2014-2015学年下学期新人教版八年级下册数学期中试卷及答案
- 格式:doc
- 大小:581.19 KB
- 文档页数:10
2014—2015学年度第一学期期中测试初二数学试卷(100分钟)试卷满分:第Ⅰ卷30分 第Ⅱ卷70分 共100分第Ⅰ卷(机读卷 选择题30分) 一、选择题(每题3分,共30分)1.多项式b a c ab 33812-的公因式是( ) A . 24ab B .abc 4- C .24ab - D .ab 42.如图,将两根钢条AA′,BB′ 的中点O 钉在一起,使AA′,BB′ 能绕点O 自由转动,就做成一个测量工具,测A′B′ 的长即等于内槽宽AB ,那么判定△OAB ≌△OA′B′的理由是( ).A .边角边B .角边角C .边边边D .斜边直角边3.若3x =-是分式方程312axx=-的解,则a 的值为( ) A. 95- B. 95 C. 59 D. 59-4. 如图,△ABC≌△CDA,∠BAC=85°,∠B=65°, 则∠CAD 度数为( )A. 30°B. 65°C. 40°D. 85°5.解分式方程12133x x x+-=,去分母后所得的方程是( ) A. 13(21)3x -+= B. 13(21)3x x -+= C. 13(21)9x x -+= D. 1639x x -+= 6.下列变形正确的是( ) A .11a ab b+=+B .11a ab b--=--C .221a b a b a b-=--D .()()221a b a b --=-+7. 如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲B .乙与丙C .丙D .乙DC A BE DCBA 8.下列分解因式错误..的是( ) A .222)(2y x y xy x -=+- B.322()x x x x x x -+=- C .)(22y x xy xy y x -=- D.))((22y x y x y x +-=- 9.某饭馆用320元钱到商场去购买“白猫”洗洁精,经过还价, 每瓶便宜0.5元,结果比用原价买多买了20瓶,求原价每瓶 多少元?设原价每瓶x 元,则可列出方程为( )A. 320320200.5x x -=-B. 3203200.520x x -=- C.320320200.5x x -=- D. 3203200.520x x -=- 10. 在数学活动课上,小明提出这样一个问题:如右图, ∠B =∠C = 90︒, E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数是 ( ) A .65︒ B .55︒ C .45︒ D .35︒第Ⅱ卷 (非机读卷 共70分)二、填空题(每小题2分,8个小题,共16分)11.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这 就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科 学记数法表示这个数为__ 米 12.计算:=÷-----322324)()2(b a c b a13.能使分式122--x x x 的值为零的所有x 的值是14. 如图,已知AB ⊥BD , AB ∥ED ,AB =ED ,要 证明ΔABC ≌ΔEDC ,若以“SAS”为依据, 还要添加的条件为_________;若添加条件AC =EC ,则可以用______方法判定全等. 15.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是16.根据下列已知条件,能确定△ABC 的大小和形状的是 ①AB =3,BC =4,AC =5 ②AB =4,BC =3,∠A =30º ③∠A =60º,∠B =45º,AB =4 ④∠C =90º,AB =6,AC =5 17. 当n=_ ___ 时,x 2+(n+3)x +25是完全平方式 18.在平面直角坐标系中,已知点A (1,2),B (6,5), C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件 的E 点的坐标E D CBA三、计算题(其中19题,每小题4分;20、21题每题5分,共18分) 19.分解因式:(1)92-x (2)y xy y x 442+-20.先化简再求值:xx x x x x x 1)121(22÷+---+,其中3x =.21.解方程: 512552x x x+=--四、列方程解应用题(本题5分)22.八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。
OABCD2014—2015学年度第二学期期中考试初二年级数学试卷考试时间:100分钟 满分:100分一、选择题 (每小题3分,共30分)1.下列各组长度的线段能组成直角三角形的是( ) A .a =2,b =3,c =4 B .a =4,b =4,c =5 C .a =5,b =6,c =7 D .a =5,b =12,c =132.下面各条件中,能判定四边形是平行四边形的是( )A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等3.直角三角形一条直角边长为8 cm ,它所对的角为30°,则斜边为( ) A. 16 cm B. 4cm C. 12cm D. 8 cm 4.用配方法解方程0262=+-x x 时,下列配方正确的是( )A .9)3(2=-xB .7)3(2=-xC .9)9(2=-xD . 7)9(2=-x 5.顺次连结菱形各边中点所围成的四边形是( )A .一般的平行四边形B .矩形C .菱形D .等腰梯形6.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为( )A .6B .3C .33D .637.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.如图,□ABCD 中,∠DAB 的平分线AE 交CD 于E ,AB=5, BC=3,则EC 的长( ) A. 1 B. 1.5 C. 2 D. 39.直角三角形两直角边的长度分别为6和8,则斜边上的高为( )CBAED年级 班级 姓名 学号装 订 线3A.10B.5C. 9.6D.4.810.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围 是 ( )A.1k >-B. 1k >-且0k ≠C.1k <D. 1k <且0k ≠二、填空题(每小题3分,共30分)11.命题“菱形是对角线互相垂直的四边形”的逆命题是 . 12.梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 米. 13.如果菱形的两条对角线长为cm 10与cm 12,则此菱形的面积______2cm . 14.在ABC ∆中,∠C=090,AC=12,BC=5,则AB 边上的中线CD= . 15.一个正方形的面积为81cm 2,则它的对角线长为 cm.16. 已知□ABCD 的周长是24,对角线AC 、BD 相交于点O ,且△OAB 的周长比△OBC 的周长大4,则AB= .17.若关于x 的一元二次方程 220x x k -+=的一个实数根为2,则k 的值为________.18.如下图,已知OA=OB ,那么数轴上点A 所表示的数是____________.19.若(m -2)22-m x+x -3=0是关于x 的一元二次方程,则m 的值是______.20. 如图,⊿ABC 的周长为16,D, E, F 分别为AB, BC, AC1-30-1-2-4231B A A的中点,M, N, P 分别为DE, EF, DF 的中点,则⊿MNP 的周长为 。
PCB 彩香中学2009~2010学年第二学期初二数学期中试卷一、选择题(本大题共有10小题,每小题2分,共20分)1.下列各式中最简分式是 ( ) A .812a b B .241x x + C .331++x x D .a a 5 2.下列各式中正确的是 ( ) A .m b m a b a ++= B . abba b a -=-11 C .b a b a b a +=++22 D . b a ab b a --=--22 3.解分式方程11212=-+-+x x x x ,去分母后正确的是 ( ) A . 12)1(=+--x x x B .12)1(2-=+--x x x x C .12)1(=---x x x D .12)1(2-=---x x x x 4.下列式子中,一定有意义的是 ( )A .2--xB .xC .22+xD .22-x 5.下列各式中,是最简二次根式的是 ( )A .18B .b a 2C .22b a +D .32 6.下列运算正确的是( ) A .()332-=- B .332= C .()332=-D .()332-=-7.下列四组线段中,不构成比例线段的一组是 ( )A .1cm , 3cm, 3cm , 9cmB .2cm , 3cm , 4cm , 6cmC .1cm ,2cm ,3cm ,6cmD .1cm , 2cm , 3cm , 4cm 8.下面图形中一定相似的是 ( )A .两个锐角三角形B .两个直角三角形C .两个等腰三角形D .两个等边三角形 9.如图:在打网球时,要使球恰好能打过网,而且落在离网5米的位置上, 则球拍击球的高度h 应为 ( )A . 2.7mB . 1.8mC . 0.9mD . 6mD(第9题图)(第10题图)10.如图,P是Rt△ABC的斜边BC上异于B,C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()条.A.1B. 2 C.3D. 4二、填空题(本大题共有10小题,每空2分,共28分)11.化简:=+-+3932aaa,a ba b b a+=--.12.计算:333552++-=,cbba2283•(a>0,b>0,c>0)=.13.若分式2244xx x--+的值为0,则x的值为.14.若2331+-=-xmx有增根,则增根是x=,m=.15.如果最简二次根式33-a与a27-是同类二次根式,那么a的值是.16.若1<x<2,则化简22)1()2(xx---=.17.当x__________时,式子31-x有意义.18.若23ab=,则23a ba b+=-.19.如图:已知DE∥BC,AD=1,DB=2,DE=3,则BC=___________,△ADE和△ABC的面积之比为.(第19题图)(第20题图)20.如图:已知矩形ABCD中,AB=2,BC=3,F是CD的中点,一束光线从A点出发,通过BC边反射,恰好落在F点,那么反射点E与C点的距离为.三、解答题(本大题共有10小题,共82分)21.(本题满分6分)化简分式:(1)22193aa a---(2)112+-+xxxAB CD E22.(本题满分5分)先化简,再求值:2444222-÷⎪⎭⎫ ⎝⎛+-+-+a a a a a a ,其中2=a .23.(本题满分14分)计算: (1)3153********-+ (2)x 27-x 35+x 12(3)6)313122(⨯- (4) 2)2352(--)2352)(2352(-+24.(本题满分8分)解分式方程: (1)x x x x -=-+25121 (2)21221-=---x x x25.(本题满分6分)对于正数x ,规定f (x )=221x x +,(1)计算f (2)= ; f (3)= ;f (2)+ f (21)= .;f (3)+ f (31)= . (2)猜想+)(x f )1(xf = ;请予以证明.26.(本题满分8分)阅读下面资料:12)12)(12()12(1211-=-+-⨯=+;;23)23)(23(23231-=-+-=+ 25)25)(25(25251-=-+-=+.试求:(1)671+的值;(2)17231+的值;(3)nn ++11(n 为正整数)的值;(4)(211++321++……++)·(1+.27.(本题满分6分)某车间加工1200个零件后,采用了新工艺,工作效率是原来的1.5倍, 这样加工同样多的零件就少用了10小时.问采用新工艺前、后每小时分别加工多少个零件? 28.(本题满分7分)如图,正方形AEFG 的顶点E 在正方形ABCD 的边CD 上,AD 的延长线交EF 于H 点.(1)试说明:△AED ∽△EHD .(2)若E 为CD 的中点,正方形ABCD 的边长为4,求的DH 长.C29.(本题满分7分)如图,是一块三角形土地,它的底边BC 长为100米,高AH 为80米, 某单位要沿着底边BC 修一座底面是矩形DEFG 的大楼,D 、G 分别在边AB 、AC 上,若大楼的宽是40米,求这个矩形的面积.30.