3b -4的值.解:由题意:若a =0,则b =2;若a ≠0,则b =4.当b =2时,原式=12×8-2×4+3×2-4=-2;当b =4时,原式=12×64-2×16+3×4-4=8.2.2 整式的加减 第1课时 合并同类项基础题知识点1 同类项的概念所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.1.(昆明期末)在下列单项式中,与3a 2b 是同类项的是(C )A .3x 2yB .-2ab 2C .a 2b D .3ab2.(昆明期末)在下列单项式中,不是同类项的是(C )A .-2x 2y 和-yx 2B .-3和0C .-a 2bc 和ab 2c D .-mnt 和-8mnt3.(昆明月考)若单项式2x m y 3与单项式-3y n x 2是同类项,则m =2,n =3. 4.指出下列多项式中的同类项: (1)3x -2y +1+5y -2x -3; 解:3x 与-2x,-2y 与5y,1与-3.(2)3x 2y -2xy 2+12xy 2-23yx 2.解:3x 2y 与-23yx 2,12xy 2与-2xy 2.知识点2 合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.5.合并同类项-4a 2b +3a 2b =(-4+3)a 2b =-a 2b 时,依据的运算律是(C ) A .加法交换律 B .乘法交换律 C .乘法分配律 D .乘法结合律6.(红河期中)下列式子中,能与2a 合并的是(C )A .2a 3B .-3a +bC .-10aD .-a 2b7.(昭通期中)下列计算正确的是(D )A .x 2+x 2=x 4B .x 2+x 3=2x 5C .3x -2x =1D .x 2y -2x 2y =-x 2y 8.计算:(1)15x +4x -10x ; 解:原式=9x.(2)-p 2-p 2-p 2;解:原式=-3p 2.(3)6x -10x 2+12x 2-5x ;解:原式=2x 2+x.(4)x 2y -3xy 2+2yx 2-y 2x.解:原式=3x 2y -4xy 2.知识点3 合并同类项的应用9.三个植树队,第一队种树x 棵,第二队种的棵数是第一队的2倍,第三队种的棵数是第一队的一半,三个队一共种树72x 棵. 10.小明阅读一本书,第一天看了全书的13,第2天看了全书的49,若全书共x 页,则小明还有29x 页没看.中档题11.把多项式2x 2-5x +x 2+4x -3x 2合并同类项后所得的结果是(D ) A .二次二项式 B .二次三项式 C .一次二项式 D .单项式12.(曲靖月考)若5a |x|b 2与-0.2a 3b |y|是同类项,则x,y 的值分别是(A ) A .x =±3,y =±2 B .x =3,y =2 C .x =-3,y =-2 D .x =3,y =-213.(临沧期中)若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k =2.14.(大理期中)若关于x,y 的单项式-3x 3y m 与2x n y 2的和是单项式,则(m -n )n=-1. 15.计算:(1)(大理期中)2a 2b -3ab -14a 2b +4ab ;解: 原式=(2a 2b -14a 2b )+(-3ab +4ab )=-12a 2b +ab.(2)14a 2b -0.4ab 2-12a 2b +25ab 2-1.解:原式=(14a 2b -12a 2b )+(-0.4ab 2+25ab 2)-1=-14a 2b ―1.16.(教材P65练习T2变式)(曲靖月考)先合并同类项,再求值:7x 2-3+2x -6x 2-5x +8,其中x =-2.解:原式=x 2-3x +5.当x =-2时,原式=4+6+5=15.17.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)用含x,y 的式子表示地面总面积;(2)当x =4,y =2时,若铺1 m 2地砖的平均费用为30元,那么铺地砖的费用是多少元?解:(1)4xy +2y +4y +8y =(14y +4xy )m 2. (2)当x =4,y =2时,30(14y +4xy )=30×(14×2+4×4×2)=1 800. 答:铺地砖的费用是1 800元.综合题18.有这样一道题:当a =0.35,b =-0.28时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3的值.小明说:“本题中a =0.35,b =-0.28是多余的条件.”小强马上反对说:“这不可能,多项式中每一项都含有a 和b,不给出a,b的值怎么能求出多项式的值呢?”你同意哪名同学的观点?请说明理由.解:我同意小明的观点.理由:因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.第2课时去括号基础题知识点1 去括号如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.1.(大理期中)下列运算正确的是(D)A.4x2y-xy2=3x2yB.3(x-1)=3x-1C.-3a+7a+1=-10a+1D.-(x-6)=-x+62.下列各式中,去括号不正确的是(D)A.x+2(y-1)=x+2y-2B.x-2(y-1)=x-2y+2C.x-2(y+1)=x-2y-2D.x-2(y-1)=x-2y-23.去掉下列各式中的括号:(1)a-(-b+c)=a+b-c;(2)a+(b-c)=a+b-c;(3)(a-2b)-(b2-2a2)=a-2b-b2+2a2.知识点2 去括号化简4.化简-(a-1)-(-a-2)+3的值是(B)A.4 B.6 C.0 D.无法计算5.计算:3(2x+1)-6x=3.6.化简:(1)-16(x-0.5);解:原式=-16x+8.(2)(-x2+3)+(5x-7+2x2);解:原式=-x2+3+5x-7+2x2=x2+5x-4.(3)-3(2x2-xy)+4(x2+xy);解:原式=-2x2+7xy.(4)(4ab-b2)-2(a2+2ab-b2).解:原式=-2a2+b2.知识点3 去括号化简的应用7.长方形的一边等于3m+2n,另一边比它大m-n,则这个长方形的周长是(A)A.14m+6n B.7m+3nC.4m+n D.8m+2n易错点去括号时漏乘项或漏项变号8.化简:4a2-3a+3-3(-a3+2a+1).解:原式=4a2-3a+3+3a3-6a-3=3a3+4a2+(-3a-6a)+(3-3)=3a3+4a2-9a.9.(曲靖月考)下列去括号中错误的是(B )A .3x 2-(2x -y )=3x 2-2x +y B .x 2-34(x +2)=x 2-34x -2C .5a +(-2a 2-b )=5a -2a 2-b 2D .-(a -3b )-(a 2+b 2)=-a +3b -a 2-b 210.已知x 2y =2,则(5x 2y +5xy -7x )-(4x 2y +5xy -7x )的值为(C ) A.12B .-2C .2D .411.(曲靖月考)若式子2x -y 的值是5,则式子2y -4x +5的值为(B ) A .-15 B .-5 C .5 D .1512.式子(xyz 2-4yx -1)+(3xy +z 2yx -3)-(2xyz 2+xy )的值(B ) A .与x,y,z 的大小无关B .与x,y 大小有关,而与z 的大小无关C .与x 的大小有关,与y,z 的大小无关D .与x,y,z 大小都有关 13.化简:(1)3(a 2-ab )-5(ab +2a 2-1);解:原式=-7a 2-8ab +5.(2)(3a -2a 2)-[5a -13(6a 2-9a )-4a 2].解:原式=4a 2-5a.14.先化简,再求值:4x -[3x -2x -(x -3)],其中x =12.解:原式=4x -3. 当x =12时,原式=-1.15.已知x +4y =-1,xy =5,求(6xy +7y )+[8x -(5xy -y +6x )]的值. 解:原式=6xy +7y +8x -5xy +y -6x =xy +8y +2x=xy +2(x +4y ).当x +4y =-1,xy =5时,原式=5+2×(-1)=3.16.如图所示是两种长方形铝合金窗框.已知窗框的长都是y 米,窗框宽都是x 米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?解:由题意可知:做2个(1)型的窗框需要铝合金2(3x +2y )米;做5个(2)型的窗框需要铝合金5(2x +2y )米,所以共需铝合金:2(3x +2y )+5(2x +2y )=(16x +14y )米.17.(昭通期中)如图所示,用火柴棒摆金鱼,摆一条需要8根,摆两条需要14根,摆三条需要20根,则摆n条需要(6n+2)根.第3课时 整式的加减基础题知识点1 整式的加减运算一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 1.化简a -(5a -3b )+(2b -a )的结果是(B ) A .7a -b B .-5a +5b C .7a +5b D .-5a -b2.化简2(3x +1)+3(2-x )的结果为(C ) A .6x -4 B .3x +4 C .3x +8 D .9x +83.若A =x 2-xy,B =xy +y 2,则A +B 为(A )A .x 2+y 2B .2xyC .-2xyD .x 2-y 24.计算3a 2+2a -1与a 2-5a +1的差,结果正确的是(D )A .4a 2-3a -2B .2a 2-3a -2C .2a 2+7aD .2a 2+7a -25.化简:(x 2+y 2)-3(x 2-2y 2)=-2x 2+7y 2. 6.(昆明期中)计算:(1)(3a -2)-3(a -5); 解:原式=3a -2-3a +15 =13.(2)(4a 2b -5ab 2)-(3a 2b -4ab 2);解:原式=4a 2b -5ab 2-3a 2b +4ab 2=a 2b -ab 2.(3)m -2(m -n 2)-(m -n 2).解:原式=m -2m +2n 2-m +n 2=-2m +3n 2.7.(昭通期中)先化简,再求值:5(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-12,b =13.解:原式=15a 2b -5ab 2-ab 2-3a 2b =12a 2b -6ab 2. 当a =-12时,b =13时,原式=12×⎝ ⎛⎭⎪⎫-122×13-6×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-132=43.知识点2 整式加减的应用8.(民大附中月考)一个长方形的一边长3a +4b,另一边长为a +b,那么这个长方形的周长为8a +10b .9.兴客隆超市10月1日仓库里原有(5x 2-10x )桶食用油,中午休息时又购进同样的食用油(x 2-x )桶,下午清仓时发现该食用油只剩下5桶,请问:(1)兴客隆超市10月1日一共卖出多少桶食用油?(用含有x 的式子表示) (2)当x =5时,兴客隆超市这天一共卖出多少桶食用油?解:(1)根据题意,得(5x 2-10x )+(x 2-x )-5=5x 2-10x +x 2-x -5=6x 2-11x -5,即兴客隆超市10月1日一共卖出(6x 2-11x -5)桶食用油.(2)当x =5时,6x 2-11x -5=6×52-11×5-5=90, 即当x =5时,兴客隆超市这天一共卖出90桶食用油.易错点 列式时,减法的减式没有带括号10.一个多项式加上5x 2-4x -3得-x 2-3x,则这个多项式为-6x 2+x +3.中档题11.当x =2时,(x 2-x )-2(x 2-x -1)的值等于(D ) A .4 B .-4 C .1 D .012.(昭通期中)如图,从边长为(a +3)cm 的大正方形纸片中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪开,重新拼成一个长方形(不重叠无缝隙),则此长方形的周长为(A )A .(4a +12)cmB .(4a +8)cmC .(2a +6)cmD .(2a +4)cm13.(昆明期中)数a,b 在数轴上对应点的位置如图所示,化简a -|b -a|=b .14.某商场一月份的销售额为a 元,二月份比一月份销售额多b 元,三月份比二月份减少10%,第一季度的销售额总计为(2.9a +1.9b )元;当a =2万元,b =5 000元时,第一季度的总销售额为67__500元.15.计算:2a 2-[-2a +a (2a +1)].解:原式=2a 2-(-2a +2a 2+a )=2a 2+2a -2a 2-a =a.16.(大理期中)(1)先化简,再求值:x 2-2(x 2-3xy )+3(y 2-2xy )-2y 2,其中x =12,y =-1;解:原式=x 2-2x 2+6xy +3y 2-6xy -2y 2=-x 2+y 2. 当x =12,y =-1时,原式=-(12)2+(-1)2=34.(2)已知x +y =6,xy =-1,求式子2(x +1)-(3xy -2y )的值. 解:原式=2x +2-3xy +2y =2(x +y )-3xy +2.当x +y =6,xy =-1时,原式=12+3+2=17.综合题17(1)带阴影的方框中的9个数之和与方框正中心的数有什么关系?(2)不改变方框的大小如果将带阴影的方框移至其他几个位置试一试,你能得出什么结论?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?解:(1)带阴影的方框中的9个数之和是11的9倍.(2)带阴影的方框中的9个数之和是正中间数的9倍.理由:设方框正中心的数为x,则其余八个数分别为:x-8,x -7,x-6,x-1,x+1,x+6,x+7,x+8.阴影的方框中的9个数之和为:(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,所以带阴影的方框中的9个数之和是正中间数的9倍.(3)这个结论对任何一个月的日历都成立.计算:(1)(x-1)-(2x+1);解:原式=-x-2.