第九章-6 贝氏体(B)转变-2
- 格式:ppt
- 大小:1.28 MB
- 文档页数:22
贝氏体、珠光体、马氏体的转变关系摘要: 贝氏体、珠光体、马氏体组织都是高温奥氏体在不同温度条件转变后得到的产物。
由于转变的温度条件不同,转变的机理也就不同,一次得到的转变产物也不尽相同。
本文主要针对贝氏体、珠光体、马氏体的基本特征、形成过程、组织形态、热力学与动力学转变条件、机械性能等方面进行一些简单的对比介绍。
关键词:对比、贝氏体、珠光体、马氏体、基本特征、组织形态、转变热力学、转变动力学、机械性能一、组织形态1、珠光体的组织形态共析碳钢加热到均匀的的奥氏体化状态后缓慢冷却,稍低于A1温度将形成珠光体组织,为铁素体和渗碳体的机械混合物,其典型形态呈片状或层状。
片状珠光体是由一层铁素体与一层渗碳体交替堆叠而成。
片状珠光体组织中,一对铁素体和渗碳体片的总厚度,称为“珠光体片层间距”。
工业上所谓的片状珠光体,是指在光学显微镜下能够明显看出铁素体与渗碳体呈层状分布的组织形态,其片层间距约在0.15~0.45μm之间。
透射电镜观察表明,在退火状态下,珠光体中的铁素体位错密度小,渗碳体中的位错密度更小,片状珠光体中铁素体与渗碳体两相交界处的为错密度高,在每一片铁素体中还有亚晶界,构成许多亚晶粒。
工业用钢中,也可以见到铁素体基体上分布着粒状渗碳体组织,称为“粒状珠光体”或“球状珠光体”,一般是经球化退火处理后获得的。
2、马氏体的组织形态a、板条状马氏体板条状马氏体是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型的马氏体组织。
因其显微组织是由许多成群的板条组成,故称为板条状马氏体。
又因为这种马氏体的亚结构主要为位错,通常也称它为位错型马氏体。
板条状马氏体的显微组织(如图所示),其中A为板条束,成不规则形状,尺寸约为20—35μm,是由若干单个马氏体板条所组成。
第1篇一、贝氏体转变的概述贝氏体转变是指金属在一定的温度范围内,从奥氏体向贝氏体转变的过程。
在这个过程中,金属的组织结构发生了显著的变化,从而导致金属的性能发生改变。
贝氏体转变主要发生在低碳钢、低合金钢和某些高合金钢中。
二、贝氏体转变的主要特征1. 温度范围贝氏体转变的温度范围较窄,大约在280℃至550℃之间。
在这个温度范围内,奥氏体晶粒开始发生转变,形成贝氏体。
当温度低于280℃时,贝氏体转变速率会显著降低,甚至停止;当温度高于550℃时,贝氏体转变会逐渐向马氏体转变过渡。
2. 组织结构贝氏体转变后,金属的组织结构发生了显著的变化。
具体表现为:(1)奥氏体晶粒细化:在贝氏体转变过程中,奥氏体晶粒逐渐细化,晶粒尺寸减小,有利于提高金属的强度和硬度。
(2)贝氏体形态:贝氏体由贝氏体铁素体和渗碳体(或碳化物)组成。
贝氏体铁素体以片状、针状或羽毛状形态出现,渗碳体以细小的片状或针状形态存在。
(3)贝氏体晶粒尺寸:贝氏体晶粒尺寸与奥氏体晶粒尺寸密切相关。
一般来说,奥氏体晶粒越细,贝氏体晶粒也越细。
3. 性能变化贝氏体转变后,金属的性能发生了显著的变化,具体表现在以下方面:(1)强度和硬度:贝氏体转变后,金属的强度和硬度显著提高。
这是由于贝氏体组织中的贝氏体铁素体和渗碳体相互作用,使得金属的晶粒尺寸减小,晶界增多,从而提高了金属的强度和硬度。
(2)韧性:贝氏体转变后,金属的韧性也得到一定程度的提高。
这是因为贝氏体转变过程中,部分奥氏体晶粒转变为贝氏体铁素体,使金属的组织结构更加均匀,有利于提高金属的韧性。
(3)疲劳性能:贝氏体转变后,金属的疲劳性能得到显著提高。
这是因为贝氏体组织中的贝氏体铁素体和渗碳体相互作用,使得金属的晶粒尺寸减小,晶界增多,从而提高了金属的疲劳性能。
4. 热处理工艺贝氏体转变的热处理工艺主要包括以下两个方面:(1)贝氏体转变温度:贝氏体转变温度对金属的组织结构和性能具有重要影响。
一般来说,贝氏体转变温度越高,贝氏体晶粒越细,金属的强度和硬度越高。