(本题满分7分)如图,路灯(P 点)距地面8米,身高1.6米的小明从距离路灯的底部 (O 点 )20米的A 点,沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是 变短了?变长或变短了多少米?31.(本题满分8分)如图,在矩形ABCD 中,AB =12cm ,BC =6cm ,点P 沿AB 边从点 A 开始向点B 以2cm /s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm /s 的速度移动.如果点P 、Q 同时出发,用t(s )表示移动的时间(0≤t ≤6),那么 (1)当t 为何值时,△QAP 为等腰三角形?(2)当t 为何值时,以点Q 、A 、P 为顶点的三角形和△ABC 相似?C BA彩香中学2009~2010学年第二学期初二数学期中试卷参考答案及评分建议11. a -3,1; 12.2; 13. -2; 14. 3,-1; 15. 2;16. 3-2x ; 17. >3; 18. 87-; 19. 9,1∶9; 20. 1. 三、解答题(本大题共有10小题,共82分.解答必须写出必要的文字说明、推理步骤或证明过程) 21.(1)解:原式=23(3)(3)(3)(3)a a a a a a +-+-+-=2(3)(3)(3)a a a a -++-=3(3)(3)a a a -+-=13a +(3分)(2) 解:原式=22111x x x x --++=11x +(3分) 22. 解:原式=222442(2)(2)a a a a a ⎛⎫--+⨯ ⎪--⎝⎭=2aa -(3分)当2=a 212+===--(2分)23. (1)解:原式==(3分) (2) 解:原式=0= (3分)(3)解:原式== (4分) (4) 解:原式=20-1218―2=36-(4分)24.(1)解:最简公分母:x (x -1) (2)解:最简公分母:x -2去分母得:x -1+2x =5 去分母得: x -1-2x +4=1x =2 (3分) x =2 (3分)检验:x =2时,x (x -1)≠0 检验:x =2时,x -2=0∴x=2是原方程的解(1分) ∴x=2是增根,原方程无解(1分)25.(1)45;34;1;1.(4分)(2)1;证明:2222222111()()111111x xxf x fx x x xx+=+=+=++++(2分)26.(1) (2分)(2) (2分)(3) (2分)(4)2009(2分)27. 解:设采用新工艺前每小时加工x个零件,根据题意得:12001200101.5x x=+(3分)解得x=40 (2分)经检验x=40是原方程的解40×1.5=60答:采用新工艺前每小时加工40个零件,采用新工艺后每小时加工60个零件.(1分)28. (1)证明:∵正方形AEFG和正方形ABCD中∠AEH=∠ADC=∠EDH=90°∴∠AED+∠DEH=90°∠AED+∠DAE=90°∴∠DEH=∠DAE∴△AED∽△EHD(4分)(2) 解:∵正方形ABCD的边长为4∴AD=CD=4 ∵E为CD的中点∴DE=2∵△AED∽△EHD ∴AD DEDE DH=∴422HD=∴DH=1.(3分)29. 解:∵矩形DEFG中DG//EF ∴∠ADG=∠B,∠AGD=∠C ∴△ADG∽△ABC∴DG AMBC AH=(2分)若DE为宽,则804010080DG-=,∴DG=50,此时矩形的面积是2000平方米.若DG为宽,则408010080DE-=,∴DE=48,此时矩形的面积是1920平方米.(答对一个得3分,答对两个得5分)30. 解:△MPO中,CA//PO,得MA CAMO PO=∴1.6208MAMA=+∴MA=5(3分)同理可得NB BDNO PO=∴1.668NBNB=+∴NB=1.5(3分)∴MA-NB=3.5∴身影的长度是变短了,变短了3.5米.(1分)31. (1)解:由题意得t秒时,AP=2t cm,DQ=t cm,∴AQ=(6-t) cm,当AP=AQ时,即2t=6-t,即t=2,△QAP为等腰三角形.(2分)(2)解:∵∠QAP=∠B=90°∴当AQ APBC AB=时,即62612t t-=,即t=3,△PAQ∽△ABC或者,当AQ APAB BC=,即62126t t-=,即t=1.2,△QAP∽△ABC.答:t=3或1.2时,以点Q、A、P为顶点的三角形和△ABC相似.(6分)新安中学2009 ~ 2010学年度第二学期期中考试八年级数学试题一、选择题(10小题,共30分)1. 以下列各组线段的长为边,能够组成直角三角形的是( )A.6 8 10B. 15 31 39C. 12 35 37D. 12 18 32 2. 下列计算正确的是( )=-2 B. 2)2(2=-=±32=3. 下列二次根式中,是最简二次根式的是( )A. a 16B. b 3C.ab4. 如果(x 2+y 2)2+3(x 2+y 2)- 4=0,那么x 2+y 2的值为( )A. 1B. -4C. 1 或-4D. -1或3 5. 方程x x 22530--=根的情况是( )A. 方程有两个不相等的实根B. 方程有两个相等的实根C. 方程没有实根D. 无法判断6. 某型号的手机连续两次降价,每台售价由原来的1185元降到580元,设平均每次的降价的百分率x ,则列出的方程正确的是( )A. (x)258011185+=B. (x)211851580+=C. (x)258011185-=D. (x)211851580-=7. 在△ABC 中,AB ,AC 1513==,BC 上的高AD 长为12,则△ABC 的面积为( ) A. 84 B. 24 C. 24或84 D. 42或848. 如果x 0≤,则化简x 1- )A. x 12-B. x 21-C. 1-D. 19. 若方程ax bx c (a )200++=≠,满足a b c 0++=,则方程必有一根为( )、A. 0B. 1C. 1-D. 1± 10. 请估计132202⨯+的运算结果应在( ). A. 6到7之间 B. 7到8之间C. 8到9之间D. 9到10之间二、耐心填一填(6小题,共18分)11. 化简()24-=_________。
江苏省泰州市泰兴市洋思中学八年级(下)期中数学试卷一、选择题(每题3分,共18分)1.菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.以下问题,不适合用普查的是( )A.了解全班同学每周体育锻炼的时间B.为了了解“嫦娥二号”卫星零部件的状况C.学校招聘教师,对应聘人员面试D.为了解小强的血型进行抽血化验3.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A.B.C.D.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )A.不变B.扩大为原来的5倍C.扩大为原来的10倍[来源:学科网]D.缩小为原来的5.在平行四边形ABCD中,AC=4cm,BD=6cm,对角线AC,BD相交于点O,则AB的取值范围是( )A.2cm<AB<10cmB.1cm<AB<5cmC.4cm<AB<6cm[来源:]D.2cm<AB<5cm6.如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A 向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB.A.1B.2C.3D.4二、填空题(每题3分,共30分)7.分式有意义的条件是__________.8.一组数据1,2,3,1,2中,“2”出现的频率是__________.9.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是__________,样本是__________.10.已知菱形的两条对角线长分别为3cm,4cm,则它的面积是__________cm2.11.化简:=__________.12.一个口袋中装有4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黑色球的概率是__________.13.如果△ABC的三条中位线分别为3cm,4cm,5cm,那么△ABC的面积为__________cm2.[来源:学科网]14.如图把一个矩形的纸片对折两次(折痕互相垂直且交点为O),然后剪下一个角,为了得到一个锐角为50°的菱形,剪口与折痕所成角α的度数为__________.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=__________.16.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)△EPF是等腰直角三角形;(2)S四边形AEPF=S△ABC;(3)2EF≥BC;(4)BE2+CF2=EF2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有__________(填序号)三、解答题:(共102分)17.计算(1)+(2).18.已知=3,求分式的值.(提示:分式的分子与分母同除以a,b).[来源:学科网]19.先化简,再求值:÷(﹣x﹣2),请选一个你喜欢的数代入求值.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.[来源:学+科+网]21.某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了__________名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县2013年初三毕业生共有5×103人,请估计该县今年的初三毕业生中读普通高中的学生人数.22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361 摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近__________;假如你去摸一次,你摸到红球的概率是__________(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.23.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为__________.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为__________.24.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.(1)求证:四边形EFGH是菱形;(2)若AC=4,求EG2+FH2的值.25.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线AC=4,边OA=4.(1)求C点的坐标;(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的函数关系式;(3)若点M是y轴上一点,点N是坐标平面内一点,问能否找到合适的点M和点N使以点M、A、D、N为顶点的四边形是菱形?如果能找到,请直接写出点M的坐标;如果找不到,请说明原因.26.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E从D向C,点F从C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置和数量关系,并说明理由;(2)如图②和图③,当E,F分别移动到边DC,CB的延长线及反向延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“成立”或“不成立”,不需证明)(3)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,因此CP的大小也在变化.如果AD=2,试求出线段CP的最小值.[来源:]2014-2015学年江苏省泰州市泰兴市洋思中学八年级(下)期中数学试卷一、选择题(每题3分,共18分)1.菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质.专题:推理填空题.分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.点评:此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.2.以下问题,不适合用普查的是( )A.了解全班同学每周体育锻炼的时间B.