IEC_62660_动力电池标准
- 格式:xls
- 大小:98.50 KB
- 文档页数:12
IEC 626601. IntroductionIEC 62660 is an international standard that specifies the requirements and test methods for secondary lithium-ion cells used in electrical energy storage systems (EESS) for electric vehicles (EVs). This standard ensures the safety, performance, and reliability of lithium-ion battery cells used in EVs.2. ScopeThe scope of IEC 62660 covers the following aspects:•Requirements for secondary lithium-ion cells used in EESS for EVs•Test methods for evaluating the electrical, thermal, and mechanical performance of lithium-ion cells•Guidelines for the design and construction of lithium-ion cells for EESS•Evaluation of the safety and durability of lithium-ion cells3. Requirements for Lithium-ion CellsIEC 62660 sets forth specific requirements for lithium-ion cells used in EESS for EVs. These requirements include:•Electrical performance: The cells should meet certain electrical performance criteria, such as nominalvoltage, capacity, internal resistance, andcharging/discharging characteristics.•Thermal performance: The cells should be able to operate within specified temperature ranges withoutsignificant performance degradation or safety hazards.•Mechanical performance: The cells should be able to withstand mechanical stress and vibration that may occur during normal operation or in case of accidents.•Safety performance: The cells should have built-in safety features to prevent overcharging, overdischarging, short circuits, and thermal runaway.•Durability performance: The cells should have a certain minimum cycle life and calendar life, indicatingtheir ability to withstand repeated charge and dischargecycles and aging over time.4. Test MethodsIEC 62660 provides standardized test methods for evaluating the electrical, thermal, and mechanical performance of lithium-ion cells. These test methods include:•Electrical performance tests: These tests measure the cell’s capacity, internal resistance, energy density, and charge/discharge efficiency under various operatingconditions.•Thermal performance tests: These tests evaluate the cell’s ability to withstand high temperatures, rapidtemperature changes, and thermal abuse conditionswithout thermal runaway or safety hazards.•Mechanical performance tests: These tests assess the cell’s mechan ical strength, resistance to vibration,impact resistance, and ability to withstand environmental stress, such as humidity and temperature cycling.•Safety performance tests: These tests verify the cell’s safety features, such as overcharge protection,overdischarge protection, short circuit protection, andthermal shutdown.•Durability performance tests: These tests simulate the cell’s aging process under accelerated conditions todetermine its expected cycle life and calendar life.5. Design and Construction GuidelinesIEC 62660 provides guidelines for the design and construction of lithium-ion cells used in EESS for EVs. These guidelines include:•Cell design: The standard recommends specific cell geometries, materials, and construction techniques toensure optimal performance and reliability.•Electrode materials: The standard specifies the requirements for electrode materials, such as thecomposition, particle size, and coating methods, to improve the cell’s energy density and cycle life.•Cell packaging: The standard defines the requirements for cell packaging, including the use ofprotective cases, seals, and insulation materials to enhance the cell’s safety and durability.•Safety features: The standard recommends the inclusion of safety features, such as pressure relief devices, current interrupt devices, and temperature sensors, toprevent accidents and ensure safe operation.•Quality control: The standard provides guidelines for quality control during the manufacturing process,including inspection, testing, and documentationrequirements to ensure consistent cell performance andreliability.6. ConclusionIEC 62660 is an important international standard that ensures the safety, performance, and reliability of lithium-ion cells used in EESS for EVs. By complying with the requirements and test methods specified in this standard, manufacturers can produce high-quality and safe lithium-ion cells that meet the growing demand for electric vehicles.。
动力电池安全标准动力电池是一种将化学能储存为电能的装置,用于动力驱动电动车辆等应用。
由于动力电池直接涉及到车辆的安全,因此制定和实施严格的安全标准非常重要。
下面是与动力电池安全标准相关的参考内容。
1. 国家标准:国家标准是规范动力电池安全的重要依据。
在中国,国家标准GB/T 31484-2015《动力电池匹配与安全要求》规定了动力电池的安全性能和使用要求,包括动力电池的电气性能、力学性能、热学性能、环境适应性等。
2. 国际标准:国际标准也对动力电池的安全进行了规范。
例如,国际电工委员会(IEC)发布了IEC 62619标准,规定了动力电池模块和系统的设计、性能测试和安全要求。
此外,联合国经济和社会理事会委员会(UNECE)发布了UN R136标准,规定了动力电池系统在车辆中的安全性能和试验方法。
3. 安全性能:动力电池的安全性能是评判其质量的重要指标。
安全性能包括短路、过充、过放、高温、高压等方面。
例如,动力电池应具有适当的保护措施,以防止短路情况的发生;电池管理系统应能监测和控制电池的充放电过程,防止充放电过程中的过充和过放等。
4. 建立完善的管理体系:动力电池的安全不仅仅在于电池本身,还包括整个电池的使用过程和管理。
因此,建立完善的管理体系和规范操作程序非常重要。
例如,应制定完善的电池使用和维护手册,确保操作人员正确使用电池系统;应定期进行安全检查和维护,及时处理电池存在的问题。
5. 安全培训:为了确保操作人员对动力电池的安全操作和应急处理能够达到要求,应进行相关的安全培训。
培训内容可以包括电池的基本知识、操作规程、应急处理方法等。
培训的对象可以包括驾驶员、维修人员等与电池有直接接触的人员。
6. 事故调查和信息共享:动力电池事故的调查和信息共享是提高动力电池安全的重要手段。
通过对事故的调查,可以确定事故的原因和责任,从而采取相应的改进措施。
同时,要加强信息的共享,通过分享事故案例和经验教训,提高广大使用者和制造商的安全意识和技术水平。
IEC 62660.2-2018国际标准一、引言IEC 62660.2-2018是国际电工委员会(IEC)制定的一项有关充电系统的国际标准。
该标准的发布对于推动全球新能源汽车充电技术的发展具有重要意义。
本文将对该标准的背景、内容和应用进行介绍,并分析其在新能源汽车充电系统领域的影响。
二、背景随着全球新能源汽车市场的迅速发展,为新能源汽车提供高效、安全、可靠的充电系统成为重要任务。
然而,由于各国充电技术标准不统一、技术水平不同,导致了充电设备之间的互操作性差、安全隐患多等问题。
为解决这一问题,国际电工委员会于2018年发布了IEC 62660.2-2018国际标准,旨在为新能源汽车充电系统的设计、制造、安装、使用和维护提供统一而可靠的技术规范。
三、内容IEC 62660.2-2018标准主要包括以下内容:1. 术语和定义:明确了充电系统相关术语和定义,为标准后续内容的理解提供了基础。
2. 充电接口:对不同类型的新能源汽车充电接口进行了规范,包括直流快充接口、交流普通充电接口等。
3. 充电模式:规定了不同充电模式下的技术要求,包括充电时功率控制、充电过程监控、充电连接器设计等。
4. 安全性能:强调了充电系统的安全性能要求,包括对电气安全、防火安全、人身安全等方面的规定。
5. 兼容性测试:介绍了充电系统的兼容性测试方法和标准,确保不同厂家生产的充电设备能够相互适配。
6. 标识和说明:规定了充电设备的标识要求和用户操作说明,以便用户正确、安全地使用充电设备。
四、应用IEC 62660.2-2018标准的发布将对全球新能源汽车充电系统产业产生重大影响:1. 推动技术创新:标准对充电系统的技术要求明确而严格,将促使充电设备制造商加大研发投入,推动技术创新,提升产品质量。
2. 促进产品质量提升:标准作为全球统一的技术规范,将促使各国充电设备制造商强化产品质量管理,提高产品质量水平。
3. 促进国际贸易:标准的全球应用将促进各国充电设备产品的互相认可,促进国际贸易合作,推动新能源汽车技术的跨国传播和应用。