(2)2(a-1)-(2a-3)+3;解:原式=4.(3)(大理期中)(2a-3b)-3(2b-3a);解:原式=11a-9b.(4)2(2a2+9b)+3(-5a2-4b);解:原式=-11a2+6b.(5)3(x3+2x2-1)-(3x3+4x2-2);解:原式=2x2-1.(6)(7x2+5x-3)-(5x2-3x+2);解:原式=7x2+5x-3-5x2+3x-2=2x2+8x-5.(7)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(8)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(9)a3b+(a3b-2c)-2(a3b-c);解:原式=a3b+a3b-2c-2a3b+2c=0.(10)-7x2-2(6x2-5xy)+(3y2+xy-x2).解:原式=-7x2-12x2+10xy+3y2+xy-x2=-20x2+11xy+3y2.类型1 化简后直接代入求值 1.先化简,再求值:(1)(4a +3a 2-3-3a 3)-(-a +4a 3),其中a =-2;解:原式=-7a 3+3a 2+5a -3. 当a =-2时, 原式=55.(2)(昆明期中)6x 2-[3xy 2-2(2xy 2-3)+7x 2],其中x =4,y =-12.解:原式=6x 2-3xy 2+4xy 2-6-7x 2,=-x 2+xy 2-6. 当x =4,y =-12时,原式=-42+4×(-12)2-6=-21.2.已知A =4ab -2b 2-a 2,B =3b 2-2a 2+5ab,当a =1.5,b =-12时,求3B -4A 的值.解:3B -4A =3(3b 2-2a 2+5ab )-4(4ab -2b 2-a 2)=9b 2-6a 2+15ab -16ab +8b 2+4a 2=17b 2-2a 2-ab. 当a =1.5,b =-12时,原式=17×(-12)2-2×1.52-1.5×(-12)=17×14-92+34=12.类型2 整体代入求值3.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.4.已知||m +n -2+(mn +3)2=0,求2(m +n )-2[mn +(m +n )]-3[2(m +n )-3mn]的值. 解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n )-2mn -2(m +n )-6(m +n )+9mn =-6(m +n )+7mn =-12-21 =-33.类型3 利用“无关”求值5.若式子(2x 2+ax -y +6)-(2bx 2-3x +5y -1)的值与字母x 的取值无关,求式子12a 2-2b +4ab 的值.解:(2x 2+ax -y +6)-(2bx 2-3x +5y -1)=(2-2b )x 2+(a +3)x -6y +7.由题意,得2-2b =0,a +3=0. 所以a =-3,b =1.将a,b 的值代入式子12a 2-2b +4ab,得12×9-2×1+4×(-3)×1=-192.章末复习(二) 整式的加减分点突破知识点1 用字母表示数1.用式子表示“a,b 两数的和与c 的积”是(C ) A .a +bc B .ab +c C .(a +b )c D .a (b +c )2.(大理期中)今年某种药品的单价比去年上涨了10%,如果今年的单价是a 元,那么去年的单价为(C ) A .(1+10%)a 元 B .(1-10%)a 元 C.a1+10%元D.a1-10%元知识点2 整式的相关概念3.在整式-0.3x 2y,0,x +12,-22abc 2,13x 2,-14y,-13ab 2+12 中,其中单项式有 (C )A .3个B .4个C .5个D .6个4.(文山期中)多项式2x 2y 3-5xy 2-3的次数和项数分别是(A ) A .5,3 B .5,2 C .8,3 D .3,35.(昭通期中)单项式-37a 3b 的系数是-37,次数是4.6.多项式-3xy +5x 3y -2x 2y 3+5的次数是5,最高次项系数是-2.知识点3 整式的加减及其应用 7.下列去括号正确的是(A ) A .-(2x -5)=-2x +5 B .-12(4x +2)=-2x +2C.13(2m -3n )=23m +n D .-(23m -2x )=-23m -2x8.(昭通期中)如果15a 2b 3与-14a x +1b y是同类项,那么xy =3.9.计算:(1)8a +7b -12a -5b ;解:原式=(8-12)a +(7-5)b =-4a +2b.(2)a 2+(5a 2-2a )-2(a 2-3a ).解:原式=a 2+5a 2-2a -2a 2+6a=4a 2+4a.10.先化简,再求值:(2-a 2+4a )-(5a 2-a -1),其中a =-2.解:原式=2-a 2+4a -5a 2+a +1=-6a 2+5a +3.当a =-2时,原式=-31.11.某公园里一块草坪的形状如图中的阴影部分(长度单位:m ).(1)用整式表示草坪的面积;(2)若a =2,求阴影部分的面积.解:(1)(7.5+12.5)(a +2a +a )+7.5×2a +7.5×2a =110a (cm 2).(2)当a =2时,110a =110×2=220(m 2).知识点4 整式的规律探究12.观察下面由※组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52…请猜想1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=(n +2)2.常考题型演练13.一种商品进价为a 元,按进价增加25%定出标价,再按标价的9折出售,那么每件还能盈利(A )A .0.125aB .0.15aC .0.25aD .1.25a14.已知-2x m +1y 3与13x 2y n -1是同类项,则m,n 的值分别为(A ) A .m =1,n =4 B .m =1,n =3C .m =2,n =4D .m =2,n =315.关于x 的多项式(a -4)x 3-x b +x -b 是二次三项式,则a =4,b =2.16.(大理期中)已知2a -3b 2=2,则8-6a +9b 2的值是2.17.(民大附中月考)观察给出的一列式子:x 2y,12x 4y 2,14x 6y 3,-18x 8y 4,…,根据其蕴含的规律可知这一列式子中的第8个式子是-1128x 16y 8. 18.计算:(1)3ab -a 2-2ab -3a 2;解:原式=ab -4a 2.(2)5(3a 2b -ab 2-1)-(ab 2+3a 2b -5);解:原式=12a 2b -6ab 2.(3)7ab -3(a 2-2ab )-5(4ab -a 2).解:原式=2a 2-7ab.19.已知x 2-x +1的2倍减去一个多项式得到3x 2+4x -1,求这个多项式.解:2(x 2-x +1)-(3x 2+4x -1)=2x 2-2x +2-3x 2-4x +1=-x 2-6x +3.故这个多项式为-x 2-6x +3.20.(民大附中月考)化简求值:5a 2+3b 2+2(a 2-b 2)-(5a 2-3b 2),其中|a +1|+(b -12)2=0. 解:由题意知:a +1=0,b -12=0, 所以a =-1,b =12. 原式=5a 2+3b 2+2a 2-2b 2-5a 2+3b 2=2a 2+4b 2.当a =-1,b =12时,原式=2×(-1)2+4×(12)2=2×1+4×14=2+1=3.21.(大理期中)某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按3元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按3元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x 不超过20时,应收水费为3x 元;当x 超过20时,应收水费为(3.5x -10)元(用x 的式子表示);(2)小明家第二季度用水情况为:四月份用水15立方米,五月份用水22立方米,六月份用水25立方米,请帮小明计算一下他家这个季度应交多少元水费?解: 3×15+3.5×22-10+3.5×25-10=189.5(元).答:小明家这个季度应交189.5元水费.。
分卷I 分卷I 注释1、下列计算中,正确的是()【选项】A.2a3-3a=-aB.(-ab)2=-a2b2C.a2•a-3=a-1D.-2a3÷(-2a)=-a2C解:A、2a3-3a=a(2a2-3)B、(-ab)2=a2b2C、正确;D、-2a3÷(-2a)=a2故选C.2、下列运算正确的是()【选项】C.m2n2=(mn)4D.(m2)4=m6B解:A、(m-n)2=m2-2mn+n2,错误;B、正确;C、m2•n2=(mn)2,错误;D、(m2)4=m8,错误;故选B.3、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6A分析:由于边长为(m+3)���正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积剩余部分的面积可以求出,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解:依题意得剩余部分为(m+3)2-m2=m2+6m+9-m2=6m+9,而拼成的矩形一边长为3,∴另一边长是(6m+9)÷3=2m+3.故选A.4、因式分解x2y-4y的正确结果是()A.y(x+2)(x-2) B.y(x+4)(x-4) C.y(x2-4) D.y(x-2)2Ax2y-4y=y(x2-4)=y(x2-22)=y(x+2)(x-2).因式分解4-4a+a2,正确的是()A.4(1-a)+a2 B.(2-a)2 C.(2-a)(2+a) D.(2+a)2B根据多项式的结构特点,可用完全平方公式进行因式分解.6、把多项式x2-4x+4分解因式,所得结果是()A.x(x-4)+4 B.(x-2)(x+2) C.(x-2)2 D.(z+2)2C这个多项式可以用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2.7、a4b-6a3b+9a2b分解因式得正确结果为()A.a2b(a2-6a+9)B.a2b(a-3)(a+3)C.b(a2-3)2D.a2b(a-3)2Da4b-6a3b+9a2b=a2b(a2-6a+9)=a2b(a-3)2.因式分解(a-1)2-9的结果是()A.(a+2)(a-4)B.(a+8)(a+1)C.(a-2)(a+4)D.(a+2)(a-10)A(a-1)2-9=(a-1+3)(a-1-3)=(a+2)(a-4).9、(x-y)2-(y-x)因式分解的结果是()A.(y-x)(x-y)B.(x-y)(x-y-1)C.(y-x)(y-x-1)D.(x-y)(y-x-1)C根据题意得:(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1).10、多项式a-b+c(a-b)因式分解的结果是()A.(a-b)(c+1) B.(b-a)(c+1) C.(a-b)(c-1) D.(b-a)(c-1)A把a-b看作一个整体,提取公因式(a-b)即可.11、在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3 C.4,2 D.4,3A解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.12、西周戎生青铜编钟是由八个大小不同的小编钟组成,其中最大编钟高度比最小编钟高度的3倍少5cm,且它们的高度相差37cm.则最大编钟的高度是____cm.58设小编钟的高是xcm,大编钟的高是ycm,根据其中最大编钟高度比最小编钟高度的3倍少5cm,且它们的高度相差37cm可列方程组求解.解:设小编钟的高是xcm,大编钟的高是ycm,,.所以最大编钟的高为58cm.13、将一张长方形的纸对折,如图所示可得到一条折痕.(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得7条折痕,那么对折四次可以得到__________ 条折痕,如果对折__________次,可以得到条折痕.()15、24-1;解:我们不难发现:第一次对折:1=2-1;第二次对折:3=22-1;第三次对折:7=23-1;第四次对折:15=24-1;….依此类推,第n次对折,可以得到(2n-1)条.14、分解因式:m2(a-2)+m(2-a)= _______.m(a-2)(m-1)m2(a-2)+m(2-a)=m2(a-2)-m(a-2)=m(a-2)(m-1).15、如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片______张.3拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.16、小青和小红分别计算同一道整式乘法题:(2x+a)(3x+b),小青由于抄错了一个多项式中a的符号,得到的结果为6x2-13x+6,小红由于抄错了第二个多项式中的x的系数,得到的结果为2x2-x-6,则这道题的正确结果是______.6x2+5x-6根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为6x2-13x+6,那么(2x-a)(3x+b)=6x2+(2b-3a)x-ab=6x2-13x+6,可得2b-3a=-13①,小红由于抄错了第二个多项式中的x的系数,得到的结果为2x2-x-6,可知(2x+a)(x+b)=2x2-x-6,即2x2+(2b+a)x+ab=2x2-x-6,可得2b+a=-1②,解关于①②的方程组,可得a=3,b=-2,所以2b+3a=5.17、阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法:当a﹣b>0时,一定有a>b;当a﹣b=0时,一定有a=b;当a﹣b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:∵a2﹣b2=(a+b)(a﹣b),a+b>0∴(a2﹣b2)与(a﹣b)的符号相同当a2﹣b2>0时,a﹣b>0,得a>b当a2﹣b2=0时,a﹣b=0,得a=b当a2﹣b2<0时,a﹣b<0,得a<b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:①W1= (用x、y的式子表示)W2= (用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1= km(用含x的式子表示);②在方案二中,a2= km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.(1)解:①W1=3x+7y,W2=2x+8y,故答案为:3x+7y,2x+8y.②解:W1﹣W2=(3x+7y)﹣(2x+8y)=x﹣y,∵x>y,∴x﹣y>0,∴W1﹣W2>0,得W1>W2,所以张丽同学用纸的总面积大.(2)①解:a1=AB+AP=x+3,故答案为:x+3.②解:过B作BM⊥AC于M,则AM=4﹣3=1,在△ABM中,由勾股定理得:BM2=AB2﹣12=x2﹣1,在△A′MB中,由勾股定理得:AP+BP=A′B==,故答案为:.③解:=(x+3)2﹣()2=x2+6x+9﹣(x2+48)=6x﹣39,当>0(即a1﹣a2>0,a1>a2)时,6x﹣39>0,解得x>6.5,当=0(即a1﹣a2=0,a1=a2)时,6x﹣39=0,解得x=6.5,当<0(即a1﹣a2<0,a1<a2)时,6x﹣39<0,解得x<6.5,综上所述当x>6.5时,选择方案二,输气管道较短,当x=6.5时,两种方案一样,当0<x<6.5时,选择方案一,输气管道较短.(1)①根据题意得出3x+7y和2x+8y,即得出答案;②求出W1﹣W2=x﹣y,根据x和y的大小比较即可;(2)①把AB和AP的值代入即可;②过B作BM⊥AC于M,求出AM,根据勾股定理求出BM.再根据勾股定理求出BA′,即可得出答案;③求出=6x﹣39,分别求出6x﹣39>0,6x﹣39=0,6x﹣39<0,即可得出答案.18、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]=(1+x)2[1+x]=(1+x)3.(1)上��分解因式的方法是______,共应用了_______次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,则需要应用上述方法_____次,分解因式后的结果是______.(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.解:(1)根据已知可以直接得出答案:提取公因式,2;(2)2010,(1+x)2011;(3)解:原式=(1+x)[1+x+x(1+x)+…+x(1+x)(n-1)],=(1+x)2[1+x+x(1+x)x(1+x)(n-2)],=(1+x)n+1.(1)首先提取公因式(1+x),再次将[1+x+x(1+x)]提取公因式(1+x),进而得出答案;(2)根据(1)种方法即可得出分解因式后的结果;(3)参照上式规律即可得出解题方法,求出即可.19、计算:(a-b+c-d)(a-b-c+d); (2)(2x-3y-1)(-2x-3y+5).解:(1)原式=[(a-b)+(c-d)][(a-b)-(c-d)]==.(2)原式=[(2-3y)+(2x-3)][(2-3y)-(2x-3)]==.(1)将式子变形为[(a-b)+(c-d)][(a-b)-(c-d)],即可利用平方差公式进行计算;(2)将式子变形为[(2-3y)+(2x-3)][ (2-3y)-(2x-3)]的形式,再利用平方差公式进行计算.20、我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:________;(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.解:(1)因为长方形的面积=长×宽,所以图3的面积=(a+2b)(2a+b)=2a2+5ab+2b2,故图3所表示的一个等式:(a+2b)(2a+b)=2a2+5ab+2b2,故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.(2)因为图形面积为:(a+b)(a+3b)=a2+4ab+3b2,所以长方形的面积=长×宽=(a+b)(a+3b).由此可画出的图形为:(1)由题意得:长方形的面积=长×宽,即可将长和宽的表达式代入,再进行多项式的乘法,即可得出等式;(2)已知图形面积的表达式,即可根据表达式得出图形的长和宽的表达式,即可画出图形.。