为了了解“嫦娥二号”卫星零部件的状况C.学校招聘教师,对应聘人员面试D.为了解小强的血型进行抽血化验考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、人数较多,不适合普查,故本选项正确.B、必须普查,故本选项错误;C、必须普查,故本选项错误;D、必须普查,故本选项错误;故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A.B.[来源:学.科.网]C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故选项错误;B、不是轴对称图形,不是中心对称图形.故选项错误;C、不是轴对称图形,也不是中心对称图形.故选项错误;D、是轴对称图形,也是中心对称图形.故选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变,可得答案.解答:解:把中的x与y都扩大为原来的10倍,那么这个代数式的值不变.故选:A.点评:本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变.5.在平行四边形ABCD中,AC=4cm,BD=6cm,对角线AC,BD相交于点O,则AB的取值范围是( )A.2cm<AB<10cmB.1cm<AB<5cmC.4cm<AB<6cmD.2cm<AB<5cm考点:平行四边形的性质;三角形三边关系.分析:由在平行四边形ABCD中,AC=4cm,BD=6cm,根据平四边形的性质,可求得OA 与OB的长,再由三角形的三边关系,求得答案.解答:解:∵在平行四边形ABCD中,AC=4cm,BD=6cm,∴OA=AC=2cm,OB=BD=3cm,∴边AB的长的取范围是:1cm<AB<5cm.故选B.点评:此题考查了平行四边形的性质以及三角形的三边关系.注意平行四边形的对角线互相平分.6.如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A 向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB.A.1B.2C.3D.4考点:一元一次方程的应用.专题:几何动点问题;压轴题.分析:易得两点运动的时间为12s,PQ∥AB,那么四边形ABQP是平行四边形,则AP=BQ,列式可求得一次平行,算出Q在BC上往返运动的次数可得平行的次数.解答:解:∵矩形ABCD,AD=12cm,∴AD=BC=12cm,∵PQ∥AB,AP∥BQ,∴四边形ABQP是平行四边形,∴AP=BQ,∴Q走完BC一次就可以得到一次平行,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,∴线段PQ有4次平行于AB,故选D.点评:解决本题的关键是理解平行的次数就是Q在BC上往返运动的次数.二、填空题(每题3分,共30分)7.分式有意义的条件是x≠1.考点:分式有意义的条件.专题:存在型.分析:根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵分式有意义,∴x﹣1≠0,即x≠1.故答案为:x≠1.点评:本题考查的是分式有意义的条件,即分式的分母不等于零.8.一组数据1,2,3,1,2中,“2”出现的频率是0.4.考点:频数与频率.分析:根据频率=,求解即可.解答:解:“2”出现的频数是2,数据总数为5,则,“2”出现的频率=2÷5=0.4.故答案为:0.4.点评:本题考查了频数与频率的知识,注意掌握频率=.9.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是某中学初二学生的视力情况的全体,样本是25名学生的视力情况.考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,样本是总体中所抽取的一部分个体.我们在区分总体、样本这两个概念时,首先找出考查的对象.从而找出总体.再根据被收集数据的这一部分对象找出样本.解答:解:本题考察的对象是某中学初二学生的视力情况,故总体是某中学初二学生的视力情况的全体,样本是25名学生的视力情况.点评:解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.10.已知菱形的两条对角线长分别为3cm,4cm,则它的面积是6cm2.考点:菱形的性质.分析:根据菱形的面积等于两对角线乘积的一半求得其面积即可.解答:解:由已知得,菱形的面积为3×4÷2=6cm2.故答案为6cm2.点评:此题主要考查菱形的性质,难度一般,注意掌握菱形面积等于两条对角线的积的一半.11.化简:=1.考点:分式的加减法.专题:计算题.分析:先将第二项变形,使之分母与第一项分母相同,然后再进行计算.解答:解:原式=.故答案为1.点评:本题考查了分式的加减运算,要注意将结果化为最简分式.12.一个口袋中装有4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黑色球的概率是0.考点:概率公式.分析:由一个口袋中装有4个白色球,1个红色球,5个黄色球,直接利用概率公式求解即可求得答案.解答:解:∵一个口袋中装有4个白色球,1个红色球,5个黄色球,∴搅匀后随机从袋中摸出1个球是黑色球的概率是:0.故答案为:0.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.13.如果△ABC的三条中位线分别为3cm,4cm,5cm,那么△ABC的面积为24cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:先根据三角形中位线定理分别求出△ABC的各边的长,再利用勾股定理的逆定理推导出△ABC是直角三角形,然后代入三角形面积公式即可直接得出答案.解答:解:∵△ABC的三条中位线长分别为3cm,4cm,5cm,∴△ABC的各边分别是6cm,8cm,10cm,∵62+82=102,∴△ABC是直角三角形,∴S△ABC=×6×8=24cm2.故答案为:24.点评:此题主要考查学生对勾股定理的逆定理和三角形中位线定理的理解和掌握,此题的突破点是利用勾股定理的逆定理推导出△ABC是直角三角形,此题难度不大,属于基础题.14.如图把一个矩形的纸片对折两次(折痕互相垂直且交点为O),然后剪下一个角,为了得到一个锐角为50°的菱形,剪口与折痕所成角α的度数为25°或50°.考点:剪纸问题.分析:根据菱形对角线平分每一组对角可得两种情况:①若∠ABC=50°,②若∠BAD=50°分别计算.解答:解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,①若∠ABC=50°,∴∠ABD=25°,∴α=25°,②若∠BAD=50°,则∠ABC=100°,∴∠ABD=50°,∴剪口与折痕所成的角a的度数应为25°或50°.故答案为:25°或50°.点评:此题主要考查了剪纸问题,关键是掌握菱形对角线平分每一组对角.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=5.考点:轴对称-最短路线问题;菱形的性质.专题:压轴题.分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解答:解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.16.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)△EPF是等腰直角三角形;(2)S四边形AEPF=S△ABC;(3)2EF≥BC;(4)BE2+CF2=EF2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有(1)(2)(3)(4)(填序号)考点:全等三角形的判定与性质;等腰直角三角形.分析:通过证明△AFP≌△BEP就可以得出AF=BE,EP=PF,得出AE=CF,得出△EPF是等腰直角三角形,由S四边形AEPF=S△APE+S△APF.就可以得出S四边形AEPF=S△CPF+S△APF,就可以得出结论,由AF=BE,AE=CF得出EF2=BE2+CF2;求得当EP⊥AB时,EP取最小值,此时EP=AB,则EF最小值=AB=BC,进一步得出结论.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠PAF=45°,BP=AP,∵∠APE+∠BPE=90°,∠APE+∠APF=90°,∴∠BPE=∠APF.在△BPE和△APF中,,∴△AFP≌△BEP(ASA),∴BE=AF,PE=PF,故(1)△EPF是等腰直角三角形正确;∵EPF=90°,在Rt△EPF中,由勾股定理,得EF2=PE2+PF2,∴EF2=BE2+CF2.故(4)正确;∵S四边形AEPF=S△APE+S△APF.∴S四边形AEPF=S△CPF+S△APF=S△FAE=S△ABC.故(2)正确.由(1)知,△EPF是等腰直角三角形,则EF=EP.当EP⊥AB时,EP取最小值,此时EP=AB,则EF最小值=AB=BC,则2EF≥BC.故(3)正确;故答案为:(1)(2)(3)(4).点评:本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,中位线的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.三、解答题:(共102分)17.计算(1)+(2).考点:分式的混合运算.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式约分即可得到结果.解答:解:(1)原式===;(2)原式==﹣.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.[来源:学.科.网Z.X.X.K]18.已知=3,求分式的值.(提示:分式的分子与分母同除以a,b).考点:分式的基本性质.专题:计算题.分析:根据分式的基本性质,分式的分子分母都除以ab,分式的值不变,再把换成3计算即可.解答:解:分式的分子分母都除以ab,得==,∵=3,∴=﹣3,所以原式==.点评:本题利用分式的基本性质,分子分母都除以ab,巧妙运用已知条件是解本题的关键,也是解本题的突破口.19.先化简,再求值:÷(﹣x﹣2),请选一个你喜欢的数代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.解答:解:原式=÷=•=﹣,当x=1时,原式=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.解答:证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,[来源:学_科_网]在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.21.某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了100名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县2013年初三毕业生共有5×103人,请估计该县今年的初三毕业生中读普通高中的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用类别A的人数除以类别A所占的百分比即可求出总数,(2)用总数乘以类别为B的人数所占的百分比,用类别为C的人数除以总数,再画图即可,(3)用该县2013年初三毕业生总数乘以读普通高中的学生所占的百分比即可.解答:解;(1)该县共调查了40÷40%=100名初中毕业生;故答案为:100;(2)类别为B的人数是100×30%=30(人),类别为C的人数所占的百分比是×100%=25%,画图如下;(3)若该县2013年初三毕业生共有5×103人,则该县今年的初三毕业生中读普通高中的学生人数是5×103×40%=2000(人),答;该县今年的初三毕业生中读普通高中的学生人数是2000人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361 摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.考点:利用频率估计概率.专题:应用题.分析:(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;(3)言之有理即可.