k12
0
k21
(k22 2m2 )
特征方程 频率方程
(k11 2m1)(k22 2m2) k12k21 0
4
(k11 2m1)(k22 2m2) k12k21 0
2
2 1,2
1 2
k11 m1
k 22 m2
1
2
k11 m1
k 22 m2
k11k22 k12k21 m1m2
最小圆频率称为第一(基本)圆频率: 第二圆频率-------
K1 F
n1 n2 nn
FMYY 0
K Fn自M由度Y体 系作K自由Y振动 的K 0 IM运动Y方程(K柔Y度法)0
将特解带入方
程整理后:
FM
1 2
IX
0
M Y
KY 0
FM
1 2
I
0
频率方程
19
FM
1
2 j
I j
0
j(1) 1
规准化主振型方程
一般的:
n个主振型向量彼此线性无关,
( j 1,2,, n)
n个自由 度体系的
依上式可求得与ωj 相对应 主振型,我们可唯一地确 振型方程
定主振型的形状,但不能唯一地确定它的振幅。
N自由度体系有n个主振型,若体系为对称形式,则这些主振型
分为对称及反对称形式两类。
17
主振型的规准化:
为了使主振型的振幅也具有确定值,需另外补充条件, 由此得到的主振型叫规准化主振型。
则系数行列式为零:
K 2 M 0
n个自由度体系 的频率方程
n个频率(按数值大小从小到大排列): ω1,ω2,---,ωn
令:Xj 表示与频率ωj相对应的主振型向量: