盾构通过矿山法施工隧道段关键技术
- 格式:pdf
- 大小:531.36 KB
- 文档页数:4
盾构空推过曲线段矿山法隧道施工工法盾构空推过曲线段矿山法隧道施工工法一、前言随着城市化进程的不断推进,地下交通建设需求日益增加。
盾构法作为一种主要的隧道施工工法之一,被广泛应用于城市地铁、高速公路等工程中。
本文将介绍盾构空推过曲线段矿山法隧道施工工法,并分析其工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例。
二、工法特点盾构空推过曲线段矿山法是一种适用于矿山隧道施工的特殊盾构工法。
其主要特点如下:1. 适用于曲线段:该工法能够应对矿山隧道中的曲线段施工,能够实现弯径半径较小的曲线段推进。
2. 可在矿山环境下施工:该工法适用于矿山隧道施工,能够应对矿山地质条件和环境限制。
3. 平面控制精度高:通过合理的控制手段和施工工艺,能够保证隧道施工中的平面控制精度。
4. 安全高效:该工法采用机械化施工,能够提高施工速度和效率,并减少人工操作。
三、适应范围盾构空推过曲线段矿山法适用于矿山隧道施工,特别是那些具有曲线段的隧道工程。
其适用范围包括:1. 矿山隧道工程:适用于各种类型的矿山隧道工程,包括矿井工程、矿山输送带隧道等。
2. 曲线段工程:适用于需要施工曲线段的隧道工程,能够满足弯径半径要求较小的工程。
四、工艺原理盾构空推过曲线段矿山法隧道施工工艺的核心原理是通过盾构机空推方式来实现曲线段施工。
具体分析如下:1. 工法与实际工程的联系:该工法通过特殊的盾构机来实现曲线段施工,根据实际工程需要设计合适的盾构机结构和控制系统。
2. 采取的技术措施:在施工过程中,通过合理的控制参数和姿态调整等技术措施,使盾构机能够顺利通过曲线段,保证施工质量和施工速度。
五、施工工艺盾构空推过曲线段矿山法隧道施工工艺包括以下阶段:1. 准备阶段:包括现场准备、机具设备调试和施工组织等准备工作。
2. 盾构机安装:将盾构机安装在指定位置,调试机械和电气系统,并进行测试。
3. 开挖隧道:通过盾构机进行隧道的开挖和支护,按照设计要求进行曲线段施工。
采用矿山法盾构法顶管法施工的隧道洞室工程安全管理措施一、前言隧道洞室工程是现代化城市建设中不可或缺的一部分,而其建设过程中所涉及的安全管理措施则显得尤为重要。
本文将从采用矿山法、盾构法、顶管法三种常见施工方法入手,详细介绍隧道洞室工程安全管理措施。
二、矿山法施工1. 施工前期准备(1)安全生产方案编制:在进行任何施工之前,必须编制安全生产方案,并经过专家评审。
(2)人员培训:对所有参与施工的人员进行必要的安全培训,使其了解矿山法施工的危险性和防范措施。
(3)检查设备:对所有使用的设备进行检查和维护,确保其完好无损。
2. 施工期间措施(1)通风系统:在隧道内设置通风系统,保证空气流通,减少二氧化碳和其他有害气体浓度。
(2)排水系统:设置排水系统,及时排除积水和泥浆等物质。
(3)支护系统:对于已经开挖出来的洞室,在其周围设置支护系统,以防止坍塌。
(4)监测系统:在施工过程中,对隧道内的地质情况、气体浓度等进行实时监测,及时发现问题并采取措施。
3. 施工后期措施(1)清理洞室:在洞室开挖完成后,对其进行彻底清理,保证通风和排水系统畅通无阻。
(2)整治场地:对施工场地进行整治,保持环境卫生和安全。
三、盾构法施工1. 施工前期准备(1)安全生产方案编制:在进行任何施工之前,必须编制安全生产方案,并经过专家评审。
(2)人员培训:对所有参与施工的人员进行必要的安全培训,使其了解盾构法施工的危险性和防范措施。
(3)检查设备:对所有使用的设备进行检查和维护,确保其完好无损。
2. 施工期间措施(1)通风系统:在隧道内设置通风系统,保证空气流通,减少二氧化碳和其他有害气体浓度。
(2)排水系统:设置排水系统,及时排除积水和泥浆等物质。
(3)支护系统:对于已经开挖出来的洞室,在其周围设置支护系统,以防止坍塌。
(4)监测系统:在施工过程中,对隧道内的地质情况、气体浓度等进行实时监测,及时发现问题并采取措施。
3. 施工后期措施(1)清理洞室:在洞室开挖完成后,对其进行彻底清理,保证通风和排水系统畅通无阻。
盾构机过矿山隧道空推施工关键技术及控制研究摘要:广州轨道交通21号线某区间采用盾构空推拼管片施工工艺,对施工过程中盾构接收、管片拼装、管片背部豆砾石吹填及注浆、二次始发等关键工序研究,确保盾构空推的安全与质量。
关键词:掘进、安全质量、工艺引言在城市交通运营中,由于人口的稳定增长,城市变得越来越拥挤,为了减少城市交通问题,许多城市开始建设地铁项目。
在地铁的建造过程中,盾构法具有高效、安全的特征,在轨道交通工程建设中成为首选。
在盾构空推过矿山过程中加强推进过程中管片的拼装质量、豆砾石的吹填尤其是过空推段后的吹填、背部注浆密实度,确保空推质量是工程常见难点。
1 工程概况中新东站-朱村站区间隧道线路出中新东站后,以隧道敷设方式沿着风光东路向增城方向进行,线路沿道路下方行进,到达中间风井后经莲塘村牌坊后继续向东下穿西福涌后斜穿广汕路,并沿道路北侧进入朱村站。
区间隧道总长4.5km。
其中:左线起止里程ZDK43+217.967-ZDK43+350.00,长度132.033m为矿山法盾构管片拼装隧道;右线起止里程 YDK43+220.467- YDK43+357.000,长度136.533m为矿山法盾构管片拼装隧道。
矿山隧道采用钻爆法施工,衬砌为复合式衬砌,二次衬砌采用预制钢筋混凝土管片,矿山法隧道净空直径Ф6800mm,管片外径Ф6100mm,管片与隧道初衬之间有35cm 宽的环形空隙,采用豆砾石充填及浆液填充。
2 工程地质及水文条件2.1 地质情况根据地质详勘资料及现场开挖情况来看,整个矿山隧道地质主要为(7H)强风化花岗岩、(8H)中风化花岗岩。
盾构与矿山交界段主要为地质构造破碎带(9H)微风化花岗岩,地质条件总体良好。
2.2 水文条件整个矿山段主要为存于碎裂状强风化 ~ 中风化带的基岩裂隙水,大里程段呈渗漏状态,小里程段局部呈滴漏状。
盾构与矿山交界处主要为基岩裂隙水,水量较小。
2.3 周边环境空推段地面为道路南侧农田荒地,无建筑物及地下管线,环境简单。
盾构过矿山法隧道方案1)盾构机进矿山法隧道前的准备(1)导台测量及断面超欠挖测量导台是盾构机通过硬岩隧道时的下部支撑,其施工精度直接决定着盾构机的姿态。
导台施工模板定位后必须进行测量复核,混凝土浇注后应进行标高的复测,确保导向平台的标高施工精度在0~+15mm以内。
导台施工完成后,由测量班对导台进行线路联系测量,包括水平及竖直方向,误差超过设计规范要求的,需重新施作。
由于矿山法隧道采用爆破施工,隧道断面存在大量的超挖或欠挖现象,一旦隧道欠挖严重,盾构机无法通过,后期处理难度较大。
在盾构机进矿山法隧道之前对矿山法隧道进行断面测量,一旦欠挖影响盾构机通过,则提前处理。
隧道断面测量采用直径6320mm的钢环模具进行测量,测量合格后,直径6280mm盾构机即可顺利通过矿山法隧道。
图2 导台断面图(2)“洞门处理”盾构机到达前在矿山法隧道端头掌子面进行钻孔处理,以便盾构机进入矿山法隧道时,洞口形成的断面为光面,不至于参差不平影响盾构掘进。
具体钻孔方法为沿隧道内径6400钻孔,钻孔深度300mm,环向间距500,钻孔孔径25mm。
(3)豆粒石备料盾构机矿山法隧道空推掘进时,由于盾构机前方阻力很小,需对盾体及管片周围喷射豆粒石,以便增大摩擦阻力,增加推力,挤紧管片止水胶条。
豆粒石选择直径5~10mm,具体性能指标符合设计要求。
豆粒石在盾构机进入矿山法隧道前需提前备料。
具体备料方量为需填充空隙的60%~70%。
豆粒石从矿山法隧道竖井用溜槽下放到井下,井下采用2m3翻斗车进行水平运输,均匀铺到导台两侧。
2)进矿山法隧道前的盾构掘进机姿态控制盾构机进入硬岩隧道前的25m作为盾构机到达段,根据地质条件采用敞开模式掘进。
盾构机进入到达段时,逐步减小推力、降低推进速度,并加强出土量的监控频次。
刀盘转速为1.65~1.85r/min,盾构机推进总推力小于800t,推进速度不大于25mm/min。
盾构机进入硬岩隧道前的最后3环采掘进速度控制在15mm/min以内,总推力减少为600t以内,采用小推力、低速度进入矿山法隧道。
采用矿山法盾构法顶管法施工的隧道洞室工程安全管理措施介绍随着城市建设的加快,地下交通隧道的建设变得越来越常见。
为了保证隧道洞室工程的安全施工,采用矿山法、盾构法和顶管法成为了常见的施工方法。
本文将探讨在采用这些施工方法时的安全管理措施。
矿山法安全培训与教育矿山法是一种利用传统的矿工经验和工具进行地下隧道开挖的方法。
在采用矿山法施工时,重要的安全管理措施之一是进行充分的安全培训和教育。
施工队员必须接受培训,了解并熟悉工作区域的地质情况、设备操作规程、紧急情况处理等知识。
通过专业的培训和教育,能够提高工人的安全意识,并确保他们在施工过程中能够正确应对各种风险。
检测与监控为了确保施工过程中的安全,需要进行地质勘探、地质预测和地质监测。
地质勘探和地质预测可以提前判断地质灾害的可能性,从而采取相应的防护措施。
地质监测可以实时监测隧道工程的地质变化和地下水位变化等情况,及时发现问题并采取措施进行修复。
盾构法工序规划与控制在盾构法施工中,施工期间的工序规划和控制是至关重要的。
首先,需要制定详细的施工计划,明确每个工序的时间和顺序。
其次,需要对每个工序的施工质量进行控制,通过检测和监控,确保每个工序的合格。
在工序控制中,还需要注意施工人员的数量和合理分配,避免过度拥挤和混乱。
应急预案与演练在盾构法施工过程中,可能会遇到各种突发情况,如地质灾害、设备故障等。
为了确保施工过程的安全,需要制定详细的应急预案,并进行定期的演练。
应急预案应包括各种紧急情况的处理流程、应对措施、责任分工等内容。
通过定期演练,可以提高施工人员的应急处理能力,并及时处置紧急情况。
顶管法安全防护措施顶管法是一种在地下开挖时,在顶部贯通超前作业的方法。
在顶管法施工过程中,必须采取一系列的安全防护措施。
首先,需要确保工作场所的安全。
施工人员必须佩戴适当的个人防护装备,如安全帽、安全鞋等。
其次,需要设置安全警示标志和围挡,明确工作区域和非工作区域。
另外,还需要建立专门的安全巡查制度,定期检查施工现场的安全状况。
第45卷第1期(总第318期)2008年2月出版Vol.45,No.1,Total.No.318Feb.2008盾构通过矿山法施工隧道段关键技术汪茂祥(中铁十六局集团广州地铁五号线区杨盾构项目部,广州510600)文章编号:1009-6582(2008)01-0067-00041工程概况广州地铁五号线区庄站—动物园站—杨箕站区间隧道盾构工程双线总长3854m,分别由两台盾构机从杨箕站盾构竖井始发,经过动物园站过站,最后到达区庄站盾构机解体吊出。
由于地铁五号线两条区间隧道下穿正在运行的一号线杨箕站,并且一号线杨箕站主体围护结构桩侵入五号线区间隧道,一号线车站下的区间隧道需要采用矿山法施工,以便凿除侵限桩。
因此这段隧道采用了“矿山法开挖、盾构法衬砌”的施工工法。
两台盾构机在始发时要通过各40m长的矿山法施工隧道,然后开始正常掘进施工。
该段隧道结构采用复合衬砌,初期衬砌采用喷混凝土、钢筋网、格栅钢架和超前小导管等组成支护体系;二次衬砌采用钢筋混凝土管片。
隧道初期衬砌后直径为6400mm,管片外径为6000mm、内径为5400m,管片宽度为1200mm、厚度为300mm,每环6块错缝拼装,衬砌环采用通用环组合形式。
为了保证矿山法隧道端头墙的安全,隧道端墙全断面采用C25素混凝土封堵,喷射厚度为150mm,然后浇注1m厚C25素混凝土封堵端墙,以防止端墙暴露时间过长出现塌方。
2施工关键技术2.1导台施工矿山法隧道施工完成后,在隧道底部施工一导向平台。
导台支撑着盾构机并为盾构机前进起导向作用,盾构机在导台上空载推进并拼装管片。
导台采用C30素混凝土施工,高度为150mm。
由于盾构机刀盘外径为6280mm,刀盘顶部与隧道壁只有70mm间距,因此矿山法隧道严禁欠挖,同时导台的高度和轴线必须控制在设计允许的误差范围内。
导台断面弧长与隧道中心夹角为60°,以保证盾体与导台有足够的接触面;导台弧面施工必须满足设计要求,使盾体与导台保持均匀接触。
导台施工如图1所示。
图1导台施工示意(单位:mm)Fig.1Schematicshowingadvancingtheshieldonguidingplatform摘要盾构通过矿山法隧道段在盾构工法中施工难度最大,尤其是在始发阶段施工技术要求更高。
文章以广州地铁五号线区杨盾构区间盾构通过40m长的矿山法隧道为例,介绍了盾构通过矿山法隧道的施工关键技术及其成功经验,对今后类似工程施工具有一定的指导意义。
关键词矿山法隧道盾构机关键技术中图分类号:U455.43文献标识码:A修改稿返回日期:2007-06-13作者简介:汪茂祥,男,高级工程师.67第45卷第1期(总第318期)2008年2月出版TECHNOLOGYVol.45,No.1,Total.No.318Feb.2008导台起点从洞门开始,一直至隧道端墙前方,导台与端墙之间预留1m长的缺口,使盾构机刀盘在缺口处顺利旋转并切入端墙。
2.2刀盘部分刀具拆卸由于盾构机刀盘外径比盾体外径大,在盾构机从始发托架上进入导台前,卸掉刀盘与导台面接触的边缘刀具,避免盾构机在导台上前进时刀具将导台混凝土刮起,破坏导台。
在刀盘到达端墙前预留缺口时,重新安装所卸的刀具。
2.3盾构机姿态控制由于盾构机在导台上前进阻力很小,并且导台已经确定了盾构机的前进方向,为了确保盾构机沿导台轴线前进不偏离导台,并在导台上保持正确的姿态,在盾构机推进时采用交叉使用竖直位置(!、")和水平位置(#、$)两组推进油缸向前推进。
具体操作时使用水平两组油缸推进30cm时,停止推进并收缩油缸;再使用垂直两组油缸推进30cm后,停止并收缩油缸,不停地交叉使用。
图2是盾构机推进油缸分区示意图。
图2盾构机推进油缸分区示意Fig.2Subdivisionsofoilcylindersforthrustingtheshield由于该段隧道水平曲线是曲线半径R=300m的缓和曲线,竖曲线仅是2‰的下坡,并因盾构机自重等原因,使用竖直位两组油缸推进时不保持油缸行程差,使用水平位两组油缸时保持5cm左右的行程差。
同时在盾构机推进过程中,通过测量复核盾构机轴线与导台轴线误差,并根据误差调整铰接油缸和推进油缸的行程差,保证盾构机在导台上的良好姿态,使盾构机沿导台轴线往前推进。
2.4管片错台及其凹凸现象控制管片在盾尾拼装完成后盾构机推进下一环,通过推进油缸行程确定在每环管片的二次注浆孔全部脱离盾尾后和该环管片没有完全脱离盾尾前(盾尾与管片相对位置如图3所示),由二次注浆孔向管片背后喷射豆砾石,填充管片与隧道初期衬砌之间的间隙。
图3喷射豆砾石时盾尾与管片相对位置(单位:mm)Fig.3Relativepositionofshieldtailandsegmentswheninjectingpeagravels填充的顺序是先下部后上部,首先填充导台,然后填充左右两侧,最后填充隧道上部。
导台上的注浆孔填满豆砾石(不安装支顶)、其它注浆孔填充一定数量的豆砾石后,安装钢质复合牙灌浆孔支顶(豆砾石未堵住注浆孔,支顶能顺利安装),支顶棒端部顶住矿山法隧道壁,另一端通过支顶棒螺栓固定在二次注浆孔内。
安装一个支顶后,再往上一个注浆孔喷射豆砾石,同样填充一定数量的豆砾石后再安装支顶,逐渐往上直至隧道顶部。
钢质复合牙灌浆孔支顶结构和管片支顶安装分别如图4和图5所示。
图4钢质复合牙灌浆孔支顶结构Fig.4Steelsupportingstructureforgroutingholes因隧道内运输设备、盾构机后配套台车的重量和管片自重等原因,安装在隧道侧下部的支顶受力68第45卷第1期(总第318期)2008年2月出版Vol.45,No.1,Total.No.318Feb.2008图5管片支顶安装Fig.5Segmenterecting最大,安装在隧道两侧水平位置的支顶受力较大,安装在隧道上部的支顶受力最小。
因此将支顶棒长度设计为三种,最短的安装在隧道侧下部,较长的安装在隧道两侧,最长的安装在隧道上部。
每种支顶棒长度根据管片的厚度、二次注浆孔螺纹长度和管片与隧道初期衬砌间距确定,确保每个支顶安装后都能对管片进行较好的支撑。
由于管片二次注浆孔有效直径为32mm,需要对豆砾石进行严格筛选,防止喷射时堵塞注浆孔,影响喷射速度和效果。
施工前,可以在地面上进行豆砾石喷射演示。
将单块管片侧放,打通注浆孔,利用喷锚机通过注浆孔喷射豆砾石,检验喷射效果(在管片预制时可以将二次注浆孔有效直径增大到50mm,喷射豆砾石效果更好)。
整环管片豆砾石填充结束后,利用盾构机四个注浆孔进行少量的同步注浆。
浆液采用水泥砂浆,将已填充的豆砾石密实固化,使衬砌管片与初期衬砌之间密贴,提高支护效果。
在进行同步注浆时严格控制注浆量,否则浆液将通过盾体外的间隙流入土舱内。
同步注浆完成后,盾构机继续往前进行下一环推进。
管片背后回填采用了喷射豆砾石和盾尾同步注浆相结合的方式,通过安装钢质复合牙灌浆孔支顶在管片完全脱离盾尾后对整环管片进行了较好的支撑,有效地防止了管片完全脱离盾尾后管片下沉产生的错台,以及隧道两侧管片向外扩张而产生的凹凸现象。
2.5刀盘切入端墙方法和防止盾构机“磕头”措施在盾构机刀盘靠近端墙时,检查并清理刀盘与端墙之间的杂物,为盾构机刀盘切入端墙作准备。
由于盾体与隧道初期衬砌之间有一定的空隙,盾体周围没有土体包裹,盾体旋转仅受导台的阻力,因导台阻力很小,导致刀盘切削端墙时盾体旋转角度很大。
因此需要保持刀盘低速旋转,并不停地改变刀盘转动方向,让其慢慢地切入端墙,防止盾体旋转角度过大。
当盾体全部进入土体后,因盾体被周围土体完全包裹,土体对盾体旋转产生较大的摩擦阻力,盾体转角明显减小,盾构机即处于正常掘进状态。
在刀盘切入端墙过程中,因盾构机自重等原因,盾构机容易出现“磕头”现象。
为了防止“磕头”现象的产生,推进过程中应加强盾构姿态的控制,利用调整推进油缸的编组进行纠偏。
2.6增大盾构机总推力压紧管片由于盾构机在导台上前进阻力很小,盾构机总推力很小,推进油缸不能有效地压紧管片,造成止水条压缩量不足,管片环向接缝容易漏水。
由于矿山法隧道总长只有40m,虽然管片背后已填充豆砾石,但管片在沿隧道轴向移动时阻力较小,所以决定采用增大盾构机总推力来重新压紧管片。
在盾体全部进入土体后,转动刀盘,减小推进速度或停止推进,加大所有推进油缸的油压,增加盾构机总推力,使其达到2000t及以上,压紧矿山法隧道内已拼装的管片。
保持这个总推力再一次紧固所有的管片螺栓,防止因管片止水条压缩量不足而出现漏水现象。
实际施工中,上述方法压紧管片效果明显,但在压紧过程中要注意观察每环管片受压情况,防止因盾构机总推力过大而将管片压损压裂。
2.7进行二次注浆在盾体完全进入土体后,矿山法隧道初期衬砌与管片之间的空隙两端头被完全封闭,一端被土体封闭,另一端被洞门压板和洞帘封闭。
因此从洞门第一环开始逐环对所有的管片进行二次注浆,将管片背后间隙再次填充密实。
对管片进行注浆时,管片受到浆液较大的浮力,管片有明显的上浮趋势,但由于每环管片上部都安装了支顶,有效地阻止了管片的上浮,管片上浮现象得到了有效的控制。
二次注浆结束后,对注浆前后整个隧道的中心高程进行测量和比较,管片最大上浮量仅为1.5mm。
2.8支顶回收在二次注浆浆液完全凝固后,管片背后已被浆液和豆砾石等混合物完全密实包裹并支撑着管片,复合牙灌浆孔支顶对支撑管片已不起作用,此时将隧道内支撑管片的支顶全部从二次注浆孔拧出,管片不会发生位移和变形,卸掉全部支顶进行回收,以便今后再次使用(少部支顶因受较大的阻力或被卡住而无法拧出)。
69第45卷第1期(总第318期)2008年2月出版TECHNOLOGYVol.45,No.1,Total.No.318Feb.20083结束语盾构法施工中,盾构机姿态、管片拼装质量和管片背后注浆效果决定了盾构隧道的最终成洞质量,因此盾构通过矿山法施工隧道段关键技术是导台施工质量、盾构机在导台上姿态、管片拼装质量、管片压紧程度和管片背后填充效果等,做好上述各项质量控制点,盾构通过矿山法隧道质量就得到了有效控制。
该段隧道施工结束后,对管片错台和隧道中心线进行了测量和复核,管片错台、隧道椭圆度和隧道中心线完全满足盾构隧道规范要求。
管片块与块之间的最大错台量为5mm,环与环之间最大错台量为8mm;隧道的断面水平直径和垂直直径最大差值仅为9mm,椭圆度为2‰D(小于5‰D);隧道中心高程最大偏差为8mm,水平偏差最大6mm;隧道无漏水点,管片表面无湿渍,隧道防水等级达到一级标准,隧道质量达到优良。
KeytechniquesforashieldtopassthroughthetunnelsectionexcavatedbydrillandblastWangMaoxiang(GuangzhouMetroLine5ProjectDepartment,ChinaRailway16thBureauGroup,Guangzhou510600)AbstractItismostdifficultforashieldtopassthroughthetunnelsectionexcavatedbydrillandblastandbyfarforthestartingsectionwheretherequirementstoconstructionaremorestrict.Thepapercitingasanexampletheshieldpassingthrougha40mlongsectionofdrillandblasttunnelonLine5ofGuangzhoumetro,introducesthekeytechniquesandsuccessfulexperienceoftheprojectwhichmaybehelpfulforsimilarprojectsinthefuture.KeywordsDrillandblasttunneling;Shield;Keytechniques!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4结论从工程投资、运营能耗及环保等诸多方面综合考虑,推荐采用δ=100ppm(交通阻滞时δ=150ppm)取值时的全纵向式射流通风。