解答:解:(1)0.3,1﹣0.3=0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;(3)用概率可以估计未知物体的数目.(或者试验次数很大时事件发生的频率作为概率的近似值)(只要能从概率方面说的合理即可)点评:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.23.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为(a+1,﹣b).(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为(0,2).考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于x轴对称并向右平移1个单位后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据轴对称和平移的性质的性质写出点P的对应点的坐标;(2)根据网格结构找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可;(3)根据网格结构找出点A3、B3、C3的位置,再根据旋转的性质找出旋转中心并写出坐标.解答:解:(1)△A1B1C1如图所示;P(a+1,﹣b);(2)△A2B2C2如图所示;(3)旋转中心(0,2).故答案为:(a+1,﹣b);(0,2).点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.(1)求证:四边形EFGH是菱形;(2)若AC=4,求EG2+FH2的值.考点:中点四边形.分析:(1)根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形;(2)根据菱形的性质得到EG⊥HF,且EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得到OE2+OH2=EH2=4,再根据等式的性质,在等式的两边同时乘以4,根据4=22,把等式进行变形,并把EG=2OE,FH=2OH代入变形后的等式中,即可求出EG2+FH2的值.解答:(1)证明:∵E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,又∵AC=BD,∴EH=FG=EF=HG,∴四边形EFGH是菱形;(2)解:由(1)知,四边形EFGH是菱形,则EG⊥FH,EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=4,等式两边同时乘以4得:4OE2+4OH2=4×4=16,∴(2OE)2+(2OH)2=16,即EG2+FH2=16.点评:此题主要考查了三角形中位线定理和菱形的判定方法,题目比较典型,又有综合性,难度不大.25.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线AC=4,边OA=4.(1)求C点的坐标;(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的函数关系式;(3)若点M是y轴上一点,点N是坐标平面内一点,问能否找到合适的点M和点N使以点M、A、D、N为顶点的四边形是菱形?如果能找到,请直接写出点M的坐标;如果找不到,请说明原因.考点:一次函数综合题.分析:(1)由四边形AOCB为矩形,得到∠AOC为直角,在直角三角形AOC中,利用勾股定理求出OC的长,即可确定出C的坐标;(2)根据矩形OABC沿直线DE对折使点C落在点A处,所以DE、AC互相垂直平分,得到AD=CD=AE=CE,设OD=x,则AD=CD=8﹣x,利用勾股定理在Rt△AOD中:AD2=OA2+OD2,即(8﹣x)2=x2+16,解得:x=3,从而确定D(3,0),E(5,4),利用待定系数法求直线DE的解析式,即可解答;(3)设M(0,m),根据勾股定理可得AD==5,分两种情况考虑:①当AD是菱形的一条边是,②当AD是菱形的对角线时,求出点M的坐标即可.解答:解:(1)∵AC=4,边OA=4.∴OC==8,∴C(8,0).(2)如图1所示,连接AD,CE,。
XXX2014-2015学年下学期高一年级期中数学试卷。
后有答案XXX2014-2015学年下学期高一年级期中数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分。
考试时间:120分钟。
卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1.若实数a,b满足a>b,则下列不等式一定成立的是()A。
a^2<b^2B。
1/a<1/bC。
a^2>b^2D。
a^3>b^32.等差数列{an}中,若a2=1,a4=5,则{an}的前5项和S5=()A。
7B。
15C。
20D。
253.不等式(1/x-1)>1的解集为()A。
{x>1}B。
{x<1}C。
{x>2}D。
{x<2}4.△ABC中,三边a,b,c的对角为A,B,C,若B=45°,b=23,c=32,则C=()A。
60°或120°B。
30°或150°C。
60°D。
30°5.已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5=()A。
32B。
31C。
16D。
156.等差数列{an}中,an=6-2n,等比数列{bn}中,b5=a5,b7=a7,则b6=()A。
42B。
-42C。
±42D。
无法确定7.△ABC中,若∠ABC=π/2,AB=2,BC=3,则sin∠BAC=()A。
4/5B。
3/10C。
5/10D。
1/108.计算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×2=13,那么将二进制数(11.1)2转换成十进制数是(){共9位}A。
512B。
511C。
256D。
2559.不等式①x2+3>3x;②a2+b2≥2(a-b-1);③ba+≥2,其中恒成立的是()A。
2014-2015学年新人教版八年级上期中数学试卷及答案解析一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C.D.2.三角形的一个外角小于和它相邻的内角,那个三角形为( )A.锐角三角形 B.直角三角形C.钝角三角形 D.以上三种都有可能3.已知图中的两个三角形全等,则∠1等于( )A.72° B.60°C.50°D.58°4.已知三角形的两边长分不为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6 D.(﹣2m)2÷2m3=6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是()A.4 B.8 C.±4 D.±87.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣38.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BC D=160°,那么△ABC是( )A.直角三角形 B.等腰三角形C.钝角三角形D.锐角三角形9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD的长为( )A.6cm B.8cm C.3cm D.4cm10.随着生活水平的提升,小林家购置了私家车,如此他乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,按照题意可列方程为( )A.B.C. D.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则那个最小值为( )A.B.3 C.4 D.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发觉某种植物的细胞直径约为0.000000102 mm,用科学记数法表示那个数为__________.14.分解因式:ab2﹣4ab+4a=__________.15.若3x=4,9y=7,则3x﹣2y的值为__________.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=__________.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=18 0°;④∠AFB>∠ACB其中正确命题的代号是__________.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试讲明∠BPD与∠CPG的大小关系,并讲明理由.22.用电脑程序操纵小型赛车进行50m竞赛,“畅想号”和“和谐号”两辆赛车进入了决赛.竞赛前的练习中,两辆车从起点同时动身,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2. 5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始竞赛,“畅想号”从起点向后退3m,两车同时动身,两车能否同时到达终点?若能,求出两车到达终点的时刻;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.23.如图③,点E,D分不是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为__________,图③中,∠AFB的度数为__________;(3)连续探究,可将本题推广到一样的正n边形情形,用含n的式子表示∠AFB的度数.2014-2015学年四川省绵阳中学八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】按照轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是查找对称轴,图形两部分沿对称轴折叠后可重合.2.三角形的一个外角小于和它相邻的内角,那个三角形为( )A.锐角三角形 B.直角三角形C.钝角三角形 D.以上三种都有可能【考点】三角形的外角性质.【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判定出此三角形有一内角为钝角,从而得出那个三角形是钝角三角形的结论.【解答】解:∵三角形的一个外角与它相邻的内角和为180°,而题中讲那个外角小于它相邻的内角,∴与它相邻的那个内角是一个大于90°的角即钝角,∴那个三角形确实是一个钝角三角形.故选C.【点评】本题考查的是三角形的外角性质,解题的关键是熟练把握三角形的外角与它相邻的内角互为邻补角.3.已知图中的两个三角形全等,则∠1等于( )A.72° B.60°C.50°D.58°【考点】全等三角形的性质.【分析】按照三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.4.已知三角形的两边长分不为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题第一按照三角形的三边关系,求得第三边的取值范畴,再进一步找到符合条件的数值.【解答】解:按照三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范畴应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6 D.(﹣2m)2÷2m3=【考点】负整数指数幂;整式的除法.【分析】按照负整数指数幂、同底数幂的乘法以及整式的除法运算法则进行运算.【解答】解:A、原式=9,故本选项错误;B、原式=m(1﹣2+3)=m2,故本选项错误;C、原式=(﹣1)﹣2•a﹣1×(﹣2)•b(﹣3)×(﹣2)=a2b6,故本选项错误;D、原式==,故本选项正确.‘故选:D.【点评】本题考查了负整数指数幂、整式的除法.把握运算法则的解题的关键.6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是()A.4 B.8 C.±4 D.±8【考点】完全平方式.【专题】常规题型.【分析】先按照两平方项确定出这两个数,再按照完全平方公式的乘积二倍项即可确定b的值.【解答】解:16x2+bx+1=(4x)2+bx+1,∴bx=±2×4x×1,解得b=±8.故选D.【点评】本题要紧考查了完全平方式,按照平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题专门重要.7.