, , , and –.n )/100 ´ 1 h for HEV applI max and power can be calcuRegener I t for BEV applicationAand Figure 3b.at.If the voltage reaches the N is a value (1/h)NOTE The value of N = 3/h is an specifications of commercialized BEVs.ed derived from equation (12) is larger than the maximum power of cell specified by ttest power shall be defined as 80 % of the maximum power at room temperature and aby the manufacturer. Power value actually used shall be reported.Figure 4 – Dynaprofile A for BEV cycle test Step 4 - Discharge the cell following the dynamic dis(hill climbing profile) specified in Table 4 and Figure 5 for one time. The test pcalculated using equation (12).If the voltage reaches the lower limit specified byduring step 4, the test shall be discontinued notwithstanding the stipulation in 7cell performance shall be measured at this point as specified in 7.7.1.2 c).If thefrequently reaches the lower limit voltage during charge/discharge step 16, the diduration can be changed appropriately. The actual test values shall be reported acDynamic discharge profile B for BEV cycle testFigure 5 – Dynamic discharge prcycle test Step 5 - Discharge the cell following the dynamic discharge profile A spand Figure 4 until the overall discharge capacity including step 3 and step 4 reac% of initial C D at .If the temperature of cell reaches the upper limit specified bduring step 5, the duration of charge/discharge step Table 3 can be extended to aThe actual duration time shall be reported.If the voltage reaches the lower limitmanufacturer during step 5, the test shall be discontinued notwithstanding the stid), and the cell performance shall be measured at this point as specified in 7.7.1measurement of performanceAfter every completion of the repetition from step 1 todays, the performanceof cell shall be measured as specified in 7.7.1.1. The accumu1 to step 7.7.1.2 b) shall also be reported. The dynamic discharge capacity shall2 K only.d) Termination of testThe cycle life test shall be terminated when eitherconditions is satisfied. Otherwise back to 7.7.1.2 a) and repeat the test. Conditisequence from 7.7.1.2 a) to 7.7.) is repeated 6 times.Condition B – When any of tmeasured in 7.7.1.2 c) is decreased to less than 80 % of the initial value.Condititemperature of cell reaches the upper limit agreed between the manufacturer and ththe test.The number of implemented times of each profile and cycle during the test teststipulation in 7.7.1.2 d), and the cell performance shall be measured at this poin 7.7.1.2 c).If the temperature of cell reaches the upper limit specified by the man step 3, the duration of charge/discharge step Table 3 can be extended to an appro actual duration time shall be reported.In this profile, the test power shall be ca equation (12)P max = N W ed (12)where P max is the test power (W);N is a value (1/h)NOTE The value of N = 3/h is an ArrayFigure 4 – DynaQ c usingI n is dI and the disch W= (14)wherη c is coulomb efficiencyηThis paragraph iAnnex A.I tAof cell.1 Power P d=U d×I dmaxI t A for BEV application and 1capacity Caxan the maximum power of cell specified by the manufacturer, the the maximum power at room temperature and at 20 % SOC specified ly used shall be reported.Figure 4 – Dynamic discharge ischarge the cell following the dynamic discharge profile Bble 4 and Figure 5 for one time. The test power shall beoltage reaches the lower limit specified by the manufacturer tinued notwithstanding the stipulation in 7.7.1.2 d), and the his point as specified in 7.7.1.2 c).If the battery voltageage during charge/discharge step 16, the discharge power and The actual test values shall be reported accordingly.Table 4 –cle testFigure 5 – Dynamic discharge profile B for BEV ollowing the dynamic discharge profile A specified in Table 3 e capacity including step 3 and step 4 reaches equivalent to 80 of cell reaches the upper limit specified by the manufacturer ischarge step Table 3 can be extended to an appropriate value. ted.If the voltage reaches the lower limit specified by theall be discontinued notwithstanding the stipulation in 7.7.1.2 easured at this point as specified in 7.7.1.2 c).c) Periodical ompletion of the repetition from step 1 to step 5 for 28 test easured as specified in 7.7.1.1. The accumulated time from step orted. The dynamic discharge capacity shall be measured at ±e life test shall be terminated when either of the followingto 7.7.1.2 a) and repeat the test. Condition A – The test peated 6 times.Condition B – When any of the performanceless than 80 % of the initial value.Condition C – Theimit agreed between the manufacturer and the customer durings of each profile and cycle during the test shall be reported.performance shall be measured at this point as specified ineaches the upper limit specified by the manufacturer duringe step Table 3 can be extended to an appropriate value. TheIn this profile, the test power shall be calculated usingax is the test power (W);N is a value (1/h) of vehicle required7.7.2.1 Measurement of initial ponds (sty Q dgy (Wh);I n =100d。
电池安规iec63056
IEC 62660是电动汽车动力蓄电池模块和系统的安全规范。
这
个标准覆盖了电动汽车动力蓄电池模块和系统的安全性能要求,包
括电池模块和系统的设计、生产、安装和使用过程中的安全性能要求。
它还包括了对电池系统的性能和环境适应性的要求,以及对电
池系统进行测试和验证的方法。
IEC 62660标准涵盖了多个方面,包括电池系统的电气性能、
机械性能、环境适应性、安全性能等。
它要求电池系统在正常使用
和意外情况下都能够确保安全,包括在高温、低温、湿度变化等极
端环境下的安全性能。
此外,IEC 62660还包括了对电池系统进行测试和验证的方法,确保电池系统符合标准规定的安全性能要求。
这些测试包括电池系
统的电气性能测试、机械性能测试、环境适应性测试、安全性能测
试等。
总的来说,IEC 62660标准为电动汽车动力蓄电池模块和系统
的安全性能提供了全面的规范,确保了电池系统在设计、生产、安
装和使用过程中能够满足安全性能要求,为电动汽车的安全运行提供了重要保障。
动力电池技术的国际标准与规范随着全球能源转型和汽车产业的快速发展,动力电池作为电动汽车的核心组件之一,其技术标准与规范的制定和实施变得至关重要。
本文将对动力电池技术的国际标准和规范进行探讨,以期为相关行业提供参考和借鉴。
一、动力电池技术的国际标准1. ISO/IEC 62660系列标准ISO/IEC 62660系列标准是国际上最重要的动力电池标准之一。
该系列标准主要规定了动力电池的性能测试方法、耐久性能要求、安全性能要求等内容,为动力电池的设计、研发、制造和使用提供了一致的技术规范。
2. UN R100UN R100是联合国制定的动力电池国际标准,适用于电动汽车和混合动力汽车的高压动力电池系统。
该标准对动力电池的安全性能、机械强度、电气安全性和安全管理等方面进行了详细规定,确保了动力电池的安全可靠性。
3. GB/T 31485-2015GB/T 31485-2015是中国制定的动力电池技术标准,是中国汽车工业领域的动力电池技术标准,与国际标准相互衔接。
该标准细化了电池的性能指标、测试方法和试验条件,有力地推动了我国动力电池行业的规范化和标准化发展。
二、动力电池技术的国际规范1. ISO/IEC 29167系列规范ISO/IEC 29167系列规范是国际电工委员会和国际标准化组织联合制定的,主要规范了动力电池与车辆之间的通信标准。
该系列规范确保了动力电池在不同车辆之间的互操作性和通信的安全性,为电动汽车的发展提供了技术保障。
2. SAE J2929SAE J2929是美国汽车工程师协会制定的动力电池规范,详细规定了动力电池的构造、性能和测试方法。
该规范对动力电池的设计、制造、测试和使用提供了指导,为动力电池的研发和市场应用奠定了基础。
3. GB/T 31467.3-2015GB/T 31467.3-2015是中国制定的动力电池规范之一,主要规定了动力电池的储存、运输和安全要求。
该规范要求电池制造商和使用者制定和执行相应的管理制度和操作规程,确保动力电池的安全运输和存储。
动力电池振动测试主要标准(台架实验)一、ISO 12405系列Title:电动道路车辆-锂离子动力电池包和系统的测试规范Electrically propelled road vehicles —Test specification for lithium-ion tractionbattery packs and systems(a)振动测试,分两步:Part 1: Battery pack and system(5?200Hz),大质量,指电池组或者电池系统Part 2: Electric/electronic devices of battery pack and system (10?2000),小质量,电子设备,或者电池系统的元件。
(b)评价标准:无泄漏、无破裂、无起火、无爆炸;Ir:DC 100?/V,AC 500 ?/V二、IEC 62660-2,国际电工协会颁布,时间:2010年Title:电气公路用车的驱动用辅助锂电池.第2部分:可靠性和滥用试验Secondary lithium-ion cells for the propulsion of electric road vehicles - Part 2: Reliability and abuse testing(a)振动测试:1.BEV:SOC=100% HEV: SOC=80%2.3.PSD of acceleration vs. frequency Values for PSD and frequency(b)评价方法三、SAE J2380-2013,时间:2013年修订Title:Vibration Testing of Electric Vehicle Batteries(a)振动测试:1.电池状态:2.激振设备要求,1.9g,频率范围10?200Hz四、GB/T 31467.3-2015与GB/T 31486-2015试验方法及要求1.电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法振动主要测试内容:(1)振动测试在三个方向上进行,测试从Z轴开始,然后是Y轴,最后是X轴,测试过程参照GB/T2423.56(2)每个方向的测试时间是21H,如果测试对象是两个,则可以减少到15H,如果测试对象是三个,则可以减少到12H(3)测试过程中,监控测试对象内部最小监控单元的状态,如电压和温度等(4)振动测试后,观察2H。
方法\\电芯放在不同温度下经受以下循环:①start:25±5℃-->85℃(升温t≤30min )②85±2℃保持4h;85±2℃-->25℃(降温t≤30min)③25±5°C保持2h;25±5°C-->-40℃(降温t≤30min )④-40±2°C保持4h:-40±2°C-->25℃(升温t≤30min )⑤25±5°C保持2h;25±5℃-->85℃(升温t≤30min )返回步骤②,循环10次;循环结束后,在25±5℃放置24h 再检查:循环结束时,测量电池的开路电压(OCV),并与预测试值进行比较。
@100%SOC(BEV) 或80%SOC(HEV),最低工作温度应为制造商规定的Tmin或-40℃,最高工作温度应为由制造商规定的Tmax或85℃,电芯放在不同温度下经受480min温度变化:①第0min-->25℃②第60min-->Tmin(降温约1℃/min到-40℃)③第150min-->Tmin(保温90min)④第210min-->25℃(升温约1℃/min到25℃)⑤第300min-->Tmax(升温约0.67℃/min到85℃)⑥第410min-->Tmax(保温90min)⑦第480min-->25℃(降温约0.86℃/min到-25℃)重复以上30次循环同IEC-62660-2中测试方法电芯放在不同温度下经受以下循环:①start:25+5℃-->72±2℃(t≤30min )②保持6h:72±2℃③变换:72℃-->-40±2℃(t≤30min )④保持6h:-40±2℃⑤变换:-40℃-->-72±2℃(t≤30min )重复步骤②,供完成10次,取出在室温(25±5)℃静置24h。
IEC 62660-1电动道路车辆用二次锂离子电池——第1 部分:锂离子电池性能试验目录前言 (1)简介 (3)1 范围 (4)2 规范性引用文件 (4)3 术语和定义 (5)4 测试条件 (6)4.1 概述 (6)4.2 测量设备 (6)4.2.1 测量仪器量程 (6)4.2.2 电压测量 (6)4.2.3 电流测量 (6)4.2.4温度测量 (6)4.2.5 其他测量 (7)4.3 误差 (7)4.4 温度测试 (7)5 尺寸测量 (8)6 重量测量 (9)7 电测试 (9)7.1 一般充电条件 (9)7.2 容量 (10)7.3 SOC调整 (10)7.4 功率 (11)7.4.1 测试方法 (11)7.4.2 功率密度的计算 (13)7.4.3 计算电池的再生功率密度 (14)7.5 能量 (15)7.5.1 测试方法 (15)7.5.2 能量密度的计算 (16)7.6 存储测试 (17)7.6.1 荷电保持测试 (17)7.6.2 储存寿命测试 (17)7.7 循环寿命测试 (18)7.7.1 BEV循环测试 (18)7.7.2 HEV用蓄电池循环测试 (23)7.8 能效测试 (27)7.8.1 常规测试 (27)7.8.2 BEV用电池的测试 (29)7.8.3 HEV用电池的能效计算 (30)前言1)国际电工技术委员会(IEC)是由各国的电工委员会组成的,专门国际标准化机构。
IEC的宗旨是改善国际上关于电工、电子方面有关标准化问题的合作。
为此,IEC出版发行国际标准、技术规范、技术报告、公共可用规范(PAS)以及指导书等。
标准的编制委托给技术委员会,任何对此感兴趣的国家委员会都可以参与进来。
与IEC有合作的国际、政府和非政府的组织也参与了其中标准的编制工作。
依据IEC与国际标准化组织(ISO)达成的协议,两个组织之间保持密切合作。
2)IEC有关技术问题的正式决定或意见,都代表着各国国家委员会一致的观点。