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣3【考点】分式的值为零的条件.【专题】运算题.【分析】按照分式的值为零的条件得到当x2﹣9=0且x+3≠0时,分式的值为零,然后解方程和不等式即可得到x的值.【解答】解:∵分式的值为零,∴x2﹣9=0且x+3≠0,∴x=3.故选C.【点评】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.也考查了解方程与不等式.8.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BC D=160°,那么△ABC是( )A.直角三角形 B.等腰三角形C.钝角三角形D.锐角三角形【考点】轴对称的性质.【分析】作出图形,按照轴对称的性质可得∠BAC=∠DAC,∠ACB=∠ACD,然后求出∠BAC+∠ACB,再按照三角形的内角和定理求出∠B,然后判定三角形的形状即可.【解答】解:如图,∵△ABC和△ADC关于直线AC轴对称,∴∠BAC=∠DAC,∠ACB=∠ACD,∴∠BAC+∠ACB=(∠BAD+∠BCD)=×160°=80°,在△ABC中,∠B=180°﹣(∠BAC+∠ACB)=180°﹣80°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查了轴对称的性质,按照成轴对称的两个图形能够完全重合得到相等的角是解题的关键,作出图形更形象直观.9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD的长为( )A.6cm B.8cm C.3cm D.4cm【考点】线段垂直平分线的性质;含30度角的直角三角形;三角形中位线定理.【专题】运算题.【分析】过A作AF∥DE交BD于F,则DE是△CAF的中位线,按照线段垂直平分线的性质,即可解答.【解答】解:过A作AF∥DE交BD于F,则DE是△CAF的中位线,∴AF=2DE=2,又∵DE⊥AC,∠C=30°,∴FD=CD=2DE=2,在△AFB中,∠1=∠B=30°,∴BF=AF=2,∴BD=4.故选D.【点评】此题要紧考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段两个端点的距离相等.10.随着生活水平的提升,小林家购置了私家车,如此他乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,按照题意可列方程为( )A.B.C. D.【考点】由实际咨询题抽象出分式方程.【分析】按照乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,利用时刻得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,按照题意可列方程为:=+,故选:D.【点评】此题要紧考查了由实际咨询题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的咨询题转化为列代数式的咨询题.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】运算题.【分析】分不运算出甲图中阴影部分面积及乙图中阴影部分面积,然后运算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会运算矩形的面积及熟悉分式的运确实是解题的关键.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则那个最小值为( )A.B.3 C.4 D.【考点】轴对称-最短路线咨询题;正方形的性质.【分析】由于点B与D关于AC对称,因此连接BE,与AC的交点即为P点.现在PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选C.【点评】本题考查的是正方形的性质和轴对称﹣最短路线咨询题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发觉某种植物的细胞直径约为0.000000102 mm,用科学记数法表示那个数为1.02×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一样形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再按照完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要完全.15.若3x=4,9y=7,则3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】按照3x﹣2y=3x÷32y=3x÷9 y即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.【点评】本题考查了同底数的幂的除法运算,正确明白得3x﹣2y=3x ÷32y=3x÷9 y是关键.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=70°或20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情形进行讨论.【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠A DE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE= 50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故答案为:70°或20°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=18 0°;④∠AFB>∠ACB其中正确命题的代号是①③④.【考点】矩形的性质;全等三角形的判定与性质.【分析】由矩形的性质得出∠ABC=∠D=∠BCD=∠BAD=90°,BC= DA,AB=CD,由SAS证明△ABC≌△CDA,①正确;由△ABF的面积=△ABC的面积,得出△AEF的面积=△BCE的面积,②不正确;证明A、E、F、D四点共圆,得出∠DAE+∠DFE=180°,③正确;延长AF交矩形ABCD的外接圆于G,连接BG,由圆周角定理得出∠AGB=∠ACB,由三角形的外角性质得出∠AFB>∠AGB,得出∠AFB>∠ACB,④正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴①正确;∵△ABF的面积=△ABC的面积=AB•BC,∴△AEF的面积=△BCE的面积,∴②不正确;∵BE⊥AC,∴∠AEF=90°,∴∠AEF+∠D=180°,∴A、E、F、D四点共圆,∴∠DAE+∠DFE=180°,∴③正确;∵A、B、C、D四点共圆,如图所示:延长AF交矩形ABCD的外接圆于G,连接BG,则∠AGB=∠ACB,∵∠AFB>∠AGB,∴∠AFB>∠ACB,∴④正确;正确的代号是①③④;故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、四点共圆、圆周角定理、圆内接四边形的性质;熟练把握矩形的性质,并能进行推理论证是解决咨询题的关键.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.【考点】整式的混合运算;解分式方程;解一元一次不等式.【分析】(1)直截了当利用完全平方公式化简求出即可;(2)第一去分母进而合并同类项求出即可.【解答】解:(1)(2x﹣5)2+(3x+1)2>13(x2﹣10)去括号得:4x2+25﹣20x+9x2+1+6x>13x2﹣130整理得:﹣14x>﹣156解得:x<11;(2)去分母得:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),x2+2x﹣(x2+2x﹣x﹣2)=3x﹣3,则﹣2x=﹣5,解得:x=,检验:当x=时,(x﹣1)(x+2)≠0,则x=是原方程的根.【点评】此题要紧考查了整式的混合运算以及分式方程的解法,正确利用乘法公式是解题关键.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【考点】分式的化简求值.【专题】开放型.【分析】要紧考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意化简后,代入的数不能使分母的值为0.【解答】解:原式=÷==,∵a≠0、a≠±1,∴答案不唯独.当a=2时,原式=1.【点评】本题要紧考查分式的化简求值,式子化到最简是解题的关键.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练把握全等三角形的判定方法,证明三角形全等是解决咨询题的关键.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试讲明∠BPD与∠CPG的大小关系,并讲明理由.【考点】三角形内角和定理.【分析】利用AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,得出∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,再利用三角形的外角意义得出∠BPD=∠BAD+∠ABE等量代换得出∠BPD=90°﹣∠AC B;再利用PG⊥BC,得出三角形CPG是直角三角形,利用三角形的内角和表示出∠CPG=90°﹣∠ACB,证明结论成立.【解答】∠BPD=∠CPG证明:∵AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,∴∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,∴∠BPD=∠BAD+∠ABE=(∠BAC+∠ABC),∵∠BAC+∠ABC=180﹣∠ACB,∴∠BPD=(180﹣∠ACB)=90°﹣∠ACB;∵PG⊥BC,∴∠PGC=90°,∴∠BCP+∠CPG=180°﹣∠PGC=90°,∴∠CPG=90°﹣∠BCP=90°﹣∠ACB,∴∠BPD=∠CPG.【点评】此题考查角平分线的性质,三角形内角和定理,三角形外角的意义,垂直的性质等知识点.22.用电脑程序操纵小型赛车进行50m竞赛,“畅想号”和“和谐号”两辆赛车进入了决赛.竞赛前的练习中,两辆车从起点同时动身,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2. 5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始竞赛,“畅想号”从起点向后退3m,两车同时动身,两车能否同时到达终点?若能,求出两车到达终点的时刻;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,按照,“畅想号”运动50 m与“和谐号”运动47m所用时刻相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,按照时刻相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x,由题意得,=,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是认真审题,找到等量关系,建立方程,难度一样.23.如图③,点E,D分不是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为90°,图③中,∠AFB的度数为10 8°;(3)连续探究,可将本题推广到一样的正n边形情形,用含n的式子表示∠AFB的度数.【考点】正多边形和圆;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先按照等边三角形的性质得出∠AC=60°,再由补角的定义可得出∠ABE与∠BCD的度数,按照△ABE与△BCD能相互重合可得出∠E=∠D,∠DBC=∠BAE,由三角形外角的性质可得出结论;(2)按照(1)中的方法可得出△BEF∽△BDC,进而可得出结论;(3)按照(1)(2)的结论找出规律即可.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABE=∠BCD=120°.∵△ABE与△BCD能相互重合,∴∠E=∠D,∠DBC=∠BAE.∵∠FBE=∠CBD,∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°;(2)图②中,∵△ABE与△BCD能相互重合,∴∠E=∠D.∵∠FBE=∠CBD,∠D+∠CBD=90°,∴∠AFB=∠E+∠FBE=∠D+∠CBD=90°;同理可得,图③中∠AFB=108°.故答案为:90°,108°;(3)由(1)(2)可知,在正n边形中,∠AFB=.【点评】本题考查的是正多边形和圆,在解答此题时要注意正三角形、正四边形及正五边形的性质的应用,按照题意找出规律是解答此题的关键.。
2014-2015学年上学期期中考试八年级数学试卷满分100分 ,时间100分钟 2014年11月一、选择题(共7小题,每题3分,共21分)1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为( ) A .50 B .80 C .50或80 D .40或652.如图,已知:AB ∥EF ,CE=CA ,∠E=65,则∠CAB 的度数为 ( ) A.25 B.50 C.60 D.653.下列图案是轴对称图形的有 ( ) A. 1个 B. 2个 C. 3个 D. 4个3题 2题4.一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或125.如图下列条件中,不能证明△ABD ≌△ACD 的是( ). A.BD=DC ,AB=AC B.∠ADB=∠ADC BD=DC C.∠B=∠C ,∠BAD=∠CAD D.∠B=∠C ,BD=DC6.△ABC 中,AB =AC ,D 是AC 上一点,且AD =BD =BC ,则∠A 等于 ( ) A .45° B .36° C .90° D .135°7.如图,△ABC 中,AB =AC ,B =36°,D 、E 是BC 上两点, 使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个二、填空题(共8小题,每题3分,共24分)E14题8.到三角形三边距离相等的点是三条____ ___的交点. 9.点P(-5,4)关于x 轴对称的点的坐标是____ ___ .10. 等腰三角形一腰上的高和另一腰的夹角为40o ,则底角为 .。
11.如图,在△ABC 中,∠C=90°,∠CAB=50°.按以下步骤作图: ①以点A 为圆心,小于AC 的长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 边于点D .则∠ADB 的度数为 _____________. ④如果AC=5cm,CD=2cm,则D 点到AB 的距离为 .12.在Rt △ABC 中,∠C=90°,∠A=30°,CD ⊥AB 于点D ,AB=8cm,则BC= ,AD=13.如图,ΔABC 中,AB =AC ,AB 的垂直平分线交AC 于P 点. 若AB =5 cm , BC =3 cm ,则ΔPBC 的周长=_____.14.如图,在Rt △ABC 中,∠C=90°, 沿着过点B 的一条直线BE折叠△ABC 使点C 恰好落在AB 边的中点D 处,则∠A 的度数等于________ G_ F_ E_ D_ C _ B_ A13题15. 如图,B 、C 、D 在一直线上,ΔABC 、ΔADE 是等边三角形,若CE =20cm ,CD =9cm , 则AC =_____,∠ECD =_____.三、解答题(共6小题,16-19题,每题8分;20题11分、21题12分,共55分)16. 如图,写出△ABC 的各顶点坐标,并画出△ABC 关于Y 轴对称的△A1B1C1,写出△ABC 关于 X 轴对称的△A2B2C2的各点坐标。
河南省周口市扶沟县2014-2015学年八年级下学期期中数学试卷一、选择题(每题3分)1.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.2.(3分)判断×之值会介于下列哪两个整数之间?()A.22、23 B.23、24 C.24、25 D.25、263.(3分)在△ABC中,三边长满足b2﹣a2=c2,则互余的一对角是()A.∠A与∠B B.∠C与∠A C.∠B与∠C D.∠A、∠B、∠C4.(3分)在下列定理中,没有逆定理的是()A.有斜边和一直角边对应相等的两个直角三角形全等B.直角三角形两个锐角互余C.全等三角形对应角相等D.角平分线上的点到这个角两边的距离相等5.(3分)平行四边形的一条对角线长为10,则它的一组邻边可能是()A.4和6 B.2和12 C.4和8 D.4和36.(3分)已知菱形的周长为40cm,两对角线的长度之比是3:4,那么两对角线的长分别为()A.6cm8cm B.3cm4cm C.12cm16cm D.24cm32cm7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对8.(3分)已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm二、填空题9.(3分)直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的面积为cm2.10.(3分)已知y=+﹣3,则2xy的值为.11.(3分)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为.12.(3分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.13.(3分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.14.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为.15.(3分)如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为.三、计算题16.(8分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.17.(9分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.18.(9分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.19.(9分)如图,在▱ABCD中,点E是CD的中点,AE的延长线与BC的延长线相交于F点,连接AC、DF,请判断四边形ACFD是什么特殊四边形?并证明你的结论.20.(9分)观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?21.(9分)如图所示,平行四边形ABCD的周长是10+6,AB的长是5,DE⊥AB于E,DF⊥CB交CB 的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.22.(10分)已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.求证:DE、AC互相垂直平分.23.(12分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).河南省周口市扶沟县2014-2015学年八年级下学期期中数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.考点:最简二次根式.分析:根据最简二次根式的定义对各选项分析判断利用排除法求解.解答:解:A、2是最简二次根式,故本选项正确;B、=,故本选项错误;C、=,故本选项错误;D、=x,故本选项错误.故选A.点评:本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)判断×之值会介于下列哪两个整数之间?()A.22、23 B.23、24 C.24、25 D.25、26考点:估算无理数的大小.分析:先算出与的积,再根据所得的值估算出在哪两个整数之间,即可得出答案.解答:解:∵×=,又∵24<25,∴×之值会介于24与25之间,故选C.点评:本题考查了估算无理数大小,掌握的大约值是解题的关键,是一道基础题.3.(3分)在△ABC中,三边长满足b2﹣a2=c2,则互余的一对角是()A.∠A与∠B B.∠C与∠A C.∠B与∠C D.∠A、∠B、∠C考点:勾股定理的逆定理.分析:先由勾股定理的逆定理得出∠B=90°,再根据直角三角形两锐角互余即可求解.解答:解:∵b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,且∠B=90°,∴∠C与∠A互余.故选B.点评:本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,且最长边所对的角是直角.同时考查了直角三角形两锐角互余的性质.4.(3分)在下列定理中,没有逆定理的是()A.有斜边和一直角边对应相等的两个直角三角形全等B.直角三角形两个锐角互余C.全等三角形对应角相等D.角平分线上的点到这个角两边的距离相等考点:命题与定理.分析:先写出各选项的逆命题,判断出其真假即可解答.解答:解:A、其逆命题是“两个直角三角形全等,那么斜边和一直角边对应相等”,正确,所以有逆定理;B、其逆命题是“两个锐角互余的三角形是直角三角形”,正确,所以有逆定理;C、其逆命题是“对应角相等的三角形是全等三角形”,错误,所以没有逆定理;D、其逆命题是“到角两边距离相等的点在角的平分线上”,正确,所以有逆定理;故选C.点评:本题考查的是命题与定理的区别,正确的命题叫定理.5.(3分)平行四边形的一条对角线长为10,则它的一组邻边可能是()A.4和6 B.2和12 C.4和8 D.4和3考点:平行四边形的性质;三角形三边关系.分析:平行四边形的一条对角线正好把平行四边形分成两个三角形,平行四边形的一组邻边长正好是三角形的两边,平行四边形的对角线正好为三角形的第三边,所以要讨论第三边与两边之和的关系.解答:解:由题意得:平行四边形的一组邻边长正好是三角形的两边,平行四边形的对角线正好为三角形的第三边,∵平行四边形的一条对角线长为10,∴它的一组邻边必须:满足之和大于10,差小于10,∴它的一组邻边可能是:4和8,故选:C.点评:此题主要考查了平行四边形的性质和三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.6.(3分)已知菱形的周长为40cm,两对角线的长度之比是3:4,那么两对角线的长分别为()A.6cm8cm B.3cm4cm C.12cm16cm D.24cm32cm考点:菱形的性质.专题:计算题.分析:根据菱形的周长可以计算菱形的边长,设菱形的对角线分别是2x、2y,则x、y满足4y=3x,x2+y2=102,求得x、y的值即可解题.解答:解:菱形的周长为40cm,则菱形的边长为10cm,设菱形的对角线分别是2x、2y,则x、y满足4y=3x,x2+y2=102,解得x=6cm,y=8cm,∴对角线的长为12cm,16cm.故选C.点评:本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中找出x、y的关系并求解x、y的值是解题的关键.7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:矩形的判定;作图—复杂作图.分析:先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.解答:解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.点评:本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.8.(3分)已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D. 7cm和8cm考点:矩形的性质.分析:根据已知条件以及矩形性质证△ABE为等腰三角形得到AB=AE,注意“长和宽分别为15cm和10cm”说明有2种情况,需要分类讨论.解答:解:∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.故选B.点评:此题考查了矩形的性质与等腰三角形的判定与性质.注意出现角平分线,出现平行线时,一般出现等腰三角形,需注意等腰三角形相等边的不同.二、填空题9.(3分)直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的面积为cm2.考点:二次根式的乘除法.分析:根据三角形的面积公式求解.解答:解:S=××=(cm).故答案为:.点评:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则.10.(3分)已知y=+﹣3,则2xy的值为﹣15.考点:二次根式有意义的条件.分析:根据非负数的性质列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,2x﹣5≥0且5﹣2x≥0,解得x≥且x≤,所以,x=,y=﹣3,所以,2xy=2××(﹣3)=﹣15.故答案为:﹣15.点评:本题考查的知识点为:二次根式的被开方数是非负数.11.(3分)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为16.考点:菱形的性质;正方形的性质.专题:计算题.分析:根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.解答:解:∵B=60°,AB=BC∴△ABC是等边三角形∴AC=AB=4∴正方形ACEF的周长=4×4=16.16故答案为16.点评:本题考查菱形与正方形的性质.12.(3分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5度.考点:等腰三角形的性质;三角形内角和定理;正方形的性质.专题:计算题.分析:根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.解答:解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.点评:此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.13.(3分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.考点:三角形中位线定理;矩形的性质.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解答:解:在R t△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.14.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为7.考点:全等三角形的判定与性质;勾股定理;正方形的性质.专题:计算题.分析:如图,根据正方形的性质得BC=BF,∠CBF=90°,AC2=3,DF2=4,再利用等角的余角相等得∠1=∠3,则可根据”AAS“证明△ABC≌△DFB,得到AB=DF,然后根据勾股定理得到BC2=AC2+AB2=AC2+DF2=7,则有b的面积为7.解答:解:如图,∵a、b、c都为正方形,∴BC=BF,∠CBF=90°,AC2=3,DF2=4,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABC和△DFB中,∴△ABC≌△DFB,∴AB=DF,在△ABC中,BC2=AC2+AB2=AC2+DF2=3+4=7,∴b的面积为7.故答案为7.点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了勾股定理和正方形的性质.15.(3分)如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为a2.考点:勾股定理.分析:根据勾股定理可得AC2+BC2=AB2,然后判断出阴影部分的面积=2S△ABE,再利用等腰直角三角形的面积等于斜边平方的一半计算即可得解.解答:解:∵△ABC是直角三角形,∴AC2+BC2=AB2,∵三个阴影部分三角形都是等腰直角三角形,∴阴影部分的面积=2S△ABE=2וa•(a)=a2.故答案为:a2.点评:本题考查了勾股定理,等腰直角三角形的性质,熟记定理与等腰直角三角形的面积的求法是解题的关键.三、计算题16.(8分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.考点:二次根式的化简求值.专题:计算题.分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.解答:解:(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.点评:本题考查了二次根式的化简求值:先根据二次根式的性质和运算法则进行化简,然后把满足条件的字母的值代入求值.17.(9分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.考点:解直角三角形的应用.专题:应用题.分析:先根据题意画出示意图,过点C作CE⊥AD于点E,设BE=x,则在RT△ACE中,可得出CE,利用等腰三角形的性质可得出BC,继而在RT△BCE中利用勾股定理可求出x的值,也可得出CE的长度.解答:解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,即可得AB=BC=30m,设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,解得:x=15,即可得CE=15m.答:小丽自家门前的小河的宽度为15m.点评:此题考查了解直角三角形的应用,解答本题的关键是画出示意图,将实际问题转化为解直角三角形的问题,注意直角三角形的构造,难度一般.18.(9分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A+∠D=180°,所以是矩形.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AM=DM,MB=MC,∴△ABM≌△D CM.∴∠A=∠D.∵AB∥CD,∴∠A+∠D=180°.∴∠A=90°.∴▱ABCD是矩形.点评:此题主要考查了矩形的判定,即有一个角是90度的平行四边形是矩形.19.(9分)如图,在▱ABCD中,点E是CD的中点,AE的延长线与BC的延长线相交于F点,连接AC、DF,请判断四边形ACFD是什么特殊四边形?并证明你的结论.考点:平行四边形的判定与性质.专题:证明题.分析:四边形ACFD为平行四边形,原因是由ABCD为平行四边形,根据平行四边形的对边平行得到AD与BF 平行,根据两直线平行内错角相等得∠DAF与∠AFB相等,然后再根据对顶角相等,利用“ASA”证明△AED与△CEF 全等,得到AE与FE相等,从而得到四边形ACFD对角线互相平分,故ACFD为平行四边形.解答:解:四边形ACFD为平行四边形,证明:∵ABCD为平行四边形,∴AD∥BF,∴∠DAF=∠AFB,又点E是CD的中点,∴DE=CE,且∠AED=∠FEC,∴△AED≌△CEF,∴AE=FE,∴四边形ACFD为平行四边形.点评:此题考查了平行四边形的性质与判定.平行四边形的判别方法有:两组对边平行的四边形为平行四边形;一组对边平行且相等的四边形为平行四边形;两组对边相等的四边形为平行四边形;两组对角相等的四边形为平行四边形;对角线互相平分的四边形为平行四边形.20.(9分)观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?考点:规律型:数字的变化类;勾股数.分析:观察三个数之间的关系可得出规律:第n组数为(2n+1)2,(),()由此规律解决问题.解答:解:题目蕴含的规律为:(2n+1)2=+;∵13=2×6+1,∴132=+=84+85,∴a=84,b=85.点评:本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,得出规律,解决问题.21.(9分)如图所示,平行四边形ABCD的周长是10+6,AB的长是5,DE⊥AB于E,DF⊥CB交CB 的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.考点:平行四边形的性质.分析:(1)在平行四边形中,周长是10+6,AB的长是5,所以AD的长为3,又因为DE垂直AB,且DE=3,所以在三角形ADE中,可求出∠A的值,根据平行四边形对角相等,可知∠C.(2)因为对于平行四边形ABCD来讲,以AB为底DE为高和以BC为底DF为高,面积都是一样的,所以可列方程解答.解答:解:(1)∵C▱ABCD=10+6,且AB=5,∴AD=;又∵DE⊥AB,DE=3,∴AE=3,∴AE=DE,∴∠A=∠C=45°(2)S▱ABCD=AB×DE=BC×DF,即,∴DF=.点评:“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.22.(10分)已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.求证:DE、AC互相垂直平分.考点:线段垂直平分线的性质;梯形.专题:证明题.分析:此题要证明DE、AC互相垂直平分.则连接AE,只需证明四边形ADCE是菱形.根据已知条件首先运用两组对边分别平行的四边形是平行四边形,再根据一组邻边相等的平行四边形是菱形证明.解答:证明:连接AE.∵在直角三角形ABC中,E是BC的中点,∴AE是Rt△ABC的中线,∴AE=CE=BE,∴∠EAC=∠ACE.∵AD∥BC∴∠ACE=∠ACD∴∠EAC=∠ACD∴AE∥CD∴四边形AECD是平行四边形.又AE=CE所以平行四边形AECD是菱形,所以DE、AC互相垂直平分.点评:熟练掌握特殊四边形的性质和判定.23.(12分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.分析:(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.解答:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.点评:此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。
2014—2015学年度八年级期中试卷数 学(本试题分第Ⅰ卷和第Ⅱ卷两部分,满分:150分 考试时间:120分钟)第Ⅰ卷(选择题,共48分,请将答案写在答题卡上)一、选择题(本大题共12小题,每小题4分,共48分,每小题只有一个正确答案)1、在式子1a 、2xy π、2334a b c 、56x +、78x y +、109x y +中,分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列用“>”或“<”号表示的不等关系正确的是( )A 、-3>-2B 、41<51 C 、32<53 D 、-21<-31 3、在下列各题中,结论正确的是( )A 、若a >0,b <0,则ab >0 B 、若a >b ,则a -b >0 C 、若a <0,b <0,则ab <0 D 、若a >b ,a <0,则ab <0 4、不等式21x <2的非负整数解有( ) A 、4个 B 、5个 C 、3个 D 、2个5、△ABC 的三边满足a 2-2bc=c 2-2ab ,则△ABC 是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、锐角三角形6、已知2x 2-3xy+y 2=0(xy ≠0),则x y +y x 的值是( ) A 、2或212 B 、2 C 、212 D 、-2或-2127、已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( )A 、0B 、1C 、2D 、38、分式22--x x 的值为0,则x 的值为( )A 0B 2C -2D 2或-29、化简3222121()11x x x xx x x x--+-÷+++的结果为().A、x-1B、2x-1C、2x+1D、x+110、某食堂有煤m吨,原计划每天烧煤a吨,现在每天节约煤b吨,则可以比原计划多烧的天数是().A、maa b-B、m ma b a--C、m ma a b--D、m ma a b-+11、如图,AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯子上点D距墙DE=1.2m,BD长0.5m,且△ADE∽△ABC则梯子的长为()A、 3.5mB、3.85mC、 4mD、4.2mB(第19题图) (第12题图)12、如图,△ADE∽△ACB,∠AED=∠B,那么下列比例式成立的是( ) A、BCDEABAEACAD==B、BCDEACAEABAD==C、BCDEABACAEAD==D、BCDEECAEABAD==第Ⅱ卷(非选择题,共102分,请将答案写在答题卡上)二、填空题(本大题共8小题,每小题4分,共32分)13、不等式7-x>1的正整数解为:。
2014-2015学年山西省太原市八年级(下)期末数学试卷(解析版)2014-2015学年山西省太原市八年级(下)期末数学试卷一、选择题1.(3分)若x>y,则下列式子中错误的是()A。
x-3>y-3B。
x+2y4.(3分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,下列结论中正确的是()A。
AB=CDB。
BO=ODC。
∠BAD=∠BCDD。
AB⊥AC二、填空题11.(2分)分解因式:x^2-9=(x+3)(x-3)12.(2分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为 120°.13.(2分)分式方程 (3x+2)/(x-1)=2 的解为 x=2/3.14.(2分)如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的周长为 8.下面的网格由边长为1的正三角形组成。
要求在图1和图2中添加若干个基本图形,使添加的图形与基本图形组成一个新图案。
要求:①图1中组成的新图案是中心对称图形;②图2中组成的新图案只是旋转对称图形,不是中心对称图形;③两图中新图案的顶点都在格点上,并且给添加的基本图案涂上阴影(建议用一组平行线段表示阴影)。
问题情境:如图1,已知△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC=1,CD=CE=1,点D在AC边上,点E在BC延长线上,将△XXX从此位置开始绕C点顺时针旋转,旋转角是α(0°<α<180°)。
操作发现:(1)如图2,当旋转角α=45°时,连接AD,证明四边形ACED是平行四边形;(2)如图3,当0°<α<90°时,连接BD,AE,判断线段BD与AE的数量关系,并说明理由。
解决问题:(3)如图3,当0°<α<180°时,连接AD,点F,G,H分别是线段AB,AD,DE的中点,连接FG,GH,FH,在△CDE旋转的过程中,AE与BD的数量关系是什么?因此,△XXX始终是一个特殊三角形。
2014-2015年最新人教版八年级下数学期中考试题及答案一、选择题(每小题2分,共12分) 1.下列式子中,属于最简二次根式的是( )A.9 B. 7 C. 20 D.31 2. 如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MDAM等于( ) A.83 B.32 C.53D.543.若代数式1-xx有意义,则实数x 的取值范围是( )A. x ≠ 1B. x ≥0C. x >0D. x ≥0且x ≠14. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( )A.12B. 24C. 312D. 316 5. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 º,EF ⊥AB ,垂足为F ,则EF 的长为( )A .1B . 2C .4-2 2D .32-4 6.在平行四边形ABCD 中,∠A:∠B:∠C:∠D 的值可以是( )A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 二、填空题:(每小题3分,共24分) 7.计算:()()3132-+-= .8.若x 31-在实数范围内有意义,则x 的取值范围是 . 9.若实数a 、b 满足042=-++b a ,则ba= . 10.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数书为 . 11.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .12.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD成为菱形.(只需添加一个即可)NMDBCA2题图 4题图5题图10题图13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF= .14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_________.三、解答题(每小题5分,共20分)15.计算:121128-⎪⎭⎫⎝⎛+--+π16. 如图8,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.17.先化简,后计算:11()ba b b a a b++++,其中512a+=,512b-=.E CDBAB′OFEDCBA 11题图12题图13题图14题图16题图18. 如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,经过点O 的直线交AB 于E ,交CD 于F.求证:OE=OF.四、解答题(每小题7分,共28分)19. 在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F . (1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.20. 如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂 足分别为M 、N 。
(1) 求证:∠ADB =∠CDB ;(2) 若∠ADC =90︒,求证:四边形MPND 是正方形。
21.如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=21BC ,连结DE ,CF 。
(1)求证:四边形CEDF 是平行四边形; (2)若AB=4,AD=6,∠B=60°,求DE 的长。
OFED CBAABCDN MP18题图19题图20题图21题图22.如图,四边形ABCD 是平行四边形,DE 平分∠ADC 交AB 于点E ,BF 平分∠ABC,交CD 于点F . (1)求证:DE=BF ;(2)连接EF ,写出图中所有的全等三角形.(不要求证明)五、解答题(每小题8分,共16分)23. 如图,在△ABC 中,∠ACB=90°,∠B>∠A,点D 为边AB 的中点,DE∥BC 交AC 于点E ,CF∥AB 交DE 的延长线于点F . (1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC.24. 2013如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF=2∠BAC。
(1)求证;OE =OF ; (2)若BC =32,求AB 的长。
ABCDEF OF EDCBA22题图23题图24题图六解答题:(每小题10分,共20分)25. 如图1,在△OAB 中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为边,在△OAB 外作等边△OBC,D是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.26. 如图,在等边三角形ABC 中,BC =6cm. 射线AG //BC ,点E 从点A 出发沿射线AG 以1cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t (s). (1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ; (2)填空:①当t 为_________s 时,四边形ACFE 是菱形;②当t 为_________s 时,以A 、F 、C 、E 为顶点的四边形是直角梯形.参考答案25题图26题图1.B ;2.C ;3.D ;4.D ;5.C ;6.C ;7.-7;8. x ≤31;9. 21-;10.25°;11. (8052,0);12. OA=OC 或AD=BC 或AD∥BC 或AB=BC ;13. 3;14. 23或3;15. 22-;16. 解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O , ∴AC⊥BD,DO=BO , ∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.17. :原式22()ab a ab b ab a b +++=+2()()a b a bab a b ab++==+ 当512a+=,512b -=时,原式的值为5。
18. 证明:∵四边形ABCD 是平行四边形, ∴OA=OC,AB∥CD ∴∠OAE=∠OCF ∵∠AOE=∠COF ∴△OAE ≌△OCF(ASA ) ∴OE =OF19. (1)证明:∵四边形ABCD 是矩形, ∴∠A=∠C=90°,AB=CD ,AB∥CD, ∴∠ABD=∠CDB,∵在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,∴∠ABE=∠EBD=∠ABD,∠CDF=∠CDB, ∴∠ABE=∠CDF, 在△ABE 和△CDF 中∴△ABE ≌△CDF(ASA ), ∴AE=CF,∵四边形ABCD 是矩形, ∴AD=BC,AD∥BC, ∴DE=BF,DE∥BF,∴四边形BFDE 为平行四边形;(2)解:∵四边形BFDE 为为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.20. (1) ∵BD平分∠ABC,∴∠ABD=∠CBD。
又∵BA=BC,BD=BD,∴△ABD≅△CBD。
∴∠ADB=∠CDB。
(4分)(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90︒。
又∵∠AD C=90︒,∴四边形MPND是矩形。
∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN。
∴四边形MPND是正方形。
21.(1)略(2)1322. 证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,(2)△ADE≌△CBF,△DFE≌△BEF.23.解答:证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;FED CBA(2)∵四边形DBCF 为平行四边形, ∴DB∥CF, ∴∠ADG=∠G,∵∠ACB=90°,D 为边AB 的中点, ∴CD=DB=A D ,∴∠B=∠DCB,∠A=∠DCA, ∵DG⊥DC, ∴∠DCA+∠1=90°, ∵∠DCB+∠DCA=90°, ∴∠1=∠DCB=∠B, ∵∠A+∠ADG=∠1, ∴∠A+∠G=∠B.24. (1)证明:∵四边形ABCD 是矩形 ∴AB∥CD,∠OAE=∠OCF,∠OEA=∠OFC ∵AE=CF ∴△AEO ≌△CFO(ASA ) ∴OE=OF(2)连接BO ∵OE=OF ,BE =BF ∴BO⊥EF 且∠EBO=∠FBO ∴∠BOF=900∵四边形ABCD 是矩形 ∴∠BCF=90又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA∴∠BAC=∠EOA ∴AE=OE ∵AE=CF ,OE =OF ∴OF=CF 又∵BF =BF ∴△BOF ≌△BCF(HL ) ∴∠OBF=∠CBF ∴∠CBF=∠FBO=∠OBE ∵∠ABC=900∴∠OBE=300∴∠BEO=600∴∠BAC=300∴AC=2BC=34, ∴AB=61248=-25.(1)证明:∵Rt△OAB 中,D 为OB 的中点, ∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°, ∴∠AEO=60°,又∵△OBC 为等边三角形, ∴∠BCO=∠AEO=60°, ∴BC∥AE,∵∠BAO=∠COA=90°, ∴CO∥AB,∴四边形ABCE 是平行四边形;(2)解:设OG=x ,由折叠可得:AG=GC=8﹣x , 在Rt△ABO 中,∵∠OAB=90°,∠AOB=30°,BO=8, AO=34,在Rt△OAG 中,OG 2+OA 2=AG 2,x 2+(4)2=(8﹣x )2,解得:x=1, ∴OG=1.26.(1) 证明:∵AG BC ∥ ∴EAD ACB ∠=∠ ∵D 是AC 边的中点 ∴AD CD = 又∵ADE CDF ∠=∠ ∴△ADE ≌△CDF(2)①∵当四边形ACFE 是菱形时,∴AE AC CF EF === 由题意可知:,26AE t CF t ==-,∴6t =②若四边形ACFE 是直角梯形,此时EF AG ⊥过C 作CM AG ⊥于M ,3AG =,可以得到AE CF AM -=, 即(26)3t t --=,∴3t =,此时,C F 与重合,不符合题意